1
|
Mishra DK, Awasthi H, Srivastava D, Fatima Z. Phytochemical: a treatment option for heavy metal induced neurotoxicity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:513-530. [PMID: 35749142 DOI: 10.1515/jcim-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.
Collapse
Affiliation(s)
| | - Himani Awasthi
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| | | | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| |
Collapse
|
2
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MAM, Abou Khalil NS. Effect of Nigella sativa L. Seed on the Kidney of Monosodium Glutamate Challenged Rats. Front Pharmacol 2022; 13:789988. [PMID: 35814230 PMCID: PMC9257379 DOI: 10.3389/fphar.2022.789988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Monosodium glutamate (MSG) consumption is responsible for a wide spectrum of health hazards including nephrotoxicity. The search for phytochemical strategies having broad safety profile to counter MSG toxicity is worthwhile. Nigella sativa L. seed (NSS) is very promising in this regard owing to its antioxidant and cytoprotective nature. Therefore, we attempted to investigate the potential protective effect of NSS on MSG-induced renal toxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose in conjugation with NSS at a dose of 30 g/kg feed. MSG and its combination with NSS failed to cause any significant difference in the kidney function parameters in comparison with the control. A significant elevation in lipid peroxides (LPO) level, glutathione-S-transferase activity and total antioxidant capacity (TAC) and a significant reduction in superoxide dismutase activity were found in MSG group. LPO level and TAC in MSG intoxicated rats significantly normalized by NSS ingestion. NO level showed absence of significant difference among all experimental groups. MSG elicited histopathological lesions such as decreased glycoprotein content and fibrosis however, NSS succeeded in enhancing all these features. MSG group showed positive glutathione reductase and superoxide dismutase 2 immuno-expression whereas, MSG + NSS group showed weak immunostaining. A significant increase in the number of apoptotic cells was observed in MSG group compared to the control. On the other hand, MSG + NSS group exhibited a significant decrease in the number of apoptotic cells. NSS mitigated MSG-induced renal impairments by ameliorating oxidative stress and exerting anti-apoptotic effect.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- *Correspondence: Mahmoud Abd-Elkareem, ,
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MA, Abou Khalil NS. The protective effect of Nigella sativa seeds against monosodium glutamate-induced hepatic dysfunction in rats. Toxicol Rep 2022; 9:147-153. [PMID: 35145878 PMCID: PMC8818490 DOI: 10.1016/j.toxrep.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
MSG-challenged rats were characterized by hepatic dysfunction and redox imbalance along with increased programmed cell death. The negative consequences of MSG consumption have been partially overcome by the nutritional inclusion of NSS. NSS restores the redox potential and ameliorates the histopathological deteriorations and apoptosis in the liver. These outcomes are of major importance in paving the road towards the incorporation of NSS as a candidate strategy against MSG-related abnormalities.
Monosodium glutamate (MSG) is one of the most commonly used feed additives which poses a threat to public health. Nigella sativa is a promising natural approach in this issue due to its antioxidant, hypolipidemic, and cytoprotective characters. Here, we investigated the potential protective effect of Nigella sativa seed (NSS) against MSG-induced hepatotoxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose together with NSS at a dose of 30 g/kg feed. NSS succeeded in boosting serum alkaline phosphatase activity and total cholesterol, triglycerides, and glucose levels. It reduced lipid peroxides in the serum and down-regulated glutathione reductase and superoxide dismutase 2 immuno-expression in the hepatic cells. NSS intervention provided cytoprotection by improving the histo-architecture of the liver and reducing the number of apoptotic cells. NSS was effective in protecting against the hepatotoxicity of MSG through its antioxidant and anti-apoptotic effects. These findings are of utmost significance in directing the attention towards the incorporation of NSS in our food industry as well as a health remedy in traditional medicine to fight MSG-related hepatic abnormalities.
Collapse
|
5
|
Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep 2021; 11:13519. [PMID: 34188150 PMCID: PMC8242002 DOI: 10.1038/s41598-021-92977-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most widely spread food additives that might cause male infertility. However, Nigella sativa L. seeds (NSS) could provide a solution. This study was designed to investigate the potential effects of NSS on rats ingesting MSG. To achieve this aim, adult male albino rats were randomly equally assigned into three groups for 21 days: control group received no treatment, MSG group received MSG as 30 g/kg feed, and MSG + NSS group received MSG as 30 g/kg and NSS as 30 g/kg feed. Testis histomorphometry showed marked deterioration by MSG as atrophic seminiferous tubules with degeneration of their lining cells, damaged Leydig cells and decreased germ cells number. Periodic Acid Schiff stain indicated irregular interrupted basement membranes. Glutathione reductase, superoxide dismutase 2 (SOD2), and caspase-3 immuno-expressions increased in testicular cells. Testosterone levels were significantly decreased in MSG challenged rats along with significant increase in luteinizing hormone levels, whereas NSS normalized this hormonal profile. MSG exposure also caused significantly increased lipid peroxides (LPO), glutathione-S-transferase, and total antioxidant capacity (TAC) whereas nitric oxide and SOD2 were significantly decreased. NSS succeeded in rebalance LPO and TAC and ameliorated the histoarchitectural disturbances. NSS mitigated MSG-induced testicular impairment by its antioxidant and cytoprotective activities.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- grid.252487.e0000 0000 8632 679XDepartment of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mokhless A. M. Abd El-Rahman
- grid.252487.e0000 0000 8632 679XDepartment of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- grid.252487.e0000 0000 8632 679XDepartment of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman S. Amer
- grid.252487.e0000 0000 8632 679XDepartment of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Zhang L, Bo J, Chen W, Li S, Wang Y, Yan L, Wu L, Zhang Y. The Role of Nrf2 on the Cognitive Dysfunction of High-fat Diet Mice Following Lead Exposure. Biol Trace Elem Res 2021; 199:2247-2258. [PMID: 32812172 DOI: 10.1007/s12011-020-02346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023]
Abstract
Lead (Pb) exposure can induce the severe deleterious damage on the central nervous system (CNS). High-fat diet also has been suggested that it had some adverse effects on learning and memory, cognitive function, but there is lack of study on Pb and high-fat diet co-exposure on the CNS damage. In this study, the goal was to explore the effect of Pb on the cognitive function of mice with high-fat diet and to investigate whether Nrf2 signaling pathway acts in the cerebral cortex. C57BL/6J mice were randomly divided into control, high-fat diet, Pb (drinking water with 250 mg/L lead acetate), and high-fat diet with Pb (drinking water with 250 mg/L lead acetate) co-exposure groups for 12 weeks. Experiment data showed that learn memory and exploration ability of mice obviously decreased in Pb and high-fat diet, and reactive oxygen species (ROS) increased; then, the protein expressions of Nrf2, heme oxygenase-1, NADP(H):dehydrogenase quinone 1, and superoxide dismutase 2 were lower significantly compared with those in the control group. This study suggested that down-expressed Nrf2 signaling pathway possibly related to the cognitive dysfunction induced by Pb and high-fat diet co-exposure.
Collapse
Affiliation(s)
- Lijin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jianzhu Bo
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Weiwei Chen
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Shuang Li
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yan Wang
- Afflicted Hospital, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Licheng Yan
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China.
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Lead (Pb2+) is a non-essential metal with numerous industrial applications that have led to ts ubiquity in the environment. Thus, not only occupational-exposed individuals' health is compromised, but also that of the general population and in particular children. Notably, although the central nervous system is particularly susceptible to Pb2+, other systems are affected as well. The present study focuses on molecular mechanisms that underlie the effects that arise from the presence of Pb2+ in situ in the brain, and the possible toxic effects that follows. As the brain barriers represent the first target of systemic Pb2+, mechanisms of Pb2+ entry into the brain are discussed, followed by a detailed discussion on neurotoxic mechanisms, with special emphasis on theories of ion mimicry, mitochondrial dysfunction, redox imbalance, and neuroinflammation. Most importantly, the confluence and crosstalk between these events is combined into a cogent mechanism of toxicity, by intertwining recent and old evidences from humans, in vitro cell culture and experimental animals. Finally, pharmacological interventions, including chelators, antioxidants substances, anti-inflammatory drugs, or their combination are reviewed as integrated approaches to ameliorate Pb2+ harmful effects in both developing or adult organisms.
Collapse
Affiliation(s)
- Miriam B. Virgolini
- IFEC CONICET. IFEC-CONICET. Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA and IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| |
Collapse
|
8
|
Kökten N, Eğilmez OK, Erinç M, Doğan Ekici AI, Şerifler S, Yeşilada E, Kalcıoğlu MT. The Protective Effect of Nigella sativa Oil against Experimentally Induced Cisplatin Ototoxicity: An Animal Study. J Int Adv Otol 2020; 16:346-352. [PMID: 33136014 DOI: 10.5152/iao.2020.7761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the potential protective effect of Nigella sativa oil (NSO) against cis-diamminedichloroplatinum or cisplatin (CDDP)-induced ototoxicity. MATERIALS AND METHODS Twenty-four Wistar albino rats were randomly and equally divided into four groups. Groups 1 and 2 were given a total of 15 mg/kg CDDP intraperitoneally, which was divided equally into three doses on days 1, 3, and 5. Group 2 was treated via gavage feeding with 15 ml NSO that was divided into five doses on days 1, 3, 5, 7, and 9. Groups 3 and 4 received only 15 ml of NSO and 15 ml of 0.9% saline solution, respectively, which were orally administered and divided into five doses on days 1, 3, 5, 7, and 9. Baseline high-frequency (8, 12, 16, and 32 kHz) auditory brainstem response (ABR) measurements were collected in all the groups before the medical administrations and were repeated on the 14th day before sacrifice. Afterward, a histopathological evaluation of the cochlea was performed. RESULTS There was a significant difference in the histopathological changes between group 1 and the other groups (p<0.01). Changes in the spiral ganglion cells, the stria vascularis, and the external ciliated cells were significantly different between groups 1 and 2 (p=0.019, 0.039, and 0.045, respectively). The ABR results revealed significant differences in the 16 and 32 kHz measurements between groups 1 and 2 (p=0.013 and p<0.01, respectively). CONCLUSION According to the results, NSO may have a protective effect on cochlear function against the disruptive effects of CDDP in rats.
Collapse
Affiliation(s)
- Numan Kökten
- Department of Otorhinolaryngology Head and Neck Surgery, İstanbul Medeniyet University, Goztepe Training and Research Hospital, İstanbul, Turkey
| | - Oğuz Kadir Eğilmez
- Department of Otorhinolaryngology Head and Neck Surgery, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Murat Erinç
- Department of Audiology, Istanbul Medeniyet University, İstanbul, Turkey
| | - A Işın Doğan Ekici
- Department of Pathology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Serkan Şerifler
- Department of Otorhinolaryngology Head and Neck Surgery, İstanbul Medeniyet University, Goztepe Training and Research Hospital, İstanbul, Turkey
| | - Erdem Yeşilada
- Department of Pharmacognosy, Yeditepe University School of Pharmacy, İstanbul, Turkey
| | - Mahmut Tayyar Kalcıoğlu
- Department of Otorhinolaryngology Head and Neck Surgery, İstanbul Medeniyet University, Goztepe Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
9
|
Mirkov I, Stojković D, Aleksandrov AP, Ivanov M, Kostić M, Glamočlija J, Soković M. Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies. Curr Pharm Des 2020; 26:1799-1815. [PMID: 32264808 DOI: 10.2174/1381612826666200407163408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heavy metals are elements that are naturally found in the earth. They are used in many modern-day applications in agriculture, medicine, and industry. Heavy metal poisoning occurs when the body's soft tissues absorb too much of a particular metal. The heavy metals of interest for this review paper were cadmium, arsenic, mercury, and lead since these are the most common metals that the human body can absorb in toxic amounts. Different plant species were investigated in recent years for their effect on oxidative stress parameters after intoxication with heavy metals. OBJECTIVES This review paper is focused on the current update to research on heavy metals induced oxidative stress in animal models and improvement of the oxidative stress parameters upon/co-/after treatment with different plant extracts and isolated compounds. METHODS The available literature was screened for the novel data regarding the influence of plant extracts and compounds on heavy metals induced oxidative stress. For that purposes Scopus database was used, looking for the publications in the last 5-10 years with the key terms: plant extracts, oxidative stress, in vivo, cadmium, lead, mercury and arcenic. RESULTS Various parameters of oxidative stress were investigated, and their improvement with plant extracts/ compounds was observed in the brain, lungs, kidneys, liver, uterus, testis, thymus, spleen, heart, skin and blood of experimental animals. Common parameters used to determine oxidative stress in animals were: superoxide dismutase; catalase; reduced glutathione; glutathione reductase; glutathione-S-transferase; glutathione peroxidase; lipid peroxidation; oxidized glutathione; malondialdehyde; xanthine oxidase; nonprotein-soluble thiol; thioredoxin reductase; total sulphydryl group; nitric oxide; γ-glutamyl cysteine synthetase. CONCLUSION The most investigated species for antioxidant effects upon intoxication with heavy metals seem to be Allium sp., Bacopa monniera, Camellia sinensis, Moringa oleifera, Vitis vinifera and Zingiber officinale. According to literature data, the most promising effect to alleviate symptoms of intoxication was achieved with proanthocyanidins obtained from Vitis vinifera.
Collapse
Affiliation(s)
- Ivana Mirkov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandra P Aleksandrov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Wu J, Li P, Shi Y, Fang Y, Zhu Y, Fan F, Pei F, Xia J, Xie M, Hu Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem Toxicol 2020; 135:110932. [DOI: 10.1016/j.fct.2019.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
|
11
|
Bhatti S, Ali Shah SA, Ahmed T, Zahid S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem Toxicol 2018; 41:399-407. [DOI: 10.1080/01480545.2018.1459669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sheharbano Bhatti
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery, (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
| | - Touqeer Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|