1
|
Wang B, Wu Z, Han P, Zhu J, Yang H, Lin H, Qiao H, Lan J, Huang X. Casein phosphopeptide/antimicrobial peptide co-modified SrTiO 3 nanotubes for prevention of bacterial infections and repair of bone defects. Biochem Biophys Res Commun 2024; 733:150571. [PMID: 39197197 DOI: 10.1016/j.bbrc.2024.150571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Endowing titanium surfaces with multifunctional properties can reduce implant-related infections and enhance osseointegration. In this study, titanium dioxide nanotubes with strontium doping (STN) were first created on the titanium surface using anodic oxidation and hydrothermal synthesis techniques. Next, casein phosphopeptide (CCP) and an antimicrobial peptide (HHC36) were loaded into the STN with the aid of vacuum physical adsorption (STN-CP-H), giving the titanium surface a dual function of "antimicrobial-osteogenic". The surface of STN-CP-H has a suitable roughness and good hydrophilicity, which is conducive to osteoblasts. STN-CP-H had a 99 % antibacterial rate against S. aureus and E. coli and effectively prevented the growth of bacterial biofilm. Meanwhile, the antibacterial mechanism of STN-CP-H was initially explored with the help of transcriptome sequencing technology. STN-CP-H could greatly increase osteoblast adhesion, proliferation, and expression of osteogenic markers (alkaline phosphatase, runt-related transcription) when CCP and Sr worked together synergistically. In vivo, the STN-CP-H coating could effectively promote new osteogenesis around titanium implant bone and had no toxic effects on heart, liver, spleen, lung and kidney tissues. A potential anti-infection bone healing material, STN-CP-H bifunctional coating developed in this work efficiently inhibited bacterial infection of titanium implants and encouraged early osseointegration.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China
| | - Zongze Wu
- Shenzhen Kurher Life Technology Co., Shenzhen, 518000, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jialiang Zhu
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Haixia Qiao
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China.
| | - Jinping Lan
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China.
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
2
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
3
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
4
|
Alves PM, Barrias CC, Gomes P, Martins MCL. How can biomaterial-conjugated antimicrobial peptides fight bacteria and be protected from degradation? Acta Biomater 2024; 181:98-116. [PMID: 38697382 DOI: 10.1016/j.actbio.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.
Collapse
Affiliation(s)
- Pedro M Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
6
|
Dong J, Chen F, Yao Y, Wu C, Ye S, Ma Z, Yuan H, Shao D, Wang L, Wang Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024; 305:122465. [PMID: 38190768 DOI: 10.1016/j.biomaterials.2023.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Bacterial infection and delayed osseointegration are two major challenges for titanium-based orthopedic implants. In the present study, we developed a functionalized titanium implant Ti-M@A by immobilizing antimicrobial peptide (AMP) HHC36-loaded diselenide-bridged mesoporous silica nanoparticles (MSNs) on the surface, which showed good long-term and mechanical stability. The functionalized implants can realize the sustained release of AMP over 30 days and exhibit over 95.71 % antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and MRSA), which arose from the capability to destroy the bacterial membranes. Moreover, Ti-M@A can efficiently inhibit the biofilm formation of the bacteria. The functionalized implants can also significantly promote the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) because of the Se in MSNs. Notably, it can trigger macrophages toward M2 polarization in vitro by scavenging ROS in LPS-activated macrophages. Consequently, in vivo assays with infection and non-infection bone defect models demonstrated that such bioactive implants can not only kill over 98.82 % of S. aureus, but also promote osseointegration. Hence, this study provides a combined strategy to resolve bacterial infection and delayed osseointegration for titanium implants.
Collapse
Affiliation(s)
- Jiyu Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Congcong Wu
- Jinan Center for Disease Control and Prevention, Jinan 250001, China
| | - Silin Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Haipeng Yuan
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Qi J, Zhao H, Ning M, Wang K, Yuan Y, Yue T. Strategy for Avoiding Alicyclobacillus acidocaldarius Contamination of Apple Juice by Adding Magnetosomes/Antibacterial Peptide Composites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12819-12828. [PMID: 37596994 DOI: 10.1021/acs.jafc.3c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
The survival of Alicyclobacillus acidocaldarius (A. acidocaldarius) in fruit juice after pasteurization results in high economic losses due to unpalatability. The present work addressed this issue by inhibiting the growth of A. acidocaldarius in apple juice by the addition of MN@IDR-1018 composites formed of innate defense regulator 1018 (IDR-1018) antibacterial peptides that are coupled on the surfaces of magnetosomes (MN) via amidation reactions. MN@IDR-1018 was demonstrated to provide excellent antibacterial activity against A. acidoterrestris with a minimum inhibitory concentration of 100 μg mL-1, which led to cell death via membrane dissolution and rupture. In addition, this concentration of MN@IDR-1018 was proved to present low toxicity in mice and had no discernible effect on the color, flavor, and aroma of apple juice. This enables the active material to be extracted from the apple juice by the application of a magnetic field, thereby avoiding the development of antibiotic resistance.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongfan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Gao W, Han X, Sun D, Li Y, Liu X, Yang S, Zhou Z, Qi Y, Jiao J, Zhao J. Antibacterial properties of antimicrobial peptide HHC36 modified polyetheretherketone. Front Microbiol 2023; 14:1103956. [PMID: 36998411 PMCID: PMC10043374 DOI: 10.3389/fmicb.2023.1103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolyetheretherketone (PEEK) is considered to be a new type of orthopedic implant material due to its mechanical properties and biocompatibility. It is becoming a replacement for titanium (Ti) due to its near-human-cortical transmission and modulus of elasticity. However, its clinical application is limited because of its biological inertia and susceptibility to bacterial infection during implantation. To solve this problem, there is an urgent need to improve the antibacterial properties of PEEK implants.MethodsIn this work, we fixed antimicrobial peptide HHC36 on the 3D porous structure of sulfonated PEEK (SPEEK) by a simple solvent evaporation method (HSPEEK), and carried out characterization tests. We evaluated the antibacterial properties and cytocompatibility of the samples in vitro. In addition, we evaluated the anti-infection property and biocompatibility of the samples in vivo by establishing a rat subcutaneous infection model.ResultsThe characterization test results showed that HHC36 was successfully fixed on the surface of SPEEK and released slowly for 10 days. The results of antibacterial experiments in vitro showed that HSPEEK could reduce the survival rate of free bacteria, inhibit the growth of bacteria around the sample, and inhibit the formation of biofilm on the sample surface. The cytocompatibility test in vitro showed that the sample had no significant effect on the proliferation and viability of L929 cells and had no hemolytic activity on rabbit erythrocytes. In vivo experiments, HSPEEK can significantly reduce the bacterial survival rate on the sample surface and the inflammatory reaction in the soft tissue around the sample.DiscussionWe successfully loaded HHC36 onto the surface of SPEEK through a simple solvent evaporation method. The sample has excellent antibacterial properties and good cell compatibility, which can significantly reduce the bacterial survival rate and inflammatory reaction in vivo. The above results indicated that we successfully improved the antibacterial property of PEEK by a simple modification strategy, making it a promising material for anti-infection orthopedic implants.
Collapse
Affiliation(s)
- Weijia Gao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiao Han
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Duo Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yongli Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiaoli Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shihui Yang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Prostheses, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhe Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuanzheng Qi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Junjie Jiao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jinghui Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhao,
| |
Collapse
|
10
|
Yang K, Liu D, Teng R, Li C, Fan Z, Du J. An Antibacterial Polypeptide Coating Prepared by In Situ Enzymatic Polymerization for Preventing Delayed Infection of Implants. ACS Biomater Sci Eng 2023; 9:1900-1908. [PMID: 36877006 DOI: 10.1021/acsbiomaterials.3c00131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Delayed implant-associated infection is an important challenge, as the treatment involves a high risk of implant replacement. Mussel-inspired antimicrobial coatings can be applied to coat a variety of implants in a facile way, but the adhesive 3,4-dihydroxyphenylalanine (DOPA) group is prone to oxidation. Therefore, an antibacterial polypeptide copolymer poly(Phe7-stat-Lys10)-b-polyTyr3 was designed to prepare the implant coating upon tyrosinase-induced enzymatic polymerization for preventing implant-associated infections. Both poly(Phe7-stat-Lys10) and polyTyr3 blocks have specific functions: the former provides intrinsic antibacterial activity with a low risk to induce antimicrobial resistance, and the latter is attachable to the surface of implants to rapidly generate an antibacterial coating by in situ injection of polypeptide copolymer since tyrosine could be oxidized to DOPA under catalyzation of skin tyrosinase. This polypeptide coating with excellent antibacterial effect and desirable biofilm inhibition activity is promising for broad applications in a multitude of biomedical materials to combat delayed infections.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Runxin Teng
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
11
|
Cao W, Zhou X, Tu C, Wang Z, Liu X, Kang Y, Wang J, Deng L, Zhou T, Gao C. A broad-spectrum antibacterial and tough hydrogel dressing accelerates healing of infected wound in vivo. BIOMATERIALS ADVANCES 2023; 145:213244. [PMID: 36549150 DOI: 10.1016/j.bioadv.2022.213244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Infection can disturb the wound healing process and lead to poor skin regeneration, chronic wound, septicemia and even death. To combat the multi-drug resistance bacteria or fungi, it is urgent and necessary to develop advanced antimicrobial wound dressings. In this study, a composite hydrogel dressing composed of polyvinyl alcohol (PVA), agarose, glycerol and antibacterial hyperbranched polylysine (HBPL) was prepared by a freeze-thawing method. The hydrogel showed robust mechanical properties, and the HBPL in the hydrogel displayed effective and broad-spectrum antimicrobial properties to bacteria and fungi as well as biofilms. The composite hydrogel exhibited good biocompatibility with respect to the levels of cells, blood, tissue and main organs. In an animal experiment of an infected wound model, the hydrogel significantly eliminated the infection and accelerated the wound regeneration with better tissue morphology and angiogenesis. The hydrogel also successfully achieved scalable production of over 600 g with a yield over 90 %, suggesting the great potential for the application in practice.
Collapse
Affiliation(s)
- Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuhao Zhou
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liwen Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China.
| |
Collapse
|
12
|
Pemmada R, Shrivastava A, Dash M, Cui K, Kumar P, Ramakrishna S, Zhou Y, Thomas V, Nanda HS. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Rai A, Ferrão R, Marta D, Vilaça A, Lino M, Rondão T, Ji J, Paiva A, Ferreira L. Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24213-24228. [PMID: 35584375 DOI: 10.1021/acsami.2c06601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
No effective therapeutic dressings are currently available in the market that can prevent bacterial infection and simultaneously promote skin regeneration in diabetic patients. The lack of re-epithelization, prevalence of inflammation, and high risk of infection are hallmarks of non-healing wounds. Here, we have evaluated the antimicrobial and pro-regenerative effect of a relatively non-leaching LL37 peptide immobilized in polyurethane (PU)-based wound dressings (PU-adhesive-LL37 dressing). The PU-adhesive-LL37 (63 μg LL37NPs/cm2) dressing killed Gram-positive and Gram-negative bacteria in human serum without inducing bacterial resistance after 16 antimicrobial test cycles in contrast to commercially available dressings with the capacity to release antimicrobial Ag ions. Importantly, type II diabetic mice (db/db mice) treated with the PU-adhesive-LL37 dressing for different periods of time (6 or 14 days) showed enhanced wound healing and re-epithelialization (i.e., high keratin 14/5 levels) and lower macrophage infiltration in the wounds compared to animals treated with PU. The wounds treated with PU-adhesive-LL37 dressings showed also low expression of pro-inflammatory cytokines such as TNF-α and IL6 after 6 days of treatment, indicating that they act as an anti-inflammatory dressing. Additionally, PU-adhesive-LL37 dressings do not induce acute inflammatory responses in the peripheral blood mononuclear cells (PBMCs) after 3 days of exposure, in contrast to controls. Taken together, PU-adhesive-LL37NP dressings might prevent the bacterial infections and facilitate wound healing by tissue contact, inducing re-epithelialization and anti-inflammatory processes in diabetic conditions.
Collapse
Affiliation(s)
- Akhilesh Rai
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Rafaela Ferrão
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
| | - Denise Marta
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Andreia Vilaça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Miguel Lino
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Tiago Rondão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra 3001-301, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de Medicina, Universidade de Coimbra, Polo III-Health Sciences Campus, Coimbra 3000-548, Portugal
- ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Coimbra 3040-854, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| |
Collapse
|
14
|
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022; 59:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Due to the alarming developing rate of multidrug-resistant bacterial pathogens, the development and modification of antimicrobial peptides (AMPs) are unprecedentedly active. Despite the fact that considerable efforts have been expended on the discovery and design strategies of AMPs, the clinical translation of peptide antibiotics remains inadequate. A large number of articles and reviews credited the limited success of AMPs to their poor stability in the biological environment, particularly their poor proteolytic stability. In the past forty years, various design strategies have been used to improve the proteolytic stability of AMPs, such as sequence modification, cyclization, peptidomimetics, and nanotechnology. Herein, we focus our discussion on the progress made in improving the proteolytic stability of AMPs and the principle, successes, and limitations of various anti-proteolytic design strategies. It is of prospective significance to extend current insights into the degradation-related inactivation of AMPs and also alleviate/overcome the problem.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yunhui Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Keum H, Kim D, Whang CH, Kang A, Lee S, Na W, Jon S. Impeding the Medical Protective Clothing Contamination by a Spray Coating of Trifunctional Polymers. ACS OMEGA 2022; 7:10526-10538. [PMID: 35382299 PMCID: PMC8973108 DOI: 10.1021/acsomega.1c04919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The risk of fomite-mediated transmission in the clinic is substantially increasing amid the recent COVID-19 pandemic as personal protective equipment (PPE) of hospital workers is easily contaminated by direct contact with infected patients. In this context, it is crucial to devise a means to reduce such transmission. Herein, we report an antimicrobial, antiviral, and antibiofouling trifunctional polymer that can be easily coated onto the surface of medical protective clothing to effectively prevent pathogen contamination on the PPE. The coating layer is formed on the surfaces of PPE by the simple spray coating of an aqueous solution of the trifunctional polymer, poly(dodecyl methacrylate (DMA)-poly(ethylene glycol) methacrylate (PEGMA)-quaternary ammonium (QA)). To establish an optimal ratio of antifouling and antimicrobial functional groups, we performed antifouling, antibacterial, and antiviral tests using four different ratios of the polymers. Antifouling and bactericidal results were assessed using Staphylococcus aureus, a typical pathogenic bacterium that induces an upper respiratory infection. Regardless of the molar ratio, polymer-coated PPE surfaces showed considerable antiadhesion (∼65-75%) and antibacterial (∼75-87%) efficacies soon after being in contact with pathogens and maintained their capability for at least 24 h, which is sufficient for disposable PPEs. Further antiviral tests using coronaviruses showed favorable results with PPE coated at two specific ratios (3.5:6:0.5 and 3.5:5.5:1) of poly(DMA-PEGMA-QA). Moreover, biocompatibility assessments using the two most effective polymer ratios showed no recognizable local or systemic inflammatory responses in mice, suggesting the potential of this polymer for immediate use in the field.
Collapse
Affiliation(s)
- Hyeongseop Keum
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dohyeon Kim
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Chang-Hee Whang
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Aram Kang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Seojung Lee
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Woonsung Na
- College
of Veterinary Medicine, Chonnam University, 77 Yongbong-ro, Gwangju 61186, Republic
of Korea
| | - Sangyong Jon
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Li K, Zhang L, Li J, Xue Y, Zhou J, Han Y. pH-Responsive ECM Coating on Ti Implants for Antibiosis in Reinfected Models. ACS APPLIED BIO MATERIALS 2022; 5:344-354. [PMID: 35014807 DOI: 10.1021/acsabm.1c01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reinfection of implants during their service life causes troubles to patients. Traditionally, physical loading or chemical bonding of antibacterial agents on implant surfaces cannot settle the repeated bacterial invasion after a period of implantation. In this work, a pH-responsive extracellular matrix (ECM) coating was fabricated on Ti. It consisted of hydroxyapatite (HA) nanorods, antimicrobial peptide (AMP) cross-linked collagen I nanonets (CA nanonets), and physically loaded AMPs. CA nanonets formed in the interspaces of HA nanorods and had an average pore size of 46.5 nm. With the increase in the weight ratio of AMP cross-linkers in collagen I (from 0 to 1:3), the isoelectric points of CA nanonets increased. CA nanonets linked with 50 wt % of AMPs (HCA1) had an isoelectric point of about 7, and their zeta potential shifted from electronegativity to electropositivity when the pH value changed from 7.4 to 6.0. Compared with other nanonets, HCA1 showed a pH-responsive blast release of physically loaded AMPs. It was due to the electrostatic repulsion between the physically adsorbed AMPs and HCA1 after a shift in the potential. In vitro, all the CA nanonets were cytocompatible and exhibited significant short-term antibacterial performance; however, just HCA1 showed outstanding long-time responsive antibacterial activity; in vivo, HCA1 inhibited bacterial infection and suppressed the inflammatory response, especially in a reinfected model, indicating its potential application in Ti implants to mitigate the risk of reinfection.
Collapse
Affiliation(s)
- Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.,Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Wang B, Bian A, Jia F, Lan J, Yang H, Yan K, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. "Dual-functional" strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112650. [PMID: 35034822 DOI: 10.1016/j.msec.2022.112650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Currently, there is an increasing clinical demand for implants that effectively resist bacterial infections while promoting osseointegration. In this study, the fusion peptide technology was used to linearly fuse the antimicrobial peptide (AMP, HHC36) and the bone-promoting peptide (RGD), so that the titanium (Ti)-based implant modified by the polypeptide had the dual function of "antibacterial-promoting bone". Firstly, self-organized vertically-oriented strontium-doped titanium dioxide nanotubes (STN) were manufactured by anodizing and hydrothermal synthesis methods. Secondly, the fusion peptide (HHC36-RGD) was loaded into the tubular structure by a simple vacuum-assisted physical adsorption method. Finally, STN loaded with HHC36-RGD (H-R-STN) was obtained. The characterization results demonstrated that the surface of the H-R-STN had a roughness and hydrophilicity that promoted cell adhesion. Additionally, electrochemical tests showed that H-R-STN coating can reduce the corrosion rate of pure Ti. The fusion peptide and Sr2+ in H-R-STN were released in the initial fast and subsequent slow kinetic model. Expected, H-R-STN can kill more than 99% of clinically common pathogenic bacteria (Staphylococcus aureus and Escherichia coli), and significantly inhibit the formation of bacterial biofilms. Simultaneously, under the synergistic effect of RGD in the fusion peptide and strontium in STN, H-R-STN markedly promoted the adhesion and proliferation of mouse osteoblasts, and significantly promoted osteogenic markers (alkaline phosphatase, runt-related transcription, collagen, mineralization) expression. In summary, the bifunctional titanium-based implant constructed by H-R-STN in this article can effectively prevent bacterial infections and promote early osseointegration. The main advantage of the titanium surface treatment method of the study was that its simplicity, low cost, especially its versatility made it a promising anti-infective bone repair material.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Jingpin Lan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ke Yan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
18
|
Lou Y, Schapman D, Mercier D, Alexandre S, Dé E, Brunel JM, Kébir N, Thébault P. Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wang L, Sun L, Zhang X, Wang H, Song L, Luan S. A Self-defense Hierarchical Antibacterial Surface with Inherent Antifouling and Bacteria-activated Bactericidal Properties for Infection Resistance. Biomater Sci 2022; 10:1968-1980. [DOI: 10.1039/d1bm01952j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical device-associated infection (BAI) is one of the main reasons for the function failure of implants in clinic practices. Development of high-efficiency antibacterial materials is of great significance to reduce...
Collapse
|
20
|
Hwang YE, Im S, Kim H, Sohn JH, Cho BK, Cho JH, Sung BH, Kim SC. Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating. Int J Mol Sci 2021; 22:ijms222111915. [PMID: 34769345 PMCID: PMC8584447 DOI: 10.3390/ijms222111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.
Collapse
Affiliation(s)
- Young Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Seonghun Im
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Hyun Kim
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Ju Hyun Cho
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
- Correspondence: (B.H.S.); (S.C.K.)
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
- Correspondence: (B.H.S.); (S.C.K.)
| |
Collapse
|
21
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
22
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
23
|
Chiodi E, Marn AM, Geib MT, Ünlü MS. The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview. Polymers (Basel) 2021; 13:1026. [PMID: 33810267 PMCID: PMC8036480 DOI: 10.3390/polym13071026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules' functionalities is critically analyzed.
Collapse
Affiliation(s)
- Elisa Chiodi
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Allison M. Marn
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Matthew T. Geib
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - M. Selim Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
24
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Jorge P, Magalhães AP, Grainha T, Alves D, Sousa AM, Lopes SP, Pereira MO. Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiol Ecol 2020; 95:5532357. [PMID: 31305896 DOI: 10.1093/femsec/fiz115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, infections are resuming their role as highly effective killing diseases, as current treatments are failing to respond to the growing problem of antimicrobial resistance (AMR). The social and economic burden of AMR seems ever rising, with health- and research-related organizations rushing to collaborate on a worldwide scale to find effective solutions. Resistant bacteria are spreading even in first-world nations, being found not only in healthcare-related settings, but also in food and in the environment. In this minireview, the impact of AMR in healthcare systems and the major bacteria behind it are highlighted. Ecological aspects of AMR evolution and the complexity of its molecular mechanisms are explained. Major concepts, such as intrinsic, acquired and adaptive resistance, as well as tolerance and heteroresistance, are also clarified. More importantly, the problematic of biofilms and their role in AMR, namely their main resistance and tolerance mechanisms, are elucidated. Finally, some of the most promising anti-biofilm strategies being investigated are reviewed. Much is still to be done regarding the study of AMR and the discovery of new anti-biofilm strategies. Gladly, considerable research on this topic is generated every day and increasingly concerted actions are being engaged globally to try and tackle this problem.
Collapse
Affiliation(s)
- Paula Jorge
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tânia Grainha
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Alves
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana Patrícia Lopes
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Olívia Pereira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Sun N, Wang Y, Wang J, Sun W, Yang J, Liu N. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins. Anal Chem 2020; 92:8292-8297. [PMID: 32434323 DOI: 10.1021/acs.analchem.0c00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ningning Sun
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yong Wang
- College of Life Science, Shenzhen University, Shenzhen, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Wanchun Sun
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Jingbo Yang
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
28
|
Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surf B Biointerfaces 2020; 193:111116. [PMID: 32447202 DOI: 10.1016/j.colsurfb.2020.111116] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
In this highlight, we summarize the surface modification approaches for development of infection-resistant coatings for biomedical devices and implants. We discuss the relevant key and highly cited research that have been published over the last five years which report the generation of infection-resistant coatings. An important strategy utilized to prevent bacterial adhesion and biofilm formation on device/implant surface is anti-adhesive protein repellant polymeric coatings based on polymer brushes or highly hydrated hydrogel networks. Further, the attachment of antimicrobial agents that can efficiently kill bacteria on the surface while also prevent bacterial adhesion on the surface is also investigated. Other approaches include the incorporation of antimicrobial agents to the surface coating resulting in a depot of bactericides which can be released on-demand or with time to prevent bacterial colonization on the surface that kill the adhered bacteria on the surface to make surface infection resistant.
Collapse
Affiliation(s)
- Hossein Yazdani Ahmadabadi
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kai Yu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Hasan A, Lee K, Tewari K, Pandey LM, Messersmith PB, Faulds K, Maclean M, Lau KHA. Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti-Biofouling. Chemistry 2020; 26:5789-5793. [PMID: 32059067 PMCID: PMC7318250 DOI: 10.1002/chem.202000746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/11/2022]
Abstract
Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) "peptoids" are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide "click" coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a "volumetric" spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.
Collapse
Affiliation(s)
- Abshar Hasan
- Bio-Interface & Environmental Engineering LabDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssam781039India
- Department of Pure & Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Kyueui Lee
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUSA
| | - Kunal Tewari
- Department of Pure & Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering LabDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssam781039India
| | - Phillip B. Messersmith
- 1. Department of Bioengineering2. Department of Materials Science and EngineeringUniversity of California, BerkeleyBerkeleyUSA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
| | - Karen Faulds
- Department of Pure & Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Michelle Maclean
- 1.Department of Electronic & Electrical Engineering2.Department of Biomedical EngineeringUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - King Hang Aaron Lau
- Department of Pure & Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
30
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
31
|
Ross-Naylor JA, Mijajlovic M, Biggs MJ. Energy Landscapes of a Pair of Adsorbed Peptides. J Phys Chem B 2020; 124:2401-2409. [PMID: 32125854 DOI: 10.1021/acs.jpcb.0c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.
Collapse
Affiliation(s)
- James A Ross-Naylor
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Milan Mijajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mark J Biggs
- College of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
32
|
Overmann AL, Forsberg JA. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett 2020; 10:5-16. [PMID: 32175127 PMCID: PMC7046912 DOI: 10.1007/s13534-019-00133-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/28/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Osseointegration (OI) is the direct attachment of bone onto a titanium implant. Recently, the term is used to describe "transdermal" implants that allow an external prosthesis to be connected directly to the skeleton. This technology eliminates the challenges of conventional socket-based prostheses, such as skin breakdown and poor fit, which are common in patients with major extremity amputations. Osseointegration patients demonstrate encouraging improvements in quality of life and function. Patients report improvement in prosthetic use, prosthetic mobility, global health, and pain reduction on a variety of clinical assessment tools. Various implants have been developed for osseointegration for amputees. These implants use a variety of fixation strategies and surface augments to allow for successful integration into the host bone. Regardless of design, all OI implants face similar challenges, particularly infections. Other challenges include the inability to determine when integration has occurred and the inability to detect loss of integration. These challenges may be met by incorporating sensing systems into the implants. The percutaneous nature of the metal devices can be leveraged so that internal sensors need not be wireless, and can be interrogated by external monitoring systems, thus providing crucial, real-time information about the state of the implant. The purpose of this review is to (1) review the basic science behind osseointegration, (2) provide an overview of current implants, practice patterns, and clinical outcomes, and (3) preview sensor technologies which may prove useful in future generations of transdermal orthopaedic implants.
Collapse
Affiliation(s)
- A. L. Overmann
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - J. A. Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
33
|
Li M, Wang S, Li F, Zhou L, Lei L. Organocatalyzed atom transfer radical polymerization (ATRP) using triarylsulfonium hexafluorophosphate salt (THS) as a photocatalyst. Polym Chem 2020. [DOI: 10.1039/c9py01742a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triarylsulfonium hexafluorophosphate salt (THS), an organic and inexpensive compound, was employed as a photocatalyst for metal free atom transfer radical polymerization (ATRP) of methacrylate monomers.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
34
|
Zhang Y, Zhang X, Zhao YQ, Zhang XY, Ding X, Ding X, Yu B, Duan S, Xu FJ. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomater Sci 2020; 8:997-1006. [DOI: 10.1039/c9bm01666j] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties were readily constructed for the therapy of catheter-associated infection.
Collapse
Affiliation(s)
- Yidan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xiang Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xin-Yang Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| |
Collapse
|
35
|
Zhang XY, Zhao YQ, Zhang Y, Wang A, Ding X, Li Y, Duan S, Ding X, Xu FJ. Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules 2019; 20:4171-4179. [DOI: 10.1021/acs.biomac.9b01060] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin-Yang Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yidan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
38
|
Su Y, Feng T, Feng W, Pei Y, Li Z, Huo J, Xie C, Qu X, Li P, Huang W. Mussel‐Inspired, Surface‐Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromol Rapid Commun 2019; 40:e1900268. [PMID: 31361063 DOI: 10.1002/marc.201900268] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yajuan Su
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Center for Biomedical Engineering and Regenerative Medicine (CBERM)Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710054 China
| | - Tao Feng
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Feng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Yangyang Pei
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Ziyue Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Jingjing Huo
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Chao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral ImplantologySchool of StomatologyFourth Military Medical University 169 West Changle Road Xi'an 710032 China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationThe State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Li
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Center for Biomedical Engineering and Regenerative Medicine (CBERM)Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710054 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Wei Huang
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| |
Collapse
|
39
|
Wang M, Shi J, Mao H, Sun Z, Guo S, Guo J, Yan F. Fluorescent Imidazolium-Type Poly(ionic liquid)s for Bacterial Imaging and Biofilm Inhibition. Biomacromolecules 2019; 20:3161-3170. [PMID: 31291096 DOI: 10.1021/acs.biomac.9b00741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent imidazolium-type poly(ionic liquid)s (PIL)s were synthesized by anion exchange of bromide (Br-) in poly(3-butyl-1-vinylimidazolium bromide) (PIL-Br) with a fluorescent anion, namely, 3-(4-(1,2,2-triphenylvinyl)phenoxy)propane-1-sulfonate (TPESO3-). Such an anion exchange provided antibacterial PILs with aggregation-induced emission (AIE) properties that simultaneously kill and image bacteria. These fluorescence and antibacterial properties could be regulated by controlling the Br-/TPESO3- ratio. The fluorescence intensity increases as this ratio increases, while the antibacterial property exhibits an opposite trend. Moreover, the AIE-type PILs are useful for fluorescently imaging dead bacteria (macroscopically and microscopically) and could effectively inhibit biofilm growth. This study provided a convenient method to obtain fluorescent PILs with adjustable antibacterial and imaging properties.
Collapse
Affiliation(s)
- Mengyao Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jie Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200438 , China
| | - Zhe Sun
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Siyu Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
40
|
Wang L, Chen J, Zeng X, Cheung PPH, Zheng X, Xie L, Shi X, Ren L, Huang X, Wang Y. Mechanistic Insights and Rational Design of a Versatile Surface with Cells/Bacteria Recognition Capability via Orientated Fusion Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801827. [PMID: 31065519 PMCID: PMC6498104 DOI: 10.1002/advs.201801827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Hospital-acquired infection causes many deaths worldwide and calls for the urgent need for antibacterial biomaterials used in clinic that can selectively kill harmful bacteria. The present study rationally designs fusion peptides capable of undergoing 2D self-assembly on the poly(methyl methacrylate) surface to form a smart surface, which can maintain a desirable orientation via electrostatic interactions. The in vitro assay shows that the smart surface can recognize bacteria to exert antibacterial activity and is nontoxic toward mouse bone mesenchymal stem cells. Excitingly, the smart surface can distinguish different bacterial strains. This selective feature, from being broad-spectrum to being highly selective against S. aureus, can be altered by varying the number of amino acids in the recognition sequences. By all-atom molecular dynamics simulations, it is also found that the recognition sequence in the peptide is critical for the selectivity toward specific bacterial strains, in which a less accessible surface area for the bacteria in the antimicrobial peptide sequence is responsible for such selectivity. Finally, the smart surface can inhibit S. aureus infection in vivo with much more rapid tissue-healing compared to the control.
Collapse
Affiliation(s)
- Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Junjian Chen
- School of Biomedical Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
| | - Xiangze Zeng
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Peter Pak-Hang Cheung
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Xiaoyan Zheng
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Liangxu Xie
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Li Ren
- School of Biomedical Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
| | - Xuhui Huang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
41
|
Xin X, Li P, Zhu Y, Shi L, Yuan J, Shen J. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1788-1797. [PMID: 30089363 DOI: 10.1021/acs.langmuir.8b01603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we designed and constructed a dual functional surface with antimicrobial and antifouling abilities to prevent protein and bacterial attachment that are significant challenges in biomedical devices. Primary amino-group-capped sulfobetaine of DMMSA was synthesized and then grafted onto polydopamine pretreated PET sheets via click chemistry. The sheets were subsequently immersed into silver ion solution, in which the absorbed silver ions were reduced to silver nanoparticles (AgNPs) in situ by a polydopamine layer. The antifouling assays demonstrated that the resultant PET/DMMSA/AgNPs sheets exhibited great antifouling performances against bovine serum albumin (BSA), bovine fibrinogen (BFG), platelets, and bacteria, the critical proteins/microorganisms leading to implant failure. The antibacterial data suggested that the sheets had dual functions as inhibitors of bacterial growth and bactericide and could efficiently delay the biofilm formation. This repelling and killing approach is green and simple, with potential biomedical applications.
Collapse
Affiliation(s)
- Xuanxuan Xin
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yinyan Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Leigang Shi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
42
|
Jin J, Cai L, Jia YG, Liu S, Chen Y, Ren L. Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. J Mater Chem B 2019; 7:1637-1651. [DOI: 10.1039/c8tb02547a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preparation and biomedical applications of self-healing hydrogels assembled from hosts of cyclodextrins and cucurbit[n]urils with various guests were reviewed.
Collapse
Affiliation(s)
- Jiahong Jin
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Lili Cai
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yong-Guang Jia
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| |
Collapse
|
43
|
Zhan J, Wang L, Zhu Y, Gao H, Chen Y, Chen J, Jia Y, He J, Fang Z, Zhu Y, Mao C, Ren L, Wang Y. Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35830-35837. [PMID: 30360126 PMCID: PMC6453715 DOI: 10.1021/acsami.8b14534] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Modification of implants by antimicrobial peptides (AMPs) can improve the antimicrobial activity of the implants. However, AMPs have some cytotoxicity in vivo when they are exposed at body temperature. To tackle this challenge, we propose to develop a new approach to generating a smart antimicrobial surface through exposure of AMPs on the surface. A polydopamine film was first formed on the substrates, followed by the conjugation of a temperature-sensitive polymer, poly( N-isopropylacrylamide) (pNIPAM), to the film through atom transfer radical polymerization (ATRP). Then, AMPs were conjugated to the NIPAM on the resultant pNIPAM-modified surface through a click chemistry reaction. Because of the temperature-sensitive property of pNIPAM, the AMPs motif was more exposed to the external environment at room temperature (25 °C) than at body temperature (37 °C), making the surface present a higher antimicrobial activity at room temperature than at body temperature. More importantly, such a smart behavior is accompanied with the increased biocompatibility of the surface at body temperature when compared to the substrates unmodified or modified by AMPs or pNIPAM alone. Our in vivo study further verified that pNIPAM-AMP dual modified bone implants showed increased biocompatibility even when they were challenged with the bacteria at room temperature before implantation. These results indicate that the implants are antibacterial at room temperature and can be safely employed during surgery, resulting in no infection after implantations. Our work represents a new promising strategy to fully explore the antimicrobial property of AMPs, while improving their biocompatibility in vivo. The higher exposure of AMPs at room temperature (the temperature for storing the implants before surgery) will help decrease the risk of bacterial infection, and the lower exposure of AMPs at body temperature (the temperature after the implants are placed into the body by surgery) will improve the biocompatibility of AMPs.
Collapse
Affiliation(s)
- Jiezhao Zhan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuchen Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huichang Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junjian Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongguang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jingcai He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhou Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
44
|
Qian Y, Qi F, Chen Q, Zhang Q, Qiao Z, Zhang S, Wei T, Yu Q, Yu S, Mao Z, Gao C, Ding Y, Cheng Y, Jin C, Xie H, Liu R. Surface Modified with a Host Defense Peptide-Mimicking β-Peptide Polymer Kills Bacteria on Contact with High Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15395-15400. [PMID: 29688003 DOI: 10.1021/acsami.8b01117] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been one of the major nosocomial pathogens to cause frequent and serious infections that are associated with various biomedical surfaces. This study demonstrated that surface modified with host defense peptide-mimicking β-peptide polymer, has surprisingly high bactericidal activities against Escherichia coli ( E. coli) and MRSA. As surface-tethered β-peptide polymers cannot move freely to adopt the collaborative interactions with bacterial membrane and are too short to penetrate the cell envelop, we proposed a mode of action by diffusing away the cell membrane-stabilizing divalent ions, Ca2+ and Mg2+. This hypothesis was supported by our study that Ca2+ and Mg2+ supplementation in the assay medium causes up to 80% loss of bacterial killing efficacy and that the addition of divalent ion chelating ethylenediaminetetraacetic acid into the above assay medium leads to significant recovery of the bacterial killing efficacy. In addition to its potent bacterial killing efficacy, the surface-tethered β-peptide polymer also demonstrated excellent biocompatibility by displaying no hemolysis and supporting mammalian cell adhesion and growth. In conclusion, this study demonstrated the potential of β-peptide polymer-modified surface in addressing nosocomial infections that are associated with various surfaces in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | | | - Yanyong Cheng
- Department of Anesthesiology , Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , China
| | - Chenyu Jin
- Department of Anesthesiology , Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , China
| | | | | |
Collapse
|
45
|
Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants. Biomacromolecules 2018; 19:2805-2811. [DOI: 10.1021/acs.biomac.8b00399] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiang Zeng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yiwen Zhu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Sun
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Xiaokang Ding
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Wei Wu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
46
|
Chen J, Gao M, Wang L, Li S, He J, Qin A, Ren L, Wang Y, Tang BZ. Aggregation-Induced Emission Probe for Study of the Bactericidal Mechanism of Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11436-11442. [PMID: 29564898 DOI: 10.1021/acsami.7b18221] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multidrug resistant bacterial infection has become one of the most serious threats to human health. Antimicrobial peptides (AMPs) have been identified as potential alternatives to antibiotics owing to their excellent bactericidal activity. However, the complicated bactericidal mechanism of AMPs is still poorly understood. Fluorescence imaging has many advantages in terms of dynamic monitoring, easy operation, and high sensitivity. In this study, we developed an aggregation-induced emission (AIE)-active probe AMP-2HBT by decorating the antimicrobial peptide HHC36 (KRWWKWWRR) with an AIEgen of 2-(2-hydroxyphenyl)benzothiazole (HBT). This AIE-active probe exhibited an excellent light-up fluorescence after binding with bacteria, enabling a real-time monitoring of the binding process. Moreover, a similar time-dependent bactericidal kinetics was observed for the AIE-active probe and HHC36 peptide, which indicated that the bactericidal activity of the peptide was not compromised by decorating with the AIEgen. The bactericidal mechanism of HHC36 peptide was further investigated by super-resolution fluorescence microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM), which suggested that the probe tended to accumulate on the bacterial membrane and efficiently disrupt the membrane structure to kill both Gram-positive and -negative bacteria. This AIE-active probe thus provided a convenient tool to investigate the bactericidal mechanism of AMPs.
Collapse
Affiliation(s)
- Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Shiwu Li
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Innovative Research Team, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jingcai He
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | - Anjun Qin
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Innovative Research Team, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China
| | - Li Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | - Ben Zhong Tang
- Guangdong Innovative Research Team, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|