1
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
2
|
Fluorescent PLGA Nanocarriers for Pulmonary Administration: Influence of the Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14071447. [PMID: 35890341 PMCID: PMC9322090 DOI: 10.3390/pharmaceutics14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Nearly four million yearly deaths can be attributed to respiratory diseases, prompting a huge worldwide health emergency. Additionally, the COVID-19 pandemic’s death toll has surpassed six million, significantly increasing respiratory disease morbidity and mortality rates. Despite recent advances, it is still challenging for many drugs to be homogeneously distributed throughout the lungs, and specifically to reach the lower respiratory tract with an accurate sustained dose and minimal systemic side effects. Engineered nanocarriers can provide increased therapeutic efficacy while lessening potential biochemical adverse reactions. Poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer, has attracted significant interest as an inhalable drug delivery system. However, the influence of the nanocarrier surface charge and its intratracheal instillation has not been addressed so far. In this study, we fabricated red fluorescent PLGA nanocapsules (NCs)—Cy5/PLGA—with either positive (Cy5/PLGA+) or negative surface charge (Cy5/PLGA-). We report here on their excellent colloidal stability in culture and biological media, and after cryo-storage. Their lack of cytotoxicity in two relevant lung cell types, even for concentrations as high as 10 mg/mL, is also reported. More importantly, differences in the NCs’ cell uptake rates and internalization capacity were identified. The uptake of the anionic system was faster and in much higher amounts—10-fold and 2.5-fold in macrophages and epithelial alveolar cells, respectively. The in vivo study demonstrated that anionic PLGA NCs were retained in all lung lobules after 1 h of being intratracheally instilled, and were found to accumulate in lung macrophages after 24 h, making those nanocarriers especially suitable as a pulmonary immunomodulatory delivery system with a marked translational character.
Collapse
|
3
|
D'Souza S, Du Plessis SM, Egieyeh S, Bekale RB, Maphasa RE, Irabin AF, Sampson SL, Dube A. Physicochemical and Biological Evaluation of Curdlan-Poly(Lactic-Co-Glycolic Acid) Nanoparticles as a Host-Directed Therapy Against Mycobacterium Tuberculosis. J Pharm Sci 2022; 111:469-478. [PMID: 34534573 PMCID: PMC8792347 DOI: 10.1016/j.xphs.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Nanoparticles (NPs) that can activate macrophages infected with the tuberculosis causative pathogen Mycobacterium tuberculosis, could be an effective host directed therapy for the disease. In this study, curdlan was conjugated to poly(lactic-co-glycolic acid) (PLGA) to produce immunotherapeutic NPs. Various physicochemical characterizations were used to evaluate the curdlan-PLGA copolymer and the NPs. Molecular dynamics and simulation studies were used to characterize the interaction between curdlan, on the polymer and on NPs, with the Dectin-1 macrophage receptor. NPs with varying curdlan densities were evaluated for their effects on the production of pro- and anti-inflammatory cytokines in M. tuberculosis infected RAW264.7 macrophages. The killing efficacy of the NPs against intracellular M. tuberculosis was assessed. Physicochemical characterization of the curdlan-PLGA copolymer and NPs indicated successful formation of curdlan-PLGA copolymer and NPs of varying curdlan density (0-8% w/w) had sizes between 330 and 453 nm. Modelling studies showed curdlan to have a strong affinity for Dectin-1. Cytotoxicity assays showed the NPs to be non-toxic over 72 h. The proinflammatory cytokine TNF-α was found to be significantly upregulated by the NPs. The NPs reduced intracellular M. tuberculosis burden over 72 h. These NPs are a promising host directed therapy for intracellular eradication of M. tuberculosis.
Collapse
Affiliation(s)
- S D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - S M Du Plessis
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Egieyeh
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - R B Bekale
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - R E Maphasa
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - A F Irabin
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - S L Sampson
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
4
|
Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. NATURE REVIEWS. MATERIALS 2022; 7:796-813. [PMID: 35874960 PMCID: PMC9295115 DOI: 10.1038/s41578-022-00458-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Acute inflammation is essential for initiating and coordinating the body's response to injuries and infections. However, in acute inflammatory diseases, inflammation is not resolved but propagates further, which can ultimately lead to tissue damage such as in sepsis, acute respiratory distress syndrome and deep vein thrombosis. Currently, clinical protocols are limited to systemic steroidal treatments, fluids and antibiotics that focus on eradicating inflammation rather than modulating it. Strategies based on stem cell therapeutics and selective blocking of inflammatory molecules, despite showing great promise, still lack the scalability and specificity required to treat acute inflammation. By contrast, polymeric particle systems benefit from uniform manufacturing at large scales while preserving biocompatibility and versatility, thus providing an ideal platform for immune modulation. Here, we outline design aspects of polymeric particles including material, size, shape, deformability and surface modifications, providing a strategy for optimizing the targeting of acute inflammation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | | | - Noah J. Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | - Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | | |
Collapse
|
5
|
A bimetallic load-bearing bioceramics of TiO 2 @ ZrO 2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112501. [PMID: 34857287 DOI: 10.1016/j.msec.2021.112501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Bioactive mesoporous binary metal oxide nanoparticles allied with polymeric scaffolds can mimic natural extracellular matrix because of their self-mineralized functional matrix. Herein, we developed fibrous scaffolds of polycaprolactone (PCL) integrating well-dispersed TiO2@ZrO2 nanoparticles (NPs) via electrospinning for a tissue engineering approach. The scaffold with 0.1 wt% of bioceramic (TiO2@ZrO2) shows synergistic effects on physicochemical and bioactivity suited to stem cell attachment/proliferation. The bioceramics-based scaffold shows excellent antibacterial activity that can prevent implant-associated infections. In addition, the TiO2@ZrO2 in scaffold serves as a stem cell microenvironment to accelerate cell-to-cell interactions, including cell growth, morphology/orientation, differentiation, and regeneration. The NPs in PCL exert superior biocompatibility on MC3T3-E1 cells inducing osteogenic differentiation. The ALP activity and ARS staining confirm the upregulation of bone-related proteins and minerals suggesting the scaffolds exhibit osteoinductive abilities and contribute to bone cell regeneration. Based on this result, the bimetallic oxide could become a novel bone ceramic tailor TiO2@ZrO2 composite tissue-construct and keep potential nanomaterials-based scaffold for bone tissue engineering strategy.
Collapse
|
6
|
Hwang YE, Im S, Kim H, Sohn JH, Cho BK, Cho JH, Sung BH, Kim SC. Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating. Int J Mol Sci 2021; 22:ijms222111915. [PMID: 34769345 PMCID: PMC8584447 DOI: 10.3390/ijms222111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.
Collapse
Affiliation(s)
- Young Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Seonghun Im
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Hyun Kim
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Ju Hyun Cho
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
- Correspondence: (B.H.S.); (S.C.K.)
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
- Correspondence: (B.H.S.); (S.C.K.)
| |
Collapse
|
7
|
Ahmed W, Zhang H, Gao C. Influence of enantiomeric polylysine grafted on gold nanorods on the uptake and inflammatory response of bone marrow-derived macrophages in vitro. J Biomed Mater Res A 2021; 110:143-155. [PMID: 34289249 DOI: 10.1002/jbm.a.37272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
The macrophages take significant roles in homeostasis, phagocytosis of pathogenic organisms, and modulation of host defense and inflammatory processes. In this study, the enantiomeric poly-D-lysine (PDL) and poly-L-lysine (PLL) were conjugated to gold nanorods (AuNRs) to study their influence on the polarization of macrophages. The AuNRs capped with cetyl trimethyl ammonium bromide (CTAB) (AuNRs@CTAB) exhibited larger toxicity to macrophages when their concentration was higher than 50 μg/ml, whereas the AuNRs@PDL and AuNRs@PLL showed neglectable toxicity at the same concentration compared with the control. The AuNRs@PDL and AuNRs@PLL were internalized into the macrophages with a higher value than the AuNRs@CTAB as revealed by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) characterization. Unlike the grafted PDL/PLL on flat substrates, the AuNRs@PDL and AuNRs@PLL were not able to polarize M0 macrophages to any other phenotype after internalization as confirmed by ELISA, flow cytometry, and fluorescence microscopy analysis. Nonetheless, the expression of M1 phenotype markers was reduced after the internalization of AuNRs@PDL and AuNRs@PLL by M1 macrophages. The assays of ELISA, flow cytometry, and reactive oxygen species levels exhibited decrease in inflammation of the M1 macrophages.
Collapse
Affiliation(s)
- Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
9
|
Jin Q, Liu Z, Chen Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J Control Release 2021; 329:882-893. [PMID: 33053396 DOI: 10.1016/j.jconrel.2020.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy has been demonstrated as a promising therapeutic strategy in clinic owing to its unique advantages. However, although more and more immunotherapeutic agents have been approved for clinical use to activate the immune system, they also could interfere with the homeostatic role of immune system at non-target sites after systemic administration, which may be associated with fatal side effects such as lifelong autoimmune diseases. Thus, it is desirable to develop local delivery systems that could be applied at the targeted sides and engineered to locally control the pharmacokinetics of various immunotherapeutics, including small molecules, macromolecules or even cells. Advancements in biomaterials, biotechnology, nanomedicine and engineering have facilitated the development of local delivery systems for enhanced cancer immunotherapy. This review will summarize the recent advances in developing different local delivery systems and discuss how these delivery systems could be designed to regulate the release behavior of different immunotherapeutics to sustainably stimulate the systemic immune system, effectively and safely inhibiting the cancer recurrence and metastasis. Furthermore, we will discuss how biomaterials-assisted local delivery systems would contribute to the development of cancer immunotherapy, together with their challenges and potential of clinical translation.
Collapse
Affiliation(s)
- Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
10
|
Yang Y, Ding Y, Fan B, Wang Y, Mao Z, Wang W, Wu J. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. J Control Release 2020; 321:463-474. [DOI: 10.1016/j.jconrel.2020.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
|
11
|
Ding J, Venkatesan R, Zhai Z, Muhammad W, Nakkala JR, Gao C. Micro- and nanoparticles-based immunoregulation of macrophages for tissue repair and regeneration. Colloids Surf B Biointerfaces 2020; 192:111075. [PMID: 32403015 DOI: 10.1016/j.colsurfb.2020.111075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The importance of inflammatory tissue microenvironment on the repair and regeneration of tissues and organs has been well recognized. In particular, the phenotypes of macrophages can significantly influence on the processes of tissue repair and remodeling. Among the many types of biomaterials, the particles in the range from nanometers to submicron meters have been extensively studied and applied in tissue engineering and regenerative medicine. They can actively interact with cells in different levels, and show the ability to regulate the polarization of macrophages. In this review, the influence of physicochemical properties such as size, surface charge, chemical components and surface modification of micro-nanoparticles on the immune behavior of macrophages, including endocytosis and phenotype switch, shall be introduced. The important roles of nanoparticles-based immunoregulation of macrophages on the chronic skin wounds regeneration, myocardial repair, liver repair and bone regeneration are discussed.
Collapse
Affiliation(s)
- Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rajiu Venkatesan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
13
|
Keyvan Rad J, Alinejad Z, Khoei S, Mahdavian AR. Controlled Release and Photothermal Behavior of Multipurpose Nanocomposite Particles Containing Encapsulated Gold-Decorated Magnetite and 5-FU in Poly(lactide-co-glycolide). ACS Biomater Sci Eng 2019; 5:4425-4434. [DOI: 10.1021/acsbiomaterials.9b00790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran
| | - Zeinab Alinejad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran
| | - Samideh Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Iran Shahid Hemmat Highway, P.O.
Box: 1449614525, Postal Code: 1449614535 Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran
| |
Collapse
|
14
|
Schulze F, Keperscha B, Appelhans D, Rösen-Wolff A. Immunomodulatory Effects of Dendritic Poly(ethyleneimine) Glycoarchitectures on Human Multiple Myeloma Cell Lines, Mesenchymal Stromal Cells, and in Vitro Differentiated Macrophages for an Ideal Drug Delivery System in the Local Treatment of Multiple Myeloma. Biomacromolecules 2019; 20:2713-2725. [DOI: 10.1021/acs.biomac.9b00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Bettina Keperscha
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
15
|
Zhang Y, Zhang H, Mao Z, Gao C. ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. Biomacromolecules 2019; 20:1777-1788. [DOI: 10.1021/acs.biomac.9b00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Barillet S, Fattal E, Mura S, Tsapis N, Pallardy M, Hillaireau H, Kerdine-Römer S. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology 2019; 13:606-622. [DOI: 10.1080/17435390.2018.1564078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S. Barillet
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - E. Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Mura
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - N. Tsapis
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - M. Pallardy
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - H. Hillaireau
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Kerdine-Römer
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|