1
|
Chatterjee P, Dutta SS, Agarwal M, Dey S, Chakraborty T. UV-A-Induced Photoisomerization and Photodimerization of Curcumin: An Ion Mobility Mass Spectrometry Study. J Phys Chem A 2024; 128:548-562. [PMID: 38206070 DOI: 10.1021/acs.jpca.3c05933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Curcumin, the bioactive compound present in spice plant turmeric, has been shown to exhibit selective phototoxic activities toward mammalian cancer cells, and it is being used extensively as a photosensitizer (PS) in photodynamic therapies (PDT). However, so far, the fate of curcumin toward photochemical transformations is not well understood. Here we report our findings of a number of novel photochemical reaction channels of curcumin in water-methanol mixture, like photoisomerization, photodimerization, and photooxidation (H2-loss). The reaction was performed by irradiating the curcumin solution with ultraviolet (UV) light of wavelength 350 nm, which is abundant in the earth's troposphere. Product identification and structure elucidation are done by employing an integrated method of drift tube ion mobility mass spectrometry (DTIMS) in combination with high-performance liquid chromatography (HPLC) and collision-induced dissociation (CID) of the mass-selected molecular ions. Two photoisomers of curcumin produced as a result of trans-cis configurational changes about C═C double bonds in the excited state have been identified, and it has been shown that they could serve as the precursors for formation of isomeric dimers via [2 + 2] cycloaddition and H2-loss products. Comparisons of the experimentally measured collision cross-section (CCS) values of the reactant and product ions obtained by the DTIMS method with those predicted by the electronic structure theory are found to be very effective for the discrimination of the produced photoisomers. The observed photochemical reaction channels are potentially significant toward uses of curcumin as a photosensitizer in photodynamic therapy.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Megha Agarwal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Supriyo Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Schramm HM, Tamadate T, Hogan CJ, Clowers BH. Evaluation of Hydrogen-Deuterium Exchange during Transient Vapor Binding of MeOD with Model Peptide Systems Angiotensin II and Bradykinin. J Phys Chem A 2023; 127:8849-8861. [PMID: 37827113 DOI: 10.1021/acs.jpca.3c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The advancement of hybrid mass spectrometric tools as an indirect probe of molecular structure and dynamics relies heavily upon a clear understanding between gas-phase ion reactivity and ion structural characteristics. This work provides new insights into gas-phase ion-neutral reactions of the model peptides (i.e., angiotensin II and bradykinin) on a per-residue basis by integrating hydrogen/deuterium exchange, ion mobility, tandem mass spectrometry, selective vapor binding, and molecular dynamics simulations. By comparing fragmentation patterns with simulated probabilities of vapor uptake, a clear link between gas-phase hydrogen/deuterium exchange and the probabilities of localized vapor association is established. The observed molecular dynamics trends related to the sites and duration of vapor binding track closely with experimental observation. Additionally, the influence of additional charges and structural characteristics on exchange kinetics and ion-neutral cluster formation is examined. These data provide a foundation for the analysis of solvation dynamics of larger, native-like conformations of proteins in the gas phase.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Tomoya Tamadate
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
3
|
Zima V, Vlk M, Wan J, Cvačka J, Tureček F. Tracking Isomerizations of High-Energy Adenine Cation Radicals by UV-Vis Action Spectroscopy and Cyclic Ion Mobility Mass Spectrometry. J Phys Chem A 2023. [PMID: 37433135 DOI: 10.1021/acs.jpca.3c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
We report experimental and computational studies of protonated adenine C-8 σ-radicals that are presumed yet elusive reactive intermediates of oxidative damage to nucleic acids. The radicals were generated in the gas phase by the collision-induced dissociation of C-8-Br and C-8-I bonds in protonated 8-bromo- and 8-iodoadenine as well as by 8-bromo- and 8-iodo-9-methyladenine. Protonation by electrospray of 8-bromo- and 8-iodoadenine was shown by cyclic-ion mobility mass spectrometry (c-IMS) to form the N-1-H, N-9-H and N-3-H, N-7-H protomers in 85:15 and 81:19 ratios, respectively, in accordance with the equilibrium populations of these protomers in water-solvated ions that were calculated by density functional theory (DFT). Protonation of 8-halogenated 9-methyladenines yielded single N-1-H protomers, which was consistent with their thermodynamic stability. The radicals produced from the 8-bromo and 8-iodo adenine cations were characterized by UV-vis photodissociation action spectroscopy (UVPD) and c-IMS. UVPD revealed the formation of C-8 σ-radicals along with N-3-H, N-7-H-adenine π-radicals that arose as secondary products by hydrogen atom migrations. The isomers were identified by matching their action spectra against the calculated vibronic absorption spectra. Deuterium isotope effects were found to slow the isomerization and increase the population of C-8 σ-radicals. The adenine cation radicals were separated by c-IMS and identified by their collision cross sections, which were measured relative to the canonical N-9-H adenine cation radical that was cogenerated in situ as an internal standard. Ab initio CCSD(T)/CBS calculations of isomer energies showed that the adenine C-8 σ-radicals were local energy minima with relative energies at 76-79 kJ mol-1 above that of the canonical adenine cation radical. Rice-Ramsperger-Kassel-Marcus calculations of unimolecular rate constants for hydrogen and deuterium migrations resulting in exergonic isomerizations showed kinetic shifts of 10-17 kJ mol-1, stabilizing the C-8 σ-radicals. C-8 σ-radicals derived from N-1-protonated 9-methyladenine were also thermodynamically unstable and readily isomerized upon formation.
Collapse
Affiliation(s)
- Václav Zima
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mikuláš Vlk
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jiahao Wan
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
4
|
Haack A, Ieritano C, Hopkins WS. MobCal-MPI 2.0: an accurate and parallelized package for calculating field-dependent collision cross sections and ion mobilities. Analyst 2023. [PMID: 37376881 DOI: 10.1039/d3an00545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Ion mobility spectrometry (IMS), which can be employed as either a stand-alone instrument or coupled to mass spectrometry, has become an important tool for analytical chemistry. Because of the direct relation between an ion's mobility and its structure, which is intrinsically related to its collision cross section (CCS), IMS techniques can be used in tandem with computational tools to elucidate ion geometric structure. Here, we present MobCal-MPI 2.0, a software package that demonstrates excellent accuracy (RMSE 2.16%) and efficiency in calculating low-field CCSs via the trajectory method (≤30 minutes on 8 cores for ions with ≤70 atoms). MobCal-MPI 2.0 expands on its predecessor by enabling the calculation of high-field mobilities through the implementation of the 2nd order approximation to two-temperature theory (2TT). By further introducing an empirical correction to account for deviations between 2TT and experiment, MobCal-MPI 2.0 can compute accurate high-field mobilities that exhibit a mean deviation of <4% from experimentally measured values. Moreover, the velocities used to sample ion-neutral collisions were updated from a weighted to a linear grid, enabling the near-instantaneous evaluation of mobility/CCS at any effective temperature from a single set of N2 scattering trajectories. Several enhancements made to the code are also discussed, including updates to the statistical analysis of collision event sampling and benchmarking of overall performance.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
- Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
- Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
5
|
Li X, Wang H, Jiang M, Ding M, Xu X, Xu B, Zou Y, Yu Y, Yang W. Collision Cross Section Prediction Based on Machine Learning. Molecules 2023; 28:molecules28104050. [PMID: 37241791 DOI: 10.3390/molecules28104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuetong Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
6
|
Fu D, Habtegabir SG, Wang H, Feng S, Han Y. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 2023:10.1007/s00216-023-04574-1. [PMID: 36737499 DOI: 10.1007/s00216-023-04574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure-activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
Collapse
Affiliation(s)
- Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Haodong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Shijie Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China.
| |
Collapse
|
7
|
Gandhi VD, Hua L, Chen X, Latif M, Larriba-Andaluz C. A Critical Review of the two-temperature theory and the derivation of matrix elements. High field Ion mobility and energy calculation for all-atom structures in light gases using a 12-6-4 potential. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
8
|
Celma A, Bade R, Sancho JV, Hernandez F, Humphries M, Bijlsma L. Prediction of Retention Time and Collision Cross Section (CCS H+, CCS H-, and CCS Na+) of Emerging Contaminants Using Multiple Adaptive Regression Splines. J Chem Inf Model 2022; 62:5425-5434. [PMID: 36280383 PMCID: PMC9709913 DOI: 10.1021/acs.jcim.2c00847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultra-high performance liquid chromatography coupled to ion mobility separation and high-resolution mass spectrometry instruments have proven very valuable for screening of emerging contaminants in the aquatic environment. However, when applying suspect or nontarget approaches (i.e., when no reference standards are available), there is no information on retention time (RT) and collision cross-section (CCS) values to facilitate identification. In silico prediction tools of RT and CCS can therefore be of great utility to decrease the number of candidates to investigate. In this work, Multiple Adaptive Regression Splines (MARS) were evaluated for the prediction of both RT and CCS. MARS prediction models were developed and validated using a database of 477 protonated molecules, 169 deprotonated molecules, and 249 sodium adducts. Multivariate and univariate models were evaluated showing a better fit for univariate models to the experimental data. The RT model (R2 = 0.855) showed a deviation between predicted and experimental data of ±2.32 min (95% confidence intervals). The deviation observed for CCS data of protonated molecules using the CCSH model (R2 = 0.966) was ±4.05% with 95% confidence intervals. The CCSH model was also tested for the prediction of deprotonated molecules, resulting in deviations below ±5.86% for the 95% of the cases. Finally, a third model was developed for sodium adducts (CCSNa, R2 = 0.954) with deviation below ±5.25% for 95% of the cases. The developed models have been incorporated in an open-access and user-friendly online platform which represents a great advantage for third-party research laboratories for predicting both RT and CCS data.
Collapse
Affiliation(s)
- Alberto Celma
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain,Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-750 07Uppsala, Sweden
| | - Richard Bade
- University
of South Australia, Adelaide, UniSA: Clinical and Health Sciences,
Health and Biomedical Innovation, AdelaideSA-5000, South
Australia, Australia,Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, WoolloongabbaAUS-4102, Queensland, Australia
| | - Juan Vicente Sancho
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain
| | - Félix Hernandez
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain
| | - Melissa Humphries
- School
of Mathematical Sciences, University of
Adelaide, Ingkarni Wardli Building, North Terrace Campus, SA-5005Adelaide, Australia,
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain,
| |
Collapse
|
9
|
Le Maître J, Maillard JF, Hubert-Roux M, Afonso C, Giusti P. Prediction of Structures of Compounds Encountered in Complex Organic Matter with Highly Flexible Alkyl Chains Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2024-2031. [PMID: 36178343 DOI: 10.1021/jasms.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.
Collapse
Affiliation(s)
- Johann Le Maître
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Julien F Maillard
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Carlos Afonso
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Pierre Giusti
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| |
Collapse
|
10
|
Ieritano C, Hopkins WS. The hitchhiker's guide to dynamic ion-solvent clustering: applications in differential ion mobility spectrometry. Phys Chem Chem Phys 2022; 24:20594-20615. [PMID: 36000315 DOI: 10.1039/d2cp02540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the fundamentals of ion-solvent clustering processes that are pertinent to understanding an ion's behaviour during differential mobility spectrometry (DMS) experiments. We contrast DMS with static-field ion mobility, where separation is affected by mobility differences under the high-field and low-field conditions of an asymmetric oscillating electric field. Although commonly used in mass spectrometric (MS) workflows to enhance signal-to-noise ratios and remove isobaric contaminants, the chemistry and physics that underpins the phenomenon of differential mobility has yet to be fully fleshed out. Moreover, we are just now making progress towards understanding how the DMS separation waveform creates a dynamic clustering environment when the carrier gas is seeded with the vapour of a volatile solvent molecule (e.g., methanol). Interestingly, one can correlate the dynamic clustering behaviour observed in DMS experiments with gas-phase and solution-phase molecular properties such as hydrophobicity, acidity, and solubility. However, to create a generalized, global model for property determination using DMS data one must employ machine learning. In this article, we provide a first-principles description of differential ion mobility in a dynamic clustering environment. We then discuss the correlation between dynamic clustering propensity and analyte physicochemical properties and demonstrate that analytes exhibiting similar ion-solvent interactions (e.g., charge-dipole) follow well-defined trends with respect to DMS clustering behaviour. Finally, we describe how supervised machine learning can be used to create predictive models of molecular properties using DMS data. We additionally highlight open questions in the field and provide our perspective on future directions that can be explored.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
11
|
Chatterjee P, Dutta SS, Chakraborty T. Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. J Phys Chem A 2022; 126:1591-1604. [PMID: 35239351 DOI: 10.1021/acs.jpca.1c08612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The structures of tautomers and rotameric forms of curcumin, the bioactive compound present in spice plant turmeric, have been investigated using ion mobility mass spectrometry (IMMS) in conjunction with high-performance liquid chromatography (HPLC) and UV-visible spectroscopy. Two tautomeric forms of this β-diketone compound, keto-enol and diketo, have been chromatographically separated, and the electronic absorption spectra for these two tautomeric forms in methanol solution have been recorded separately for the first time. The molecular identity of the HPLC-separated solution fractions is established unambiguously by recording the mass and fragmentation spectra simultaneously. The ion mobility spectrum for the deprotonated curcumin anion, [Cur-H]-, corresponding to the diketo tautomer, displays only one peak (P), and the collision cross-section (CCS) value is measured to be 185.9 Å2. However, the ion mobility spectrum corresponding to the HPLC-separated keto-enol tautomer shows three distinctly separated peaks, P, Q, and R, with CCS values of 185.9, 194.8, and 203.4 Å2, respectively, whereby peak R appears to be the most intense one, followed by peaks P and Q. The theoretically calculated CCS values of different isomers of [Cur-H]-, optimized by electronic structure theory methods, display satisfactory correlation with the experimentally observed values, corroborating our assignments. The spectral attributes also indicate the occurrence of structural rearrangements in the electrospray ionization process. With the aid of the electronic structure calculation, low-energy pathways for the occurrence of the structural isomerization to surpass the energy barrier are suggested, which are consistent with the assignments of the peaks observed in the IM spectra.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Haack A, Bissonnette JR, Ieritano C, Hopkins WS. Improved First-Principles Model of Differential Mobility Using Higher Order Two-Temperature Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:535-547. [PMID: 35099948 DOI: 10.1021/jasms.1c00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Differential mobility spectrometry is a separation technique that may be applied to a variety of analytes ranging from small molecule drugs to peptides and proteins. Although rudimentary theoretical models of differential mobility exist, these models are often only applied to small molecules and atomic ions without considering the effects of dynamic microsolvation. Here, we advance our theoretical description of differential ion mobility in pure N2 and microsolvating environments by incorporating higher order corrections to two-temperature theory (2TT) and a pseudoequilibrium approach to describe ion-neutral interactions. When comparing theoretical predictions to experimentally measured dispersion plots of over 300 different compounds, we find that higher order corrections to 2TT reduce errors by roughly a factor of 2 when compared to first order. Model predictions are accurate especially for pure N2 environments (mean absolute error of 4 V at SV = 4000 V). For strongly clustering environments, accurate thermochemical corrections for ion-solvent clustering are likely required to reliably predict differential ion mobility behavior. Within our model, general trends associated with clustering strength, solvent vapor concentration, and background gas temperature are well reproduced, and fine structure visible in some dispersion plots is captured. These results provide insight into the dynamic ion-solvent clustering process that underpins the phenomenon of differential ion mobility.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Chemistry, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| | - Justine R Bissonnette
- Department of Chemistry, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
13
|
Wang JY, Yin YH, Zheng JY, Liu LF, Yao ZP, Xin GZ. Least absolute shrinkage and selection operator-based prediction of collision cross section values for ion mobility mass spectrometric analysis of lipids. Analyst 2022; 147:1236-1244. [DOI: 10.1039/d1an02161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A least absolute shrinkage and selection operator (LASSO)-based prediction method was developed for the prediction of lipids’ CCS values.
Collapse
Affiliation(s)
- Jian-Ying Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ying-Hao Yin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| |
Collapse
|
14
|
Heo CE, Kim M, Son MK, Hyun DG, Heo SW, Kim HI. Ion Mobility Mass Spectrometry Analysis of Oxygen Affinity-Associated Structural Changes in Hemoglobin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2528-2535. [PMID: 34463503 DOI: 10.1021/jasms.1c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sung Woo Heo
- Inorganic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Celma A, Ahrens L, Gago-Ferrero P, Hernández F, López F, Lundqvist J, Pitarch E, Sancho JV, Wiberg K, Bijlsma L. The relevant role of ion mobility separation in LC-HRMS based screening strategies for contaminants of emerging concern in the aquatic environment. CHEMOSPHERE 2021; 280:130799. [PMID: 34162120 DOI: 10.1016/j.chemosphere.2021.130799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 05/24/2023]
Abstract
Ion mobility separation (IMS) coupled to high resolution mass spectrometry (IMS-HRMS) is a promising technique for (non-)target/suspect analysis of micropollutants in complex matrices. IMS separates ionized compounds based on their charge, shape and size facilitating the removal of co-eluting isomeric/isobaric species. Additionally, IMS data can be translated into collision cross-section (CCS) values, which can be used to increase the identification reliability. However, IMS-HRMS for the screening of contaminants of emerging concern (CECs) have been scarcely explored. In this study, the role of IMS-HRMS for the identification of CECs in complex matrices is highlighted, with emphasis on when and with which purpose is of use. The utilization of IMS can result in much cleaner mass spectra, which considerably facilitates data interpretation and the obtaining of reliable identifications. Furthermore, the robustness of IMS measurements across matrices permits the use of CCS as an additional relevant parameter during the identification step even when reference standards are not available. Moreover, an effect on the number of true and false identifications could be demonstrated by including IMS restrictions within the identification workflow. Data shown in this work is of special interest for environmental researchers dealing with the detection of CECs with state-of-the-art IMS-HRMS instruments.
Collapse
Affiliation(s)
- Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Francisco López
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain.
| |
Collapse
|
16
|
Auth T, Grabarics M, Schlangen M, Pagel K, Koszinowski K. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts. Anal Chem 2021; 93:9797-9807. [PMID: 34227799 DOI: 10.1021/acs.analchem.1c01333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Márkó Grabarics
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, Berlin 10623, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
17
|
Larriba-Andaluz C, Prell JS. Fundamentals of ion mobility in the free molecular regime. Interlacing the past, present and future of ion mobility calculations. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1826708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
18
|
Zheng H, Zhen XT, Chen Y, Zhu SC, Ye LH, Yang SW, Wang QY, Cao J. In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry. Food Chem 2020; 343:128422. [PMID: 33143965 DOI: 10.1016/j.foodchem.2020.128422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
A simple and sensitive in situ antioxidation process assisted with a matrix solid-phase dispersion method for extracting chiral flavonoids in citrus fruit was established, and samples were further analyzed using ion mobility quadrupole time-of-flight high-resolution mass spectrometry. The collision cross-sections of the target compounds were studied using single-field and stepped-field methods. The optimal conditions were obtained using 30 mg of C18 as a dispersant, methanol as an elution solvent and 0.6 mM 1,1-diphenyl-2-picrylhydrazyl (DPPH) as a radical solution. Additionally, the method showed satisfactory limits of detection (3.70-6.52 ng/mL) and good recoveries (96.78-104.67%) for four flavonoids in citrus fruit. The IC50 values of DPPH radical-scavenging activities ranged from 817.8 to 981.55 μg/mL for tested samples. The method was a good alternative for the microextraction and determination of antioxidant capacity and chiral differentiation of narirutin, naringin, hesperidin and neohesperidin in citrus fruit.
Collapse
Affiliation(s)
- Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiao-Ting Zhen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Chen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, China.
| | - Si-Wei Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiu-Yan Wang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
19
|
Chatterjee P, Dutta SS, Chakraborty T. Isomers and Rotamers of DCM in Methanol and in Gas Phase Probed by Ion Mobility Mass Spectrometry in Combination with High Performance Liquid Chromatography. J Phys Chem B 2020; 124:4498-4511. [PMID: 32380830 DOI: 10.1021/acs.jpcb.0c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An integrated method of ion mobility mass spectrometry and high-performance liquid chromatography (HPLC) has been used to investigate the isomeric distribution of a popular fluorescent dye DCM (4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) in methanol solution. Chromatographic separation of DCM isomers in methanol has been performed by probing the molecular mass (DCMH+), and two distinctly separated peaks are observed at retention times 3.73 (peak-I) and 3.87 (peak-II) min, where the latter one appears nearly twice as intense as the former. However, peak-I appears much weaker compared to peak-II if the chromatogram is recorded by optical probing at the absorption maximum of this dye (467 nm). The ion mobility (IM) spectra of DCMH+ ions corresponding to each of the LC-separated factions show three common peaks A, B, and C, with collision cross-section (CCS) values of 174, 185, and 197 Å2, respectively, but their relative intensities in the two IM spectra appear in opposite sequences. The three IM peaks have been assigned by considering the theoretically calculated CCS values of 13 possible isomers of DCMH+ ions. The IM spectral features also reveal that isomeric interconversions occur during the ESI process. Electronic structure calculations have been used to optimize the geometries of the four isomers of solvated DCM and the corresponding protomeric structures of DCMH+. The isomerization pathways and associated energy barriers have also been calculated. The gas-phase protomers are found to follow a completely different sequence of stability as compared to the neutral isomers. The analysis reveals that peak-I corresponds to one of the cis isomers, whereas peak-II arises due to cumulative contributions of the other three isomers. The absorption spectrum of DCM in methanol is simulated from the computed spectral profiles of the isomers which indicates a distribution of trans1, trans2, cis1, and cis2 isomers as 33.5, 61.5, 2.0, and 3.0%, respectively. The fragmentation behavior of DCMH+ ions in a collision-induced dissociation experiment has been found to be isomer dependent.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Ross DH, Cho JH, Xu L. Breaking Down Structural Diversity for Comprehensive Prediction of Ion-Neutral Collision Cross Sections. Anal Chem 2020; 92:4548-4557. [PMID: 32096630 DOI: 10.1021/acs.analchem.9b05772] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of unknowns is a bottleneck for large-scale untargeted analyses like metabolomics or drug metabolite identification. Ion mobility-mass spectrometry (IM-MS) provides rapid two-dimensional separation of ions based on their mobility through a neutral buffer gas. The mobility of an ion is related to its collision cross section (CCS) with the buffer gas, a physical property that is determined by the size and shape of the ion. This structural dependency makes CCS a promising characteristic for compound identification, but this utility is limited by the availability of high-quality reference CCS values. CCS prediction using machine learning (ML) has recently shown promise in the field, but accurate and broadly applicable models are still lacking. Here we present a novel ML approach that employs a comprehensive collection of CCS values covering a wide range of chemical space. Using this diverse database, we identified the structural characteristics, represented by molecular quantum numbers (MQNs), that contribute to variance in CCS and assessed the performance of a variety of ML algorithms in predicting CCS. We found that by breaking down the chemical structural diversity using unsupervised clustering based on the MQNs, specific and accurate prediction models for each cluster can be trained, which showed superior performance than a single model trained with all data. Using this approach, we have robustly trained and characterized a CCS prediction model with high accuracy on diverse chemical structures. An all-in-one web interface (https://CCSbase.net) was built for querying the CCS database and accessing the predictive model to support unknown compound identifications.
Collapse
Affiliation(s)
- Dylan H Ross
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jang Ho Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Fenclova M, Stranska-Zachariasova M, Benes F, Novakova A, Jonatova P, Kren V, Vitek L, Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem 2020; 412:819-832. [PMID: 31919606 DOI: 10.1007/s00216-019-02274-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic.
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine and Faculty General Hospital, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
22
|
Haack A, Crouse J, Schlüter FJ, Benter T, Hopkins WS. A First Principle Model of Differential Ion Mobility: the Effect of Ion-Solvent Clustering. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2711-2725. [PMID: 31755046 DOI: 10.1007/s13361-019-02340-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The use of differential mobility spectrometry (DMS) as a separation tool prior to mass analysis has increased in popularity over the years. However, the fundamental principles behind the difference between high- and low-field mobility is still a matter of debate-especially regarding the strong impact of solvent molecules added to the gas phase in chemically modified DMS environments. In this contribution, we aim to present a thorough model for the determination of the ion mobility over a wide range of field strengths and subsequent calculation of DMS dispersion plots. Our model relies on first principle calculations only, incorporating the modeling of the "hard-sphere" mobility, the change in CCS with field strength, and the degree of clustering of solvent molecules to the ion. We show that all three factors have to be taken into account to qualitatively predict dispersion plots. In particular, type A behavior (i.e., strong clustering) in DMS can only be explained by a significant change of the mean cluster size with field strengths. The fact that our model correctly predicts trends between differently strong binding solvents, as well as the solvent concentration and the background gas temperature, highlights the importance of clustering for differential mobility.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany
| | - Jeff Crouse
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Femke-Jutta Schlüter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany.
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
23
|
Colby SM, Thomas DG, Nuñez JR, Baxter DJ, Glaesemann KR, Brown JM, Pirrung MA, Govind N, Teeguarden JG, Metz TO, Renslow RS. ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries. Anal Chem 2019; 91:4346-4356. [PMID: 30741529 PMCID: PMC6526953 DOI: 10.1021/acs.analchem.8b04567] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-throughput, comprehensive, and confident identifications of metabolites and other chemicals in biological and environmental samples will revolutionize our understanding of the role these chemically diverse molecules play in biological systems. Despite recent technological advances, metabolomics studies still result in the detection of a disproportionate number of features that cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single most significant limitation in metabolomics, the reliance on reference libraries constructed by analysis of authentic reference materials with limited commercial availability. To this end, we have developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly cheminformatics workflow for generating libraries of chemical properties. In the instantiation described here, we predict probable three-dimensional molecular conformers (i.e., conformational isomers) using chemical identifiers as input, from which collision cross sections (CCS) are derived. The approach employs first-principles simulation, distinguished by the use of molecular dynamics, quantum chemistry, and ion mobility calculations, to generate structures and chemical property libraries, all without training data. Importantly, optimization of ISiCLE included a refactoring of the popular MOBCAL code for trajectory-based mobility calculations, improving its computational efficiency by over 2 orders of magnitude. Calculated CCS values were validated against 1983 experimentally measured CCS values and compared to previously reported CCS calculation approaches. Average calculated CCS error for the validation set is 3.2% using standard parameters, outperforming other density functional theory (DFT)-based methods and machine learning methods (e.g., MetCCS). An online database is introduced for sharing both calculated and experimental CCS values ( metabolomics.pnnl.gov ), initially including a CCS library with over 1 million entries. Finally, three successful applications of molecule characterization using calculated CCS are described, including providing evidence for the presence of an environmental degradation product, the separation of molecular isomers, and an initial characterization of complex blinded mixtures of exposure chemicals. This work represents a method to address the limitations of small molecule identification and offers an alternative to generating chemical identification libraries experimentally by analyzing authentic reference materials. All code is available at github.com/pnnl .
Collapse
Affiliation(s)
- Sean M. Colby
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dennis G. Thomas
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nuñez
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Douglas J. Baxter
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kurt R. Glaesemann
- Communications and Information Technology Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph M. Brown
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Meg A. Pirrung
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin G. Teeguarden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan S. Renslow
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
24
|
Avilés–Moreno JR, Berden G, Oomens J, Martínez–Haya B. A Cl - Hinge for Cyclen Macrocycles: Ionic Interactions and Tweezer-Like Complexes. Front Chem 2019; 7:143. [PMID: 30968013 PMCID: PMC6438891 DOI: 10.3389/fchem.2019.00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 11/25/2022] Open
Abstract
The supramolecular networks derived from the complexation of polyazamacrocycles with halide anions constitute fundamental building blocks of a broad range of modern materials. This study provides insights into the conformational framework that supports the binding of protonated cyclen macrocyles (1,4,7,10-Tetraazacyclododecane) by chloride anions through NHδ+···Cl- interactions. The isolated complex comprised of two cyclen hosts linked by one Cl- anion is characterized by means of infrared action spectroscopy and ion mobility mass spectrometry, in combination with quantum chemical computations. The Cl- anion is found to act as a hinge that bridges the protonatedNH 2 + moieties of the two macrocycles leading to a molecular tweezer configuration. Different types of conformations emerge, depending on whether the trimer adopts an open arrangement, with significant freedom for internal rotation of the cyclen moieties, or it locks in a folded conformation with intermolecular H-bonds between the two cyclen backbones. The ion mobility collision cross section supports that folded configurations of the complex are dominant under isolated conditions in the gas phase. The IRMPD spectroscopy experiments suggest that two qualitatively different families of folded conformations coexist at room temperature, featuring either peripheral or inner positions of the anion with respect to the macrocycle cavities, These findings should have implications in the growth of extended networks in the nanoscale and in sensing applications.
Collapse
Affiliation(s)
- Juan Ramón Avilés–Moreno
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Bruno Martínez–Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
25
|
Ieritano C, Crouse J, Campbell JL, Hopkins WS. A parallelized molecular collision cross section package with optimized accuracy and efficiency. Analyst 2019; 144:1660-1670. [PMID: 30649115 DOI: 10.1039/c8an02150c] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new parallelized calculation package predicts collision cross sections with high accuracy and efficiency.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry
- University of Waterloo
- 200 University Avenue West
- Waterloo
- Canada
| | - Jeff Crouse
- Department of Chemistry
- University of Waterloo
- 200 University Avenue West
- Waterloo
- Canada
| | - J. Larry Campbell
- Department of Chemistry
- University of Waterloo
- 200 University Avenue West
- Waterloo
- Canada
| | - W. Scott Hopkins
- Department of Chemistry
- University of Waterloo
- 200 University Avenue West
- Waterloo
- Canada
| |
Collapse
|
26
|
Prell JS. Modelling Collisional Cross Sections. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Lim D, Davidson KL, Son S, Ahmed A, Bush MF, Kim S. Determining Collision Cross‐Sections of Aromatic Compounds in Crude Oil by Using Aromatic Compound Mixture as Calibration Standard. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongwan Lim
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | | | - Seungwoo Son
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Arif Ahmed
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Matthew F. Bush
- Department of ChemistryUniversity of Washington Seattle WA, 98195‐1700 USA
| | - Sunghwan Kim
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
- Green‐Nano Materials Research Center Daegu 41566 Republic of Korea
| |
Collapse
|
28
|
Lee SS, Lee JU, Oh JH, Park S, Hong Y, Min BK, Lee HHL, Kim HI, Kong X, Lee S, Oh HB. Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Phys Chem Chem Phys 2018; 20:30428-30436. [PMID: 30499999 DOI: 10.1039/c8cp05617j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chiral differentiation of protonated isoleucine (Ile) using permethylated β-cyclodextrin (perCD) in the gas-phase was studied using infrared multiple photon dissociation (IRMPD) spectroscopy, ion-mobility, and density functional theory (DFT) calculations. The gaseous protonated non-covalent complexes of perCD and d-Ile or l-Ile produced by electrospray ionization were interrogated by laser pulses in the wavenumber region of 2650 to 3800 cm-1. The IRMPD spectra showed remarkably different IR spectral features for the d-Ile or l-Ile and perCD non-covalent complexes. However, drift-tube ion-mobility experiments provided only a small difference in their collision cross-sections, and thus a limited separation of the d- and l-Ile complexes. DFT calculations revealed that the chiral distinction of the d- and l-complexes by IRMPD spectroscopy resulted from local interactions of the protonated Ile with perCD. Furthermore, the theoretical results showed that the IR absorption spectra of higher energy conformers (by ∼13.7 kcal mol-1) matched best with the experimentally observed IRMPD spectra. These conformers are speculated to be formed from kinetic-trapping of the solution-phase conformers. This study demonstrated that IRMPD spectroscopy provides an excellent platform for differentiating the subtle chiral difference of a small amino acid in a cyclodextrin-complexation environment; however, drift-tube ion-mobility did not have sufficient resolution to distinguish the chiral difference.
Collapse
Affiliation(s)
- Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karanji AK, Khakinejad M, Kondalaji SG, Majuta SN, Attanayake K, Valentine SJ. Comparison of Peptide Ion Conformers Arising from Non-Helical and Helical Peptides Using Ion Mobility Spectrometry and Gas-Phase Hydrogen/Deuterium Exchange. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2402-2412. [PMID: 30324261 PMCID: PMC6553874 DOI: 10.1007/s13361-018-2053-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 05/06/2023]
Abstract
The dominant gas-phase conformer of [M+3H]3+ ions of the model peptide acetyl-PSSSSKSSSSKSSSSKSSSSK has been examined with ion mobility spectrometry (IMS), gas-phase hydrogen deuterium exchange (HDX), and mass spectrometry (MS) techniques. The [M+3H]3+ peptide ions are observed predominantly as a relatively compact conformer type. Upon subjecting these ions to electron transfer dissociation (ETD), the level of protection for each amino acid residue in the peptide sequence is assessed. The overall per-residue deuterium uptake is observed to be relatively more efficient for the neutral residues than for the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. In comparison, the N-terminal and C-terminal regions of the serine peptide show greater relative protection compared with interior residues. Molecular dynamics (MD) simulations have been used to generate candidate structures for collision cross section and HDX reactivity matching. Hydrogen accessibility scoring (HAS) for select structural candidates from MD simulations has been used to suggest conformer types that could contribute to the observed HDX patterns. The results are discussed with respect to recent studies employing extensive MD simulations of gas-phase structure establishment of a peptide system. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ahmad Kiani Karanji
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Mahdiar Khakinejad
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Sandra N Majuta
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Kushani Attanayake
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
30
|
Gadzuk-Shea MM, Bush MF. Effects of Charge State on the Structures of Serum Albumin Ions in the Gas Phase: Insights from Cation-to-Anion Proton-Transfer Reactions, Ion Mobility, and Mass Spectrometry. J Phys Chem B 2018; 122:9947-9955. [DOI: 10.1021/acs.jpcb.8b08427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meagan M. Gadzuk-Shea
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
31
|
Canzani D, Laszlo KJ, Bush MF. Ion Mobility of Proteins in Nitrogen Gas: Effects of Charge State, Charge Distribution, and Structure. J Phys Chem A 2018; 122:5625-5634. [DOI: 10.1021/acs.jpca.8b04474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|