1
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Masuda Y, Hasebe R, Kuromi Y, Hishinuma M, Ohbayashi T, Nishimura R. Hatchability evaluation of bovine IVF embryos using OCT-based 3D image analysis. J Reprod Dev 2023; 69:239-245. [PMID: 37574267 PMCID: PMC10602767 DOI: 10.1262/jrd.2023-009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Although embryo transfer is widely applied in cattle, many of the transferred embryos do not result in pregnancy. To determine a new parameter for bovine embryo evaluation, we investigated the relationships between in vitro hatchability and embryo morphological parameters using optical coherence tomography (OCT) that we established recently. Bovine embryos were obtained from Japanese Black cattle by in vitro fertilization (IVF). The quality of the blastocysts was examined under an inverted microscope and confirmed as Codes 1-3 according to the IETS standards for embryo evaluation. The OCT images of the embryos were captured on Day 7 after IVF, and the embryos were cultured until Day 9 to determine their hatchability. During OCT, the embryos were irradiated with near-infrared light for a few minutes to obtain three-dimensional images. In total, 22 parameters were assessed for each of the 42 embryos, of which 25 hatched (H embryos) and 17 did not (NH embryos). The thickness of the trophectoderm (TE) and TE+zona pellucida (ZP) was lesser, and the volumes of the TE, ZP, blastocoel, and whole embryo and blastocoel diameter were greater in the H embryos than in the NH embryos. PCA identified that the increase in the blastocoel-related value along with the decrease in the thickness-related value of the TE and/or ZP could be indicators for evaluating the hatchability of bovine IVF embryos. These results support the idea that OCT-captured structural data of blastocyst-stage embryos can be used as a potential model to predict the quality of bovine embryos.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori 680-8553, Japan
| | - Ryo Hasebe
- SCREEN Holdings Co., Ltd., Kyoto 612-8486, Japan
| | | | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori 680-8553, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
3
|
Cacheux J, Bancaud A, Alcaide D, Suehiro JI, Akimoto Y, Sakurai H, Matsunaga YT. Endothelial tissue remodeling induced by intraluminal pressure enhances paracellular solute transport. iScience 2023; 26:107141. [PMID: 37416478 PMCID: PMC10320514 DOI: 10.1016/j.isci.2023.107141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The endothelial layers of the microvasculature regulate the transport of solutes to the surrounding tissues. It remains unclear how this barrier function is affected by blood flow-induced intraluminal pressure. Using a 3D microvessel model, we compare the transport of macromolecules through endothelial tissues at mechanical rest or with intraluminal pressure, and correlate these data with electron microscopy of endothelial junctions. On application of an intraluminal pressure of 100 Pa, we demonstrate that the flow through the tissue increases by 2.35 times. This increase is associated with a 25% expansion of microvessel diameter, which leads to tissue remodeling and thinning of the paracellular junctions. We recapitulate these data with the deformable monopore model, in which the increase in paracellular transport is explained by the augmentation of the diffusion rate across thinned junctions under mechanical stress. We therefore suggest that the deformation of microvasculatures contributes to regulate their barrier function.
Collapse
Affiliation(s)
- Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Aurélien Bancaud
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- CNRS, LAAS, 7 Avenue Du Colonel Roche, 31400 Toulouse, France
| | - Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Jun-Ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yukiko T. Matsunaga
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Zhao N, Kulkarni S, Zhang S, Linville RM, Chung TD, Guo Z, Jamieson JJ, Norman D, Liang L, Pessell AF, Searson P. Modeling angiogenesis in the human brain in a tissue-engineered post-capillary venule. Angiogenesis 2023; 26:203-216. [PMID: 36795297 PMCID: PMC10789151 DOI: 10.1007/s10456-023-09868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Angiogenesis plays an essential role in embryonic development, organ remodeling, wound healing, and is also associated with many human diseases. The process of angiogenesis in the brain during development is well characterized in animal models, but little is known about the process in the mature brain. Here, we use a tissue-engineered post-capillary venule (PCV) model incorporating stem cell derived induced brain microvascular endothelial-like cells (iBMECs) and pericyte-like cells (iPCs) to visualize the dynamics of angiogenesis. We compare angiogenesis under two conditions: in response to perfusion of growth factors and in the presence of an external concentration gradient. We show that both iBMECs and iPCs can serve as tip cells leading angiogenic sprouts. More importantly, the growth rate for iPC-led sprouts is about twofold higher than for iBMEC-led sprouts. Under a concentration gradient, angiogenic sprouts show a small directional bias toward the high growth factor concentration. Overall, pericytes exhibited a broad range of behavior, including maintaining quiescence, co-migrating with endothelial cells in sprouts, or leading sprout growth as tip cells.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Dasen B, Pigeot S, Born GM, Verrier S, Rivero O, Dittrich PS, Martin I, Filippova M. T-cadherin is a novel regulator of pericyte function during angiogenesis. Am J Physiol Cell Physiol 2023; 324:C821-C836. [PMID: 36802732 DOI: 10.1152/ajpcell.00326.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Pericytes are mural cells that play an important role in regulation of angiogenesis and endothelial function. Cadherins are a superfamily of adhesion molecules mediating Ca2+-dependent homophilic cell-cell interactions that control morphogenesis and tissue remodeling. To date, classical N-cadherin is the only cadherin described on pericytes. Here, we demonstrate that pericytes also express T-cadherin (H-cadherin, CDH13), an atypical glycosyl-phosphatidylinositol (GPI)-anchored member of the superfamily that has previously been implicated in regulation of neurite guidance, endothelial angiogenic behavior, and smooth muscle cell differentiation and progression of cardiovascular disease. The aim of the study was to investigate T-cadherin function in pericytes. Expression of T-cadherin in pericytes from different tissues was performed by immunofluorescence analysis. Using lentivirus-mediated gain-of-function and loss-of-function in cultured human pericytes, we demonstrate that T-cadherin regulates pericyte proliferation, migration, invasion, and interactions with endothelial cells during angiogenesis in vitro and in vivo. T-cadherin effects are associated with the reorganization of the cytoskeleton, modulation of cyclin D1, α-smooth muscle actin (αSMA), integrin β3, metalloprotease MMP1, and collagen expression levels, and involve Akt/GSK3β and ROCK intracellular signaling pathways. We also report the development of a novel multiwell 3-D microchannel slide for easy analysis of sprouting angiogenesis from a bioengineered microvessel in vitro. In conclusion, our data identify T-cadherin as a novel regulator of pericyte function and support that it is required for pericyte proliferation and invasion during active phase of angiogenesis, while T-cadherin loss shifts pericytes toward the myofibroblast state rendering them unable to control endothelial angiogenic behavior.
Collapse
Affiliation(s)
- Boris Dasen
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Sebastien Pigeot
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Gordian Manfred Born
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | | | - Olga Rivero
- Research Group on Psychiatry and Neurodegenerative Disorders, Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ivan Martin
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Maria Filippova
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
6
|
Sano T, Nakajima T, Senda KA, Nakano S, Yamato M, Ikeda Y, Zeng H, Kawabe JI, Matsunaga YT. Image-based crosstalk analysis of cell-cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip. Stem Cell Res Ther 2022; 13:532. [PMID: 36575469 PMCID: PMC9795717 DOI: 10.1186/s13287-022-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sprouting angiogenesis is an important mechanism for morphogenetic phenomena, including organ development, wound healing, and tissue regeneration. In regenerative medicine, therapeutic angiogenesis is a clinical solution for recovery from ischemic diseases. Mesenchymal stem cells (MSCs) have been clinically used given their pro-angiogenic effects. MSCs are reported to promote angiogenesis by differentiating into pericytes or other vascular cells or through cell-cell communication using multiple protein-protein interactions. However, how MSCs physically contact and move around ECs to keep the sprouting angiogenesis active remains unknown. METHODS We proposed a novel framework of EC-MSC crosstalk analysis using human umbilical vein endothelial cells (HUVECs) and MSCs obtained from mice subcutaneous adipose tissue on a 3D in vitro model, microvessel-on-a-chip, which allows cell-to-tissue level study. The microvessels were fabricated and cultured for 10 days in a collagen matrix where MSCs were embedded. RESULTS Immunofluorescence imaging using a confocal laser microscope showed that MSCs smoothed the surface of the microvessel and elongated the angiogenic sprouts by binding to the microvessel's specific microstructures. Additionally, three-dimensional modeling of HUVEC-MSC intersections revealed that MSCs were selectively located around protrusions or roots of angiogenic sprouts, whose surface curvature was excessively low or high, respectively. CONCLUSIONS The combination of our microvessel-on-a-chip system for 3D co-culture and image-based crosstalk analysis demonstrated that MSCs are selectively localized to concave-convex surfaces on scaffold structures and that they are responsible for the activation and stabilization of capillary vessels.
Collapse
Affiliation(s)
- Takanori Sano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Tadaaki Nakajima
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan ,grid.268441.d0000 0001 1033 6139Department of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 Japan
| | - Koharu Alicia Senda
- Hiroo Gakuen Junior and Senior High School, 5-1-14 Minami Azabu, Minato-ku, Tokyo, 106-0047 Japan
| | - Shizuka Nakano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Mizuho Yamato
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Yukinori Ikeda
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Hedele Zeng
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Jun-ichi Kawabe
- grid.252427.40000 0000 8638 2724Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yukiko T. Matsunaga
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| |
Collapse
|
7
|
[Effect of fibroblasts on promoting the sprout and migration of endothelial cells in three-dimensional pre-vascularized microstructures]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:881-888. [PMID: 35848186 PMCID: PMC9288903 DOI: 10.7507/1002-1892.202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To construct three-dimensional (3D) pre-vascularized microstructures and explore the promoting effect of human fibroblasts (HFs) on the sprout and migration of human umbilical vein endothelial cells (HUVECs) in 3D co-culture system. METHODS HUVECs and HFs were cultured and the 3rd to 5th generation cells were selected for subsequent experiments. In 2D co-culture system, HFs were stained with PKH26 and the cell density was fixed, which co-cultured with HUVECs in different ratios (1∶4, 1∶1, 4∶1) and inoculation methods (HUVECs inoculation at 48 hours after HFs, direct mixed inoculation). Then the formation of vascular like structures was observed under fluorescence microscope. In 3D co-culture system, HUVECs and HFs were labeled with green fluorescent protein and red fluorescent protein by lentivirus transfection, respectively. They were inoculated on porous micro-carriers followed by dynamically culturing in rotating bottles to prepare HF, HUVEC, HF-EC, or HF&EC microstructures. The cell growth in microstructures was testing by low permeability crystal violet staining. Subsequently, the microstructures were embedded in fibrin gel and the cell growth and adhesion in HF and HUVEC microstructures were observed by laser confocal microscopy. Laser confocal microscope were also used to observe the sprouts of 4 kinds of microstructures, as well as the cell composition, the number and length of sprouts from HF-EC and HF&EC microstructures. HFs conditioned medium was prepared to observe its effect on sprouts of HUVEC microstructures with DMEM as control group. RESULTS In 2D co-culture system, HFs pre-culturing was helpful to the formation and stability of vascular like structures, and the best effect was when the ratio of two kinds of cells was 1∶1. In 3D co-culture system, it was found that the cells grew well on micro-carriers and had the ability of pre-vascularization. HUVEC microstructures did not sprout, but HF, HF-EC, and HF&EC microstructures could which indicated a good vascularization ability. The HF-EC microstructures were superior to HF&EC microstructures in terms of sprouts length and number ( P<0.05). The tubes sprouting from co-cultured group were composed of HFs and HUVECs, and HF microstructures migration preceded HUVEC microstructures always, and their migration trajectories were the same. HUVEC microstructures could sprout when cultured in HFs conditioned media. CONCLUSION HF-HUVEC pre-vascularized microstructures can be prepared by pre-culturing HFs before HUVECs and with the cell ratio at 1∶1 in a rotating bottle. In 3D co-culture system, HFs can promote and guide the sprout of HUVECs.
Collapse
|
8
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Yin G, Zhang L, Dai T. Application and Visualization of Human 3D Anatomy Teaching for Healthy People Based on a Hybrid Network Model. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3702479. [PMID: 35399827 PMCID: PMC8984063 DOI: 10.1155/2022/3702479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
With the development of computer technology, information technology, and 3D reconstruction technology of the medical human body, 3D virtual digital human body technology for human health has been widely used in various fields of medicine, especially in teaching students of application and anatomy. Its advantage is that it can view 3D human anatomy models from any angle and can be cut in any direction. In this paper, we propose an improved algorithm based on a hybrid density network and an element-level attention mechanism. The hybrid density network is used to generate feasible hypotheses for multiple 3D poses, solve the ambiguity problem in pose reasoning from 2D to 3D, and improve the performance of the network by adding the AReLU function combined with an element-wise attention mechanism. Teaching students in anatomy makes students' learning more convenient and teachers' teaching explanations more vivid. Comparative experiments show that the accuracy of 3D human pose estimation using a single image input is better than the other two-stage methods.
Collapse
Affiliation(s)
- Gang Yin
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Luyao Zhang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, AnHui 230012, China
| | - Tingting Dai
- School of Medical Economics and Management, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
10
|
Jaeschke A, Eckert H, Bray LJ. Qiber3D-an open-source software package for the quantitative analysis of networks from 3D image stacks. Gigascience 2022; 11:6521877. [PMID: 35134926 PMCID: PMC8848317 DOI: 10.1093/gigascience/giab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/30/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Background Optical slice microscopy is commonly used to observe cellular morphology in 3D tissue culture, e.g., the formation of cell-derived networks. The morphometric quantification of these networks is essential to study the cellular phenotype. Commonly, the quantitative measurements are performed on 2D projections of the image stack, resulting in the loss of information in the third dimension. Currently available 3D image analysis tools rely on manual interactions with the software and are therefore not feasible for large datasets. Findings Here we present Qiber3D,
an open-source image processing toolkit. The software package includes the essential image analysis procedures required for image processing, from the raw image to the quantified data. Optional pre-processing steps can be switched on/off depending on the input data to allow for analyzing networks from a variety of sources. Two reconstruction algorithms are offered to meet the requirements for a wide range of network types. Furthermore, Qiber3D’s rendering capabilities enable the user to inspect each step of the image analysis process interactively to ensure the creation of an optimal workflow for each application. Conclusions Qiber3D is implemented as a Python package, and its source code is freely available at https://github.com/theia-dev/Qiber3D. The toolkit was designed using a building block principle to enable the analysis of a variety of structures, such as vascular networks, neuronal structures, or scaffolds from numerous input formats. While Qiber3D can be used interactively in the Python console, it is aimed at unsupervised automation to process large image datasets efficiently.
Collapse
Affiliation(s)
- Anna Jaeschke
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hagen Eckert
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, NC 27708, USA
| | - Laura J Bray
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia.,ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove QLD 4059, Australia
| |
Collapse
|
11
|
Holloway PM. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. Methods Mol Biol 2022; 2492:193-224. [PMID: 35733046 DOI: 10.1007/978-1-0716-2289-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of microfluidic chips is now allowing for more advanced modelling of the blood-brain barrier (BBB) in vitro, recapitulating heterotypic interactions, 3D architecture, and physiological flow. This chapter will give an introduction to these new technologies and how they are being applied to model the BBB and neurovascular unit (NVU). A foundational understanding of the fluid dynamics germane to the effective use of these chips will be set and an overview of how physical phenomena at the microscale can be exploited to enable new possibilities to control the cell culture environment. The four main approaches to construct microfluidic blood vessel mimetics will be discussed with examples of how these techniques are being applied to model the BBB and more recently to study specific neurovascular disease processes. Finally, practical guidance will be given for researchers wishing to adopt these new techniques along with a summary of the challenges, limitations faced, and new opportunities opened up by these advanced cell culture systems.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Dessalles CA, Ramón-Lozano C, Babataheri A, Barakat AI. Luminal flow actuation generates coupled shear and strain in a microvessel-on-chip. Biofabrication 2021; 14. [PMID: 34592728 DOI: 10.1088/1758-5090/ac2baa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
In the microvasculature, blood flow-derived forces are key regulators of vascular structure and function. Consequently, the development of hydrogel-based microvessel-on-chip systems that strive to mimic thein vivocellular organization and mechanical environment has received great attention in recent years. However, despite intensive efforts, current microvessel-on-chip systems suffer from several limitations, most notably failure to produce physiologically relevant wall strain levels. In this study, a novel microvessel-on-chip based on the templating technique and using luminal flow actuation to generate physiologically relevant levels of wall shear stress and circumferential stretch is presented. Normal forces induced by the luminal pressure compress the surrounding soft collagen hydrogel, dilate the channel, and create large circumferential strain. The fluid pressure gradient in the system drives flow forward and generates realistic pulsatile wall shear stresses. Rigorous characterization of the system reveals the crucial role played by the poroelastic behavior of the hydrogel in determining the magnitudes of the wall shear stress and strain. The experimental measurements are combined with an analytical model of flow in both the lumen and the porous hydrogel to provide an exceptionally versatile user manual for an application-based choice of parameters in microvessels-on-chip. This unique strategy of flow actuation adds a dimension to the capabilities of microvessel-on-chip systems and provides a more general framework for improving hydrogel-basedin vitroengineered platforms.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Clara Ramón-Lozano
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
13
|
Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021; 13:cancers13194987. [PMID: 34638470 PMCID: PMC8508205 DOI: 10.3390/cancers13194987] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of new blood vessels from already existing ones is a process of high clinical relevance, since it is of great importance for both physiological and pathological processes. In regard to tumors, the process is crucial, since it ensures the supply with nutrients and the growth of the tumor. The influence of mechanical factors on this biological process is an emerging field. Until now, the shear force of the blood flow has been considered the main mechanical parameter during angiogenesis. This review article provides an overview of further mechanical cues, with particular focus on the surrounding extracellular matrix impacting the cell behavior and, thus, regulating angiogenesis. This underlines the enormous importance of the mechanical properties of the extracellular matrix on cell biological processes and shows how changing the mechanics of the extracellular matrix could be used as a possible therapeutic approach in cancer therapy. Abstract Angiogenesis is of high clinical relevance as it plays a crucial role in physiological (e.g., tissue regeneration) and pathological processes (e.g., tumor growth). Besides chemical signals, such as VEGF, the relationship between cells and the extracellular matrix (ECM) can influence endothelial cell behavior during angiogenesis. Previously, in terms of the connection between angiogenesis and mechanical factors, researchers have focused on shear forces due to blood flow. However, it is becoming increasingly important to include the direct influence of the ECM on biological processes, such as angiogenesis. In this context, we focus on the stiffness of the surrounding ECM and the adhesion of cells to the ECM. Furthermore, we highlight the mechanical cues during the main stages of angiogenesis: cell migration, tip and stalk cells, and vessel stabilization. It becomes clear that the different stages of angiogenesis require various chemical and mechanical cues to be modulated by/modulate the stiffness of the ECM. Thus, changes of the ECM during tumor growth represent additional potential dysregulations of angiogenesis in addition to erroneous biochemical signals. This awareness could be the basis of therapeutic approaches to counteract specific processes in tumor angiogenesis.
Collapse
|
14
|
Qiu Y, Wang N, Guo T, Liu S, Tang X, Zhong Z, Chen Q, Wu H, Li X, Wang J, Zhang S, Ou Y, Wang B, Ma K, Gu W, Cao J, Chen H, Duan Y. Establishment of a 3D model of tumor-driven angiogenesis to study the effects of anti-angiogenic drugs on pericyte recruitment. Biomater Sci 2021; 9:6064-6085. [PMID: 34136892 DOI: 10.1039/d0bm02107e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-β in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.
Collapse
Affiliation(s)
- Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiajing Li
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P. R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P. R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Gharleghi R, Dessalles CA, Lal R, McCraith S, Sarathy K, Jepson N, Otton J, Barakat AI, Beier S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann Biomed Eng 2021; 49:1598-1618. [PMID: 34002286 PMCID: PMC8648709 DOI: 10.1007/s10439-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Ronil Lal
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | - Sinead McCraith
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Nigel Jepson
- Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School of Medicine, UNSW, Sydney, Australia
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | | | - Susann Beier
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia.
| |
Collapse
|
16
|
Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Urataki K, Hishinuma M, Ohbayashi T, Nishimura R. Three-Dimensional Live Imaging of Bovine Preimplantation Embryos: A New Method for IVF Embryo Evaluation. Front Vet Sci 2021; 8:639249. [PMID: 33981741 PMCID: PMC8107228 DOI: 10.3389/fvets.2021.639249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori, Japan
| | | | | | | | - Kanako Urataki
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
17
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Iwamoto M, Hishinuma M, Ohbayashi T, Nishimura R. Three-dimensional live imaging of bovine embryos by optical coherence tomography. J Reprod Dev 2021; 67:149-154. [PMID: 33487605 PMCID: PMC8075722 DOI: 10.1262/jrd.2020-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While embryo transfer (ET) is widely practiced, many of the transferred embryos fail to develop in cattle. To establish a more effective method for selecting
bovine embryos for ET, here we quantified morphological parameters of living embryos using three-dimensional (3D) images non-invasively captured by optical
coherence tomography (OCT). Seven Japanese Black embryos produced by in vitro fertilization that had reached the expanded blastocyst stage
after 7 days of culture were transferred after imaged by OCT. Twenty-two parameters, including thickness and volumes of the inner cell mass, trophectoderm, and
zona pellucida, and volumes of blastocoel and whole embryo, were quantified from 3D images. Four of the seven recipients became pregnant. We suggest that these
22 parameters can be potentially employed to evaluate the quality of bovine embryos before ET.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori 689-2503, Japan
| | - Ryo Hasebe
- SCREEN Holdings Co., Ltd., Kyoto 612-8486, Japan
| | | | | | - Misaki Iwamoto
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori 680-8550, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
19
|
Agathe F, Yasuhiro N, Yukari SM, Tomomi F, Kaoru S, Matsusaki M. An in vitro self-organized three-dimensional model of the blood-brain barrier microvasculature. Biomed Mater 2020; 16:015006. [PMID: 33331293 DOI: 10.1088/1748-605x/aba5f1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) protects the human brain from external aggression. Despite its great importance, very few in vitro models of the BBB reproducing its complex organization are available yet. Here we fabricated such a three-dimensional (3D) self-organized in vitro model of BBB microvasculature by means of a combination of collagen microfibers (CMF) and fibrin gel. The interconnected fibers supported human brain microvascular endothelial cell migration and the formation of a capillary-like network with a lumen diameter close to in vivo values. Fibrin, a protein involved in blood vessel repair, favored the further 3D conformation of the brain microvascular endothelial cells, astrocytes and pericytes, ensured gel cohesion and avoided shrinkage. The maturation of the BBB microvasculature network was stimulated by both the CMF and the fibrin in the hydrogel. The expression of essential tight-junction proteins, carriers and transporters was validated in regards to bidimensional simple coculture. The volume of gel drops was easily tunable to fit in 96-well plates. The cytotoxicity of D-Mannitol and its impacts on the microvascular network were evaluated, as an example of the pertinence of this 3D BBB capillary model for screening applications.
Collapse
Affiliation(s)
- Figarol Agathe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci U S A 2019; 116:23551-23561. [PMID: 31685607 PMCID: PMC6876202 DOI: 10.1073/pnas.1913373116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis frequently occurs in the context of acute or persistent inflammation. The complex interplay of proinflammatory and proangiogenic cues is only partially understood. Using an experimental model, permitting exposure of developing blood vessel sprouts to multiple combinations of diverse biochemical stimuli and juxtacrine cell interactions, we present evidence that a proinflammatory cytokine, tumor necrosis factor (TNF), can have both proangiogenic and antiangiogenic effects, depending on the dose and the presence of pericytes. In particular, we find that pericytes can rescue and enhance angiogenesis in the presence of otherwise-inhibitory high TNF doses. This sharp switch from proangiogenic to antiangiogenic effect of TNF observed with an escalating dose of this cytokine, as well as the effect of pericytes, are explained by a mathematical model trained on the biochemical data. Furthermore, this model was predictive of the effects of diverse combinations of proinflammatory and antiinflammatory cues, and variable pericyte coverage. The mechanism supports the effect of TNF and pericytes as modulating signaling networks impinging on Notch signaling and specification of the Tip and Stalk phenotypes. This integrative analysis elucidates the plasticity of the angiogenic morphogenesis in the presence of diverse and potentially conflicting cues, with immediate implications for many physiological and pathological settings.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA 02115;
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520;
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| |
Collapse
|
21
|
Białecka-Florjańczyk E. The Influence of Flexible Segments on Liquid Crystalline Properties in Terms of Solubility Parameters. An Attempt at Quantitative Interpretation. J Phys Chem B 2006; 110:2582-92. [PMID: 16471858 DOI: 10.1021/jp0536448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase behavior of some rodlike block molecules has been reviewed with reference to the polarity of constituent segments. It was found that the ability of the mesophase formation is connected with differences in polar character between the flexible chains and rigid cores. Thus the polar poly(oxyethylene) group connected with the polar rigid core reduces mesophase stability but is advantageous when put together with some apolar building blocks. An attempt at quantitative estimation of the incompatibilities of different parts of molecules by means of Hansen solubility parameters delta and Flory interaction parameters chi has also been made. On the basis of chi parameters the Gibbs free energies of mixing of these segments were calculated. The changes of Gibbs free energy reflecting the compatibility of segments and their tendency to the phase separation and the volume fraction of mesogenic rigid core reflecting their ability to arrangement in one direction appear to be crucial in terms of type of the mesophase formation.
Collapse
Affiliation(s)
- Ewa Białecka-Florjańczyk
- Agricultural University, Institute of Chemistry, ul. Nowoursynowska 159c, 02-787 Warsaw, Poland.
| |
Collapse
|