1
|
Yan X, Tan D, Yu L, Li D, Wang Z, Huang W, Wu H. An integrated microfluidic device for sorting of tumor organoids using image recognition. LAB ON A CHIP 2024; 25:41-48. [PMID: 39629737 DOI: 10.1039/d4lc00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Tumor organoids present a challenge in drug screening due to their considerable heterogeneity in morphology and size. To address this issue, we proposed a portable microfluidic device that employs image processing algorithms for specific target organoid recognition and microvalve-controlled deflection for sorting and collection. This morphology-activated organoid sorting system offers numerous advantages, such as automated classification, portability, low cost, label-free sample preparation, and gentle handling of organoids. We conducted classification experiments using polystyrene beads, F9 tumoroids and patient-derived tumor organoids, achieving organoid separation efficiency exceeding 88%, purity surpassing 91%, viability exceeding 97% and classification throughput of 800 per hour, thereby meeting the demands of clinical organoid medicine.
Collapse
Affiliation(s)
- Xingyang Yan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Deng Tan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danyu Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhenghao Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Weiren Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Soika J, Wanninger T, Muschak P, Schnell A, Schwaminger SP, Berensmeier S, Zimmermann M. Efficient numerical modelling of magnetophoresis in millifluidic systems. LAB ON A CHIP 2024; 24:5009-5019. [PMID: 39324954 DOI: 10.1039/d4lc00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Continuous flow magnetophoresis represents a common technique for actively separating particles within a fluid. For separation systems design, accurately predicting particle behaviour helps to characterise system performance, typically measured by the separation efficiency (SE). While finite element method (FEM) simulations offer high accuracy, they demand extensive computational resources. Alternatively, results can be achieved more quickly with simplified numerical models that use analytical descriptions of fluid flow, magnetic fields, and particle movement. In this research, we model a millifluidic system that separates magnetic particles using magnetophoresis. Therefore, we (1) develop a simple numerical model that can simulate continuous flow magnetophoresis for rectangular channels in two and three dimensions, (2) introduce a novel and simple approach to calculate the SE, and (3) quantify the effects of model assumptions in flow profile and dimensions on SE. Our method for estimating SE considers particle flux variation across the channel's cross-section due to the flow profile. The results are compared to an FEM model developed in COMSOL. The obtained three-dimensional simulation model computes results in seconds, around 180 times faster than the FEM approach, while deviating less than 2% from the FEM results. A comparison of the different two-dimensional and three-dimensional models underscores the significant influence of the flow profile and the SE calculation method on the result. The two dimensional models generally overestimate the SE of up to 15% due to their lower peak flow velocity. However, using a constant flow velocity leads to good agreement for high SE due to the overlap of differences in flow profile and SE calculation.
Collapse
Affiliation(s)
- Johannes Soika
- Laboratory for Product Development and Lightweight Design, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - Tobias Wanninger
- Laboratory for Product Development and Lightweight Design, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - Patrick Muschak
- Chair of Bioseparation Engineering, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Anja Schnell
- Laboratory for Product Development and Lightweight Design, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - Sebastian P Schwaminger
- Chair of Bioseparation Engineering, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstr. 4a, 85748 Garching, Germany
| | - Markus Zimmermann
- Laboratory for Product Development and Lightweight Design, Tum School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| |
Collapse
|
3
|
Vasquez-Muñoz D, Rohne F, Meier I, Sharma A, Lomadze N, Santer S, Bekir M. Light-Induced Material Motion Fingerprint - A Tool Toward Selective Interfacial Sensitive Fractioning of Microparticles via Microfluidic Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403546. [PMID: 38967188 DOI: 10.1002/smll.202403546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/08/2024] [Indexed: 07/06/2024]
Abstract
In this article, a novel strategy is presented to selectively separate a mixture of equally sized microparticles but differences in material composition and surface properties. The principle relies on a photosensitive surfactant, which makes particles under light illumination phoretically active. The latter hovers microparticles from a planar interface and together with a superimposed fluid flow, particles experience a drift motion characteristic to its interfacial properties. The drift motion is investigated as a function of applied wavelength, demonstrating that particles composed of different material show a unique spectrally resolved light-induced motion profile. Differences in those motion profile allow a selective fractioning of a desired particle from a complex particle mixture made out of more than two equally sized different particle types. Besides that, the influence of applied wavelength is systematically studied, and discussed the origin of the spectrally resolved chemical activity of microparticles from measured photo-isomerization rates.
Collapse
Affiliation(s)
| | - Fabian Rohne
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Isabel Meier
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Storti F, Bonfadini S, Mangini M, De Luca AC, Criante L. High throughput clogging free microfluidic particle filter by femtosecond laser micromachining. Electrophoresis 2024; 45:1505-1514. [PMID: 38687174 DOI: 10.1002/elps.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%. However, the maximum flow rate achievable (µL/min) is still orders of magnitude away from those suitable for clinical or industrial applications mainly due to the low stiffness of the materials typically used. In this work, we propose an innovative hydrodynamic-crossflow hybrid filter geometry, buried in a fused silica substrate by means of the femtosecond laser irradiation followed by chemical etching technique. The material high stiffness combined with the accuracy of our manufacturing technique allows the 3D fabrication of non-deformable channels with higher aspect ratio posts, while keeping the overall device dimensions compact. The filter performance has been validated through experiments with both Newtonian (water-based solution of microbeads) and non-Newtonian fluids (blood), achieving separation efficiencies of up to 94% and large particles recovery rates of 100%, even at very high flow rates (mL/h).
Collapse
Affiliation(s)
- Filippo Storti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - Maria Mangini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", IEOS-Second Unit, National Research Council, CNR, Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", IEOS-Second Unit, National Research Council, CNR, Napoli, Italy
| | - Luigino Criante
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
5
|
Chu PY, Wu AY, Tsai KY, Hsieh CH, Wu MH. Combination of an Optically Induced Dielectrophoresis (ODEP) Mechanism and a Laminar Flow Pattern in a Microfluidic System for the Continuous Size-Based Sorting and Separation of Microparticles. BIOSENSORS 2024; 14:297. [PMID: 38920601 PMCID: PMC11201910 DOI: 10.3390/bios14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Optically induced dielectrophoresis (ODEP)-based microparticle sorting and separation is regarded as promising. However, current methods normally lack the downstream process for the transportation and collection of separated microparticles, which could limit its applications. To address this issue, an ODEP microfluidic chip encompassing three microchannels that join only at the central part of the microchannels (i.e., the working zone) was designed. During operation, three laminar flows were generated in the zone, where two dynamic light bar arrays were designed to sort and separate PS (polystyrene) microbeads of different sizes in a continuous manner. The separated PS microbeads were then continuously transported in laminar flows in a partition manner for the final collection. The results revealed that the method was capable of sorting and separating PS microbeads in a high-purity manner (e.g., the microbead purity values were 89.9 ± 3.7, 88.0 ± 2.5, and 92.8 ± 6.5% for the 5.8, 10.8, and 15.8 μm microbeads harvested, respectively). Overall, this study demonstrated the use of laminar flow and ODEP to achieve size-based sorting, separation, and collection of microparticles in a continuous and high-performance manner. Apart from the demonstration, this method can also be utilized for size-based sorting and the separation of other biological or nonbiological microparticles.
Collapse
Affiliation(s)
- Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ai-Yun Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yu Tsai
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
6
|
Uddin MR, Chen X. Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions. Biotechnol Prog 2024; 40:e3437. [PMID: 38289677 DOI: 10.1002/btpr.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Reliable separation of circulating tumor cells from blood cells is crucial for early cancer diagnosis and prognosis. Many conventional microfluidic platforms take advantage of the size difference between particles for their separation, which renders them impractical for sorting overlapping-sized cells. To address this concern, a hybrid inertial-dielectrophoretic microfluidic chip is proposed in this work for continuous and single-stage separation of lung cancer cell line A549 cells from white blood cells of overlapping size. The working mechanism of the proposed spiral microchannel embedded with planar interdigitated electrodes is validated against the experimental results. A numerical investigation is carried out over a range of flow conditions and electric field intensity to determine the separation efficiency and migration characteristics of the cell mixture. The results demonstrate the unique capability of the proposed microchannel to achieve high-throughput separation of cells at low applied voltages in both vertical and lateral directions. A significant lateral separation distance between the CTCs and the WBCs has been achieved, which allows for high-resolution and effective separation of cells. The separation resolution can be controlled by adjusting the strength of the applied electric field. Furthermore, the results demonstrate that the lateral separation distance is maximum at a voltage termed the critical voltage, which increases with the increase in the flow rate. The proposed microchannel and the developed technique can provide valuable insight into the development of a tunable and robust medical device for effective and high-throughput separation of cancer cells from the WBCs.
Collapse
Affiliation(s)
- Mohammed Raihan Uddin
- Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| |
Collapse
|
7
|
Wang W, Xia L, Xiao X, Li G. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2067. [PMID: 38610279 PMCID: PMC11014287 DOI: 10.3390/s24072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This review introduces a micro-integrated device of microfluidics and fiber-optic sensors for on-site detection, which can detect certain or several specific components or their amounts in different samples within a relatively short time. Fiber-optics with micron core diameters can be easily coated and functionalized, thus allowing sensors to be integrated with microfluidics to separate, enrich, and measure samples in a micro-device. Compared to traditional laboratory equipment, this integrated device exhibits natural advantages in size, speed, cost, portability, and operability, making it more suitable for on-site detection. In this review, the various optical detection methods used in this integrated device are introduced, including Raman, ultraviolet-visible, fluorescence, and surface plasmon resonance detections. It also provides a detailed overview of the on-site detection applications of this integrated device for biological analysis, food safety, and environmental monitoring. Lastly, this review addresses the prospects for the future development of microfluidics integrated with fiber-optic sensors.
Collapse
Affiliation(s)
| | | | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| |
Collapse
|
8
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
9
|
Hebel D, Schönherr H. Mild Quantitative One Step Removal of Macrophages from Cocultures with Human Umbilical Vein Endothelial Cells Using Thermoresponsive Poly(Di(Ethylene Glycol)Methyl Ether Methacrylate) Brushes. Macromol Biosci 2024; 24:e2300408. [PMID: 37916483 DOI: 10.1002/mabi.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The authors report on a mild, label-free, and fast method for the separation of human umbilical vein endothelial cells (HUVEC), which are relevant cells, whose use is not limited to studies of endothelial dysfunction, from cocultures with macrophages to afford HUVEC in ≈100% purity. Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes with a dry thickness of (5 ± 1) nm afford the highly effective one-step separation by selective HUVEC detachment, which is based on the brushes' thermoresponsive behavior. Below the thermal transition at 32 °C the brushes swells and desorbs attached proteins, resulting in markedly decreased cell adhesion. Specifically, HUVEC and macrophages, which are differentiated from THP-1 monocytes, are seeded and attached to PDEGMA brushes at 37°C. After decreasing the temperature to 22°C, HUVEC shows a decrease in their cell area, while the macrophages are not markedly affected by the temperature change. After mild flushing with a cell culture medium, the HUVEC can be released from the surface and reseeded again with ≈100% purity on a new surface. With this selective cell separation and removal method, it is possible to separate and thereby purify HUVEC from macrophages without the use of any releasing reagent or expensive labels, such as antibodies.
Collapse
Affiliation(s)
- Diana Hebel
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
10
|
Hui TC, Zhang X, Adiga D, Miller GH, Ristenpart WD. Vibrational manipulation of dry granular materials in lab-on-a-chip devices. LAB ON A CHIP 2024. [PMID: 38275165 DOI: 10.1039/d3lc00722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We present vibrational techniques to pump, mix, and separate dry granular materials using multifrequency vibrations applied to a solid substrate with a standard audio system. The direction and velocity of the granular flow are tuned by modulating the sign and amplitude, respectively, of the vibratory waveform, with typical pumping velocities of centimeters per second. Different granular materials are mixed by combining them at Y-shaped junctions, and mixtures of granules with different friction coefficients are separated along straight channels by judicious choice of the vibratory waveform. We demonstrate that the observed velocities accord with a theory valid for sufficiently large or fast vibrations, and we discuss the implications for using vibrational manipulation in conjunction with established microfluidic technologies to combine liquid and dry solid handling operations at sub-millimeter length scales.
Collapse
Affiliation(s)
- Timothy C Hui
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Xiaolin Zhang
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Dhruva Adiga
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Gregory H Miller
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - William D Ristenpart
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
11
|
Xu Z, Chen Z, Yang S, Chen S, Guo T, Chen H. Passive Focusing of Single Cells Using Microwell Arrays for High-Accuracy Image-Activated Sorting. Anal Chem 2024; 96:347-354. [PMID: 38153415 DOI: 10.1021/acs.analchem.3c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.
Collapse
Affiliation(s)
- Zheng Xu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong SAR, China
| | - Shiming Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
12
|
Yao Y, Lin Y, Wu Z, Li Z, He X, Wu Y, Sun Z, Ding W, He L. Solute-particle separation in microfluidics enhanced by symmetrical convection. RSC Adv 2024; 14:1729-1740. [PMID: 38192326 PMCID: PMC10772704 DOI: 10.1039/d3ra07285a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
The utilization of microfluidic technology for miniaturized and efficient particle sorting holds significant importance in fields such as biology, chemistry, and healthcare. Passive separation methods, achieved by modifying the geometric shapes of microchannels, enable gentle and straightforward enrichment and separation of particles. Building upon previous discussions regarding the effects of column arrays on fluid flow and particle separation within microchips, we introduced a column array structure into an H-shaped microfluidic chip. It was observed that this structure enhanced mass transfer between two fluids while simultaneously intercepting particles within one fluid, satisfying the requirements for particle interception. This enhancement was primarily achieved by transforming the originally single-mode diffusion-based mass transfer into dual-mode diffusion-convection mass transfer. By further optimizing the column array, it was possible to meet the basic requirements of mass transfer and particle interception with fewer microcolumns, thereby reducing device pressure drop and facilitating the realization of parallel and high-throughput microfluidic devices. These findings have enhanced the potential application of microfluidic systems in clinical and chemical engineering domains.
Collapse
Affiliation(s)
- Yurou Yao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Yao Lin
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zerui Wu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University Shenzhen 518060 China
| | - Xuemei He
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Yun Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230026 China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
13
|
Shen S, Zhang Y, Yang K, Chan H, Li W, Li X, Tian C, Niu Y. Flow-Rate-Insensitive Plasma Extraction by the Stabilization and Acceleration of Secondary Flow in the Ultralow Aspect Ratio Spiral Channel. Anal Chem 2023; 95:18278-18286. [PMID: 38016025 DOI: 10.1021/acs.analchem.3c04179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Although microfluidic devices have made remarkable strides in blood cell separation, there is still a need for further development and improvement in this area. Herein, we present a novel ultralow aspect ratio (H/W = 1:36) spiral channel microfluidic device with ordered micro-obstacles for sheathless and flow-rate-insensitive blood cell separation. By introducing ordered micro-obstacles into the spiral microchannels, reduced magnitude fluctuations in secondary flow across different loops can be obtained through geometric confinement. As a result, the unique Dean-like secondary flow can effectively enhance the separation efficiency of particles in different sizes ranging from 3 to 15 μm. Compared to most existing microfluidic devices, our system offers several advantages of easy manufacturing, convenient operation, long-term stability, highly efficient performance (up to 99.70% rejection efficiency, including platelets), and most importantly, insensitivity to cell sizes as well as flow rates (allowing for efficient separation of different-sized blood cells in a wide flow rate from 1.00 to 2.50 mL/min). The unique characteristics, such as ultralow aspect ratio, sequential micro-obstacles, and controlled secondary flow, make our device a promising solution for practical plasma extraction in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Kai Yang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| |
Collapse
|
14
|
Uddin MR, Sarowar MT, Chen X. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study. Electrophoresis 2023; 44:1781-1794. [PMID: 37753944 DOI: 10.1002/elps.202300090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Isolation and detection of circulating tumor cells (CTCs) hold significant importance for the early diagnosis of cancer and the assessment of therapeutic strategies. However, the scarcity of CTCs among peripheral blood cells presents a major challenge to their detection. Additionally, a similar size range between CTCs and white blood cells (WBCs) makes conventional microfluidic platforms inadequate for the isolation of CTCs. To overcome these challenges, in this study, a novel inertial-dielectrophoretic microfluidic channel for size-independent, single-stage separation of CTCs from WBCs has been presented. The proposed device utilizes a spiral microchannel embedded with interdigitated electrodes. A numerical model is developed and validated to investigate the influence of various parameters related to the channel design, fluid flow, and electrode configuration. It was found that optimal separation of CTCs could be obtained at a relatively low voltage, termed the critical voltage. Furthermore, at the critical voltage of 7.5 V, the hybrid microchannel is demonstrated to be capable of separating CTCs from different WBC subtypes including granulocytes, monocytes, T-, and B-lymphocytes. The unique capabilities of the hybrid spiral microchannel allow for this size-independent isolation of CTCs from a mixture of WBCs. Overall, the proposed technique can be readily utilized for continuous and high-throughput separation of cancer cells.
Collapse
Affiliation(s)
- Mohammed Raihan Uddin
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| | - Md Tanbir Sarowar
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| |
Collapse
|
15
|
Shen S, Bai H, Wang X, Chan H, Niu Y, Li W, Tian C, Li X. High-Throughput Blood Plasma Extraction in a Dimension-Confined Double-Spiral Channel. Anal Chem 2023; 95:16649-16658. [PMID: 37917001 DOI: 10.1021/acs.analchem.3c03002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Microfluidic technologies enabling the control of secondary flow are essential for the successful separation of blood cells, a process that is beneficial for a wide range of medical research and clinical diagnostics. Herein, we introduce a dimension-confined microfluidic device featuring a double-spiral channel designed to regulate secondary flows, thereby enabling high-throughput isolation of blood for plasma extraction. By integrating a sequence of micro-obstacles within the double-spiral microchannels, the stable and enhanced Dean-like secondary flow across each loop can be generated. This setup consequently prompts particles of varying diameters (3, 7, 10, and 15 μm) to form different focusing states. Crucially, this system is capable of effectively separating blood cells of different sizes with a cell throughput of (2.63-3.36) × 108 cells/min. The concentration of blood cells in outlet 2 increased 3-fold, from 1.46 × 108 to 4.37 × 108, while the number of cells, including platelets, exported from outlets 1 and 3 decreased by a factor of 608. The engineering approach manipulating secondary flow for plasma extraction points to simplicity in fabrication, ease of operation, insensitivity to cell size, high throughput, and separation efficiency, which has potential utility in propelling the development of miniaturized diagnostic devices in the field of biomedical science.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Xin Wang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| |
Collapse
|
16
|
Yin S, Lu R, Liu C, Zhu S, Wan H, Lin Y, Wang Q, Qu X, Li J. Composite Microfluidic Petri Dish-Chip (MPD-Chip) without Protein Coating for 2D Cell Culture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15643-15652. [PMID: 37906157 DOI: 10.1021/acs.langmuir.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydrophilicity is a requisite attribute for the 2D cell culture substrate's surface, facilitating cell adhesion and spreading. Conventional poly(dimethylsiloxane) (PDMS) microfluidic chips necessitate protein coatings to enhance hydrophilicity; however, this approach is afflicted by issues of transient efficacy, interference with cell analysis, and high costs. This paper presents a protein-free microfluidic chip, termed a "microfluidic Petri dish-chip (MPD-chip)", integrating PDMS as the cover and a tissue culture-treated (TC-treated) Petri dish as the substrate. Microstructures are hot-embossed onto the Petri dish substrate using a silicon mold. This meticulous replication process serves to establish stable flow field dynamics within the chip. A simplified method for irreversible bonding, utilizing plasma activation and silylation, is proposed for affixing the PDMS cover onto the microstructured Petri dish substrate. The prepared composite chip exhibits remarkable tightness, boasting a notable bond strength of 2825 kPa. Furthermore, the composite microfluidic chip demonstrates the capability to withstand flow velocities of at least 200 μL/min, effectively meeting the required injection standards for both cell suspension and culture medium. SH-SY5Y and HeLa cells are cultured dynamically in the MPD-chip and control groups. Outcomes encompassing normalized cell density, cell adhesion area, and cell viability metrics unequivocally highlight the superiority of the MPD-chip in facilitating long-term two-dimensional (2D) cell cultures.
Collapse
Affiliation(s)
- Shuqing Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Ruoyu Lu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Shicheng Zhu
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Huifang Wan
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Yayun Lin
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Qiang Wang
- Hebei Sailhero Environmental Protection High-Tech Co., Ltd., Shijiazhuang 050081, China
| | - Xiaohu Qu
- Hebei Sailhero Environmental Protection High-Tech Co., Ltd., Shijiazhuang 050081, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Ebrahimi A, Didarian R, Ghorbanpoor H, Dogan Guzel F, Hashempour H, Avci H. High-throughput microfluidic chip with silica gel-C18 channels for cyclotide separation. Anal Bioanal Chem 2023; 415:6873-6883. [PMID: 37792070 DOI: 10.1007/s00216-023-04966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Reza Didarian
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey.
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey.
- Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir, Turkey.
| |
Collapse
|
18
|
Guo Z, Zhuang C, Song Y, Yong J, Li Y, Guo Z, Kong B, Whitelock JM, Wang J, Liang K. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. NANO-MICRO LETTERS 2023; 15:236. [PMID: 37874411 PMCID: PMC10597912 DOI: 10.1007/s40820-023-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal-organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to "find-and-fetch" target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Chenchen Zhuang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yihang Song
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Joel Yong
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Zhong Guo
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Ma Y, Dai T, Lei Y, Zhang L, Ma L, Liu M, An S, Zheng J, Zhuo K, Kong L, Gao P. Panoramic quantitative phase imaging of adherent live cells in a microfluidic environment. BIOMEDICAL OPTICS EXPRESS 2023; 14:5182-5198. [PMID: 37854568 PMCID: PMC10581813 DOI: 10.1364/boe.498602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 10/20/2023]
Abstract
Understanding how cells respond to external stimuli is crucial. However, there are a lack of inspection systems capable of simultaneously stimulating and imaging cells, especially in their natural states. This study presents a novel microfluidic stimulation and observation system equipped with flat-fielding quantitative phase contrast microscopy (FF-QPCM). This system allowed us to track the behavior of organelles in live cells experiencing controlled microfluidic stimulation. Using this innovative imaging platform, we successfully quantified the cellular response to shear stress including directional cellular shrinkage and mitochondrial distribution change in a label-free manner. Additionally, we detected and characterized the cellular response, particularly mitochondrial behavior, under varying fluidic conditions such as temperature and drug induction time. The proposed imaging platform is highly suitable for various microfluidic applications at the organelle level. We advocate that this platform will significantly facilitate life science research in microfluidic environments.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Yunze Lei
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Linlin Zhang
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Sha An
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Juanjuan Zheng
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Kequn Zhuo
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| |
Collapse
|
20
|
Wang G, Li C, Miao C, Li S, Qiu B, Ding W. On-Chip Label-Free Sorting of Living and Dead Cells. ACS Biomater Sci Eng 2023; 9:5430-5440. [PMID: 37603885 DOI: 10.1021/acsbiomaterials.3c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the emergence of various cutting-edge micromachining technologies, lab on a chip is growing rapidly, but it is always a challenge to realize the on-chip separation of living cells from cell samples without affecting cell activity and function. Herein, we report a novel on-chip label-free method for sorting living and dead cells by integrating the hypertonic stimulus and tilted-angle standing surface acoustic wave (T-SSAW) technologies. On a self-designed microfluidic chip, the hypertonic stimulus is used to distinguish cells by producing volume differences between living and dead cells, while T-SSAW is used to separate living and dead cells according to the cell volume difference. Under the optimized operation conditions, for the sample containing 50% of living human umbilical vein endothelial cells (HUVECs) and 50% of dead HUVECs treated with paraformaldehyde, the purity of living cells after the first separation can reach approximately 80%, while after the second separation, it can be as high as 93%; furthermore, the purity of living cells after separation increases with the initial proportion of living cells. In addition, the chip we designed is safe for cells and can robustly handle cell samples with different cell types or different causes of cell death. This work provides a new design of a microfluidic chip for label-free sorting of living and dead cells, greatly promoting the multi-functionality of lab on a chip.
Collapse
Affiliation(s)
- Guowei Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chunguang Miao
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shibo Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bensheng Qiu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
21
|
Choi HJ, Ahn G, Yu US, Kim EJ, Ahn JY, Chan Jeong O. Pneumatically Driven Microfluidic Platform and Fully Automated Particle Concentration System for the Capture and Enrichment of Pathogens. ACS OMEGA 2023; 8:28344-28354. [PMID: 37576663 PMCID: PMC10413479 DOI: 10.1021/acsomega.3c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
In this study, we developed a pneumatically driven microfluidic platform (PDMFP) operated by a fully automated particle concentration system (FAPCS) for the pretreatment of micro- and nano-sized materials. The proposed PDMFP comprises a 3D network with a curved fluidic chamber and channel, five on/off pneumatic valves for blocking fluid flow, and a sieve valve for sequential trapping of microbeads and target particles. Using this setup, concentrated targets are automatically released into an outlet port. The FAPCS mainly comprises solenoid valves, glass reservoirs, a regulator, pressure sensor, main printed circuit board, and liquid crystal display touch panel. All pneumatic valves in the microfluidic platform as well as the working fluids in the glass reservoirs are controlled using FAPCS. The flow rate of the working fluids is measured to demonstrate the sequential programed operation of the proposed pretreatment process using FAPCS. In our study, we successfully achieved rapid and efficient enrichment using PDMFP-FAPCS with fluorescence-labeled Escherichia coli. With pretreatment-10 min for the microbead concentration and 25 min for target binding-almost all the target bacteria could be captured. A total of 526 Gram-negative bacteria were attached to 82 beads, whereas Gram-positive bacteria were attached to only 2 of the 100 beads. Finally, we evaluated the PDMFP-FAPCS for SARS-CoV-2 receptor-binding domain (RBD)-based outer membrane vesicles (OMVs) (RBD-OMVs). Specific probes involved in PDMFP-FAPCS successfully isolated RBD-OMVs. Thus, PDMFP-FAPCS exhibits excellent enrichment of particles, including microbes and nanovesicles, and is an effective pretreatment platform for disease diagnosis and investigation.
Collapse
Affiliation(s)
- Hong Jin Choi
- Department
of Digital Anti-Aging Health Care, Inje
University - Gimhae Campus, Gimhae 50834, Republic of Korea
| | - Gna Ahn
- Center
for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - U Seok Yu
- Department
of Biomedical Engineering, Inje University
- Gimhae Campus, Gimhae 50834, Republic of Korea
| | - Eun Jin Kim
- Department
of Digital Anti-Aging Health Care, Inje
University - Gimhae Campus, Gimhae 50834, Republic of Korea
| | - Ji-Young Ahn
- Center
for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department
of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ok Chan Jeong
- Department
of Digital Anti-Aging Health Care, Inje
University - Gimhae Campus, Gimhae 50834, Republic of Korea
- Department
of Biomedical Engineering, Inje University
- Gimhae Campus, Gimhae 50834, Republic of Korea
| |
Collapse
|
22
|
Yao Y, He L, Mei L, Weng Y, Huang J, Wei S, Li R, Tian S, Liu P, Ruan X, Wang D, Zhou F, Lei C. Cell damage evaluation by intelligent imaging flow cytometry. Cytometry A 2023; 103:646-654. [PMID: 36966466 DOI: 10.1002/cyto.a.24731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Essential thrombocythemia (ET) is an uncommon situation in which the body produces too many platelets. This can cause blood clots anywhere in the body and results in various symptoms and even strokes or heart attacks. Removing excessive platelets using acoustofluidic methods receives extensive attention due to their high efficiency and high yield. While the damage to the remaining cells, such as erythrocytes and leukocytes is yet evaluated. Existing cell damage evaluation methods usually require cell staining, which are time-consuming and labor-intensive. In this paper, we investigate cell damage by optical time-stretch (OTS) imaging flow cytometry with high throughput and in a label-free manner. Specifically, we first image the erythrocytes and leukocytes sorted by acoustofluidic sorting chip with different acoustic wave powers and flowing speed using OTS imaging flow cytometry at a flowing speed up to 1 m/s. Then, we employ machine learning algorithms to extract biophysical phenotypic features from the cellular images, as well as to cluster and identify images. The results show that both the errors of the biophysical phenotypic features and the proportion of abnormal cells are within 10% in the undamaged cell groups, while the errors are much greater than 10% in the damaged cell groups, indicating that acoustofluidic sorting causes little damage to the cells within the appropriate acoustic power, agreeing well with clinical assays. Our method provides a novel approach for high-throughput and label-free cell damage evaluation in scientific research and clinical settings.
Collapse
Affiliation(s)
- Yifan Yao
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liye Mei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Yueyun Weng
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
- The Key Laboratory of Transients in Hydraulic Machinery of Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Jin Huang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Shubin Wei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Rubing Li
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolan Ruan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Du Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
- Suzhou Institute of Wuhan University, Suzhou, China
| |
Collapse
|
23
|
Bazyar H. On the Application of Microfluidic-Based Technologies in Forensics: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5856. [PMID: 37447704 PMCID: PMC10346202 DOI: 10.3390/s23135856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Microfluidic technology is a powerful tool to enable the rapid, accurate, and on-site analysis of forensically relevant evidence on a crime scene. This review paper provides a summary on the application of this technology in various forensic investigation fields spanning from forensic serology and human identification to discriminating and analyzing diverse classes of drugs and explosives. Each aspect is further explained by providing a short summary on general forensic workflow and investigations for body fluid identification as well as through the analysis of drugs and explosives. Microfluidic technology, including fabrication methodologies, materials, and working modules, are touched upon. Finally, the current shortcomings on the implementation of the microfluidic technology in the forensic field are discussed along with the future perspectives.
Collapse
Affiliation(s)
- Hanieh Bazyar
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
24
|
Derakhshan R, Bozorgzadeh A, Ramiar A. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis. J Chromatogr A 2023; 1702:464079. [PMID: 37263054 DOI: 10.1016/j.chroma.2023.464079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
In recent years, microfluidic-based particle/cell manipulation techniques have catalyzed significant advances in several fields of science. As an efficient, precise, and label-free particle/cell manipulation technique, dielectrophoresis (DEP) has recently attracted widespread attention. This paper presents the design and investigation of a straight sheathless 3D microchannel with a wall-mounted trapezoidal obstacle for continuous-flow separation of three different populations of polystyrene (PS) particles (5, 10 and 20 µm) using DEP. An OpenFOAM code is developed to simulate and investigate the movement of particles in the microchannel. Then, the code is validated by performing various experimental tests using a microdevice previously fabricated in our lab. By comparing the numerical simulation results with the experimental tests, it can be claimed that the newly developed solver is highly accurate, and its results agree well with experimental tests. Next, the effect of various operational and geometrical parameters such as obstacle height, applied voltage, electrode pairs angle, and flow rate on the efficient focusing and separation of particles are numerically investigated. The results showed that efficient particle separation could only be achieved for obstacle heights of more than 350 µm. Furthermore, the appropriate voltage range for efficient particle separation is increased by decreasing the electrode angle as well as increasing the flow rate. Moreover, the results showed that by employing the appropriate channel design and operational conditions, at a maximum applied voltage of 10V, a sample flow rate of 2.5μL/min could be processed. The proposed design can be beneficial for integrating with lab-on-a-chip and clinical diagnosis applications due to advantages, such as simple design, no need for sheath flow, the simultaneous ternary separation of particles, and providing precise particle separation.
Collapse
Affiliation(s)
- Reza Derakhshan
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| | - Ali Bozorgzadeh
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| | - Abas Ramiar
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| |
Collapse
|
25
|
Tian Z, Yuan Z, Duarte PA, Shaheen M, Wang S, Haddon L, Chen J. Highly efficient cell-microbead encapsulation using dielectrophoresis-assisted dual-nanowell array. PNAS NEXUS 2023; 2:pgad155. [PMID: 37252002 PMCID: PMC10210622 DOI: 10.1093/pnasnexus/pgad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Recent advancements in micro/nanofabrication techniques have led to the development of portable devices for high-throughput single-cell analysis through the isolation of individual target cells, which are then paired with functionalized microbeads. Compared with commercially available benchtop instruments, portable microfluidic devices can be more widely and cost-effectively adopted in single-cell transcriptome and proteome analysis. The sample utilization and cell pairing rate (∼33%) of current stochastic-based cell-bead pairing approaches are fundamentally limited by Poisson statistics. Despite versatile technologies having been proposed to reduce randomness during the cell-bead pairing process in order to statistically beat the Poisson limit, improvement of the overall pairing rate of a single cell to a single bead is typically based on increased operational complexity and extra instability. In this article, we present a dielectrophoresis (DEP)-assisted dual-nanowell array (ddNA) device, which employs an innovative microstructure design and operating process that decouples the bead- and cell-loading processes. Our ddNA design contains thousands of subnanoliter microwell pairs specifically tailored to fit both beads and cells. Interdigitated electrodes (IDEs) are placed below the microwell structure to introduce a DEP force on cells, yielding high single-cell capture and pairing rates. Experimental results with human embryonic kidney cells confirmed the suitability and reproducibility of our design. We achieved a single-bead capture rate of >97% and a cell-bead pairing rate of >75%. We anticipate that our device will enhance the application of single-cell analysis in practical clinical use and academic research.
Collapse
Affiliation(s)
- Zuyuan Tian
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Zhipeng Yuan
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Pedro A Duarte
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Mohamed Shaheen
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, 127 Youyi St West, 710129 Xi’an, Shannxi, China
| | - Lacey Haddon
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Jie Chen
- To whom correspondence should be addressed:
| |
Collapse
|
26
|
Keumarsi MM, Oskouei PF, Dezhkam R, Shamloo A, Vatandoust F, Amiri HA. Numerical study of a double-stair-shaped dielectrophoresis channel for continuous on-chip cell separation and lysis using finite element method. J Chromatogr A 2023; 1696:463960. [PMID: 37030128 DOI: 10.1016/j.chroma.2023.463960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/04/2023]
Abstract
Prognostication of numerous chronic diseases are in need of identifying circulating tumor cells (CTCs), afterwards, separating and reviving contaminated samples are required. Conventional methods of separating blood cells, namely cytometry or magnetically activated cell sorting, in many cases lose their functionality, or efficiency under different conditions. Hence microfluidic methods of separation have been implemented. Herein, an innovative integrated double stair-shaped microchannel is designed and optimized, capable of 'separation', and 'chemical lysis' simultaneously in which the lysis reagent concentration can be controlled to tune the lysis intensity. The method of insulator-based dielectrophoresis (iDEP), which is the main physics in this device, is utilized yielding maximum separation. Pivotal features of the applied voltage, the voltage difference, the angles and the number of stairs, and the width of the throat in the microchannel have been numerically explored in order to optimize the channel in terms of separation and the lysis buffer concentration. The overall state of optimum case for the voltage difference (ΔV) of 10 owns the following features: the number of stairs is 2, the angle of stairs is 110°, the width of throat is 140 μm, and the inlet voltages are 30 V and 40 V. Also, the overall state of optimum cases for delta possess the following features: the number of stairs is 2, the angle of stairs is 110°, the width of throat is 140 μm, and the inlet voltages are 30 V and 35 V.
Collapse
Affiliation(s)
| | - Pouria Feyzi Oskouei
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Rasool Dezhkam
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | - Farzad Vatandoust
- School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran; Department of Biomechanics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Hoseyn A Amiri
- School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran; Department of Biomechanics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| |
Collapse
|
27
|
Tottori N, Nisisako T. Tunable deterministic lateral displacement of particles flowing through thermo-responsive hydrogel micropillar arrays. Sci Rep 2023; 13:4994. [PMID: 36973401 PMCID: PMC10043002 DOI: 10.1038/s41598-023-32233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Deterministic lateral displacement (DLD) is a promising technology that allows for the continuous and the size-based separation of suspended particles at a high resolution through periodically arrayed micropillars. In conventional DLD, the critical diameter (Dc), which determines the migration mode of a particle of a particular size, is fixed by the device geometry. Here, we propose a novel DLD that uses the pillars of a thermo-responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAM) to flexibly tune the Dc value. Upon heating and cooling, the PNIPAM pillars in the aqueous solution shrink and swell because of their hydrophobic-hydrophilic phase transitions as the temperature varies. Using the PNIPAM pillars confined in a poly(dimethylsiloxane) microchannel, we demonstrate continuous switching of particle (7-μm beads) trajectories (displacement or zigzag mode) by adjusting the Dc through temperature control of the device on a Peltier element. Further, we perform on/off operation of the particle separation (7-μm and 2-μm beads) by adjusting the Dc values.
Collapse
Affiliation(s)
- Naotomo Tottori
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takasi Nisisako
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
28
|
Bekir M, Sperling M, Muñoz DV, Braksch C, Böker A, Lomadze N, Popescu MN, Santer S. Versatile Microfluidics Separation of Colloids by Combining External Flow with Light-Induced Chemical Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300358. [PMID: 36971035 DOI: 10.1002/adma.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Separation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure-driven microfluidic flow and local self-phoresis/osmosis are proposed via the light-induced chemical activity of a photoactive azobenzene-surfactant solution. This process induces a vertical displacement of the sedimented particles, which depends on their size and surface properties . Consequently, different colloidal components experience different regions of the ambient microfluidic shear flow. Accordingly, a simple, versatile method for the separation of such can be achieved by elution times in a sense of particle chromatography. The concepts are illustrated via experimental studies, complemented by theoretical analysis, which include the separation of bulk-porous from bulk-compact colloidal particles and the separation of particles distinguished solely by slight differences in their surface physico-chemical properties.
Collapse
Affiliation(s)
- Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Marcel Sperling
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Daniela Vasquez Muñoz
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Cevin Braksch
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Mihail N Popescu
- Department Theory of Inhomogeneous Condensed Matter, Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Física Teórica, Department Theory of Inhomogeneous Condensed Matter, Universidad de Sevilla, 41080, Apdo. 1065, Sevilla, Spain
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| |
Collapse
|
29
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
30
|
Yadav AS, Tran DT, Teo AJT, Dai Y, Galogahi FM, Ooi CH, Nguyen NT. Core-Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. MICROMACHINES 2023; 14:497. [PMID: 36984904 PMCID: PMC10054063 DOI: 10.3390/mi14030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Core-shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated by protective solid shells. The unique composition of core and shell materials imparts smart properties on the particles. Core-shell particles are gaining increasing attention as tuneable and versatile carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled drug release, and biosensing. This review provides an overview of fabrication methods for core-shell particles followed by a brief discussion of their application and a detailed analysis of their manipulation including assembly, sorting, and triggered release. We compile current methodologies employed for manipulation of core-shell particles and demonstrate how existing methods of assembly and sorting micro/nanospheres can be adopted or modified for core-shell particles. Various triggered release approaches for diagnostics and drug delivery are also discussed in detail.
Collapse
Affiliation(s)
- Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Adrian J. T. Teo
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore 637460, Singapore
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Fariba Malekpour Galogahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
31
|
Athani A, Ghazali NNN, Anjum Badruddin I, Kamangar S, Salman Ahmed NJ, Honnutagi A. Visualization of multiphase pulsatile blood over single phase blood flow in a patient specific stenosed left coronary artery using image processing technique. Biomed Mater Eng 2023; 34:13-35. [PMID: 36278331 DOI: 10.3233/bme-211333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Coronary arteries disease has been reported as one of the principal roots of deaths worldwide. OBJECTIVE The aim of this study is to analyze the multiphase pulsatile blood flow in the left coronary artery tree with stenosis. METHODS The 3D left coronary artery model was reconstructed using 2D computerized tomography (CT) scan images. The Red Blood Cell (RBC) and varying hemodynamic parameters for single and multiphase blood flow conditions were analyzed. RESULTS Results asserted that the multiphase blood flow modeling has a maximum velocity of 1.017 m/s and1.339 m/s at the stenosed region during the systolic and diastolic phases respectively. The increase in Wall Shear Stress (WSS) observed at the stenosed region during the diastole phase as compared during the systolic phase. It was also observed that the highest Oscillatory Shear Index (OSI) regions are found in the downstream area of stenosis and across the bifurcations. The increase in RBCs velocity from 0.45 m/s to 0.6 m/s across the stenosis was also noticed. CONCLUSION The computational multiphase blood flow analysis improves the understanding and accuracy of the complex flow conditions of blood elements (RBC and Plasma) and provides the progression of the disease development in the coronary arteries. This study helps to enhance the diagnosis of the blocked (stenosed) arteries more precisely compared to the single-phase blood flow modeling.
Collapse
Affiliation(s)
- Abdulgaphur Athani
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - N N N Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sarfaraz Kamangar
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - N J Salman Ahmed
- Department of Mechanical Engineering, HMS Institute of Technology, Tumkur, India
| | - Abdulrazak Honnutagi
- Department of Civil Engineering, Anjuman-I-islam's Kaleskar Technical Campus (AIKTC), New Mumbai, India
| |
Collapse
|
32
|
Han J, Hu H, Lei Y, Huang Q, Fu C, Gai C, Ning J. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip. ACS OMEGA 2023; 8:311-323. [PMID: 36643460 PMCID: PMC9835635 DOI: 10.1021/acsomega.2c04273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microparticle separation technology is an important technology in many biomedical and chemical engineering applications from sample detection to disease diagnosis. Although a variety of microparticle separation techniques have been developed thus far, surface acoustic wave (SAW)-based microfluidic separation technology shows great potential because of its high throughput, high precision, and integration with polydimethylsiloxane (PDMS) microchannels. In this work, we demonstrate an acoustofluidic separation chip that includes a piezoelectric device that generates tilted-angle standing SAWs and a permanently bonded PDMS microchannel. We established a mathematical model of particle motion in the microchannel, simulated the particle trajectory through finite element simulation and numerical simulation, and then verified the validity of the model through acoustophoresis experiments. To improve the performance of the separation chip, the influences of particle size, flow rate, and input power on the particle deflection distance were studied. These parameters are closely related to the separation purity and separation efficiency. By optimizing the control parameters, the separation of micron and submicron particles under different throughput conditions was achieved. Moreover, the separation samples were quantitatively analyzed by digital light scattering technology and flow cytometry, and the results showed that the maximum purity of the separated particles was ∼95%, while the maximum efficiency was ∼97%.
Collapse
Affiliation(s)
- Junlong Han
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Hong Hu
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Yulin Lei
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | | | - Chen Fu
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518055, China
| | - Chenhui Gai
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| | - Jia Ning
- School
of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen518055, China
| |
Collapse
|
33
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
34
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
35
|
Shrestha J, Razavi Bazaz S, Ding L, Vasilescu S, Idrees S, Söderström B, Hansbro PM, Ghadiri M, Ebrahimi Warkiani M. Rapid separation of bacteria from primary nasal samples using inertial microfluidics. LAB ON A CHIP 2022; 23:146-156. [PMID: 36484411 DOI: 10.1039/d2lc00794k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial populations play a crucial role in human health and the development of many diseases. These diseases often arise from the explosive proliferation of opportunistic bacteria, such as those in the nasal cavity. Recently, there have been increases in the prevalence of these opportunistic pathogens displaying antibiotic resistance. Thus, the study of the nasal microbiota and its bacterial diversity is critical in understanding pathogenesis and developing microbial-based therapies for well-known and emerging diseases. However, the isolation and analysis of these populations for clinical study complicates the already challenging task of identifying and profiling potentially harmful bacteria. Existing methods are limited by low sample throughput, expensive labeling, and low recovery of bacteria with ineffective removal of cells and debris. In this study, we propose a novel microfluidic channel with a zigzag configuration for enhanced isolation and detection of bacteria from human clinical nasal swabs. This microfluidic zigzag channel separates the bacteria from epithelial cells and debris by size differential focusing. As such, pure bacterial cell fractions devoid of large contaminating debris or epithelial cells are obtained. DNA sequencing performed on the separated bacteria defines the diversity and species present. This novel method of bacterial separation is simple, robust, rapid, and cost-effective and has the potential to be used for the rapid identification of bacterial cell populations from clinical samples.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Woolcock Institute of Medical Research, Respiratory Technology Group, University of Sydney, Sydney, New South Wales 2037, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Lin Ding
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Steven Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia
| | - Maliheh Ghadiri
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Woolcock Institute of Medical Research, Respiratory Technology Group, University of Sydney, Sydney, New South Wales 2037, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia
| |
Collapse
|
36
|
He X, Wang C, Wang Y, Yu J, Zhao Y, Li J, Hussain M, Liu B. Rapid classification of micro-particles using multi-angle dynamic light scatting and machine learning approach. Front Bioeng Biotechnol 2022; 10:1097363. [PMID: 36588961 PMCID: PMC9800508 DOI: 10.3389/fbioe.2022.1097363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
The rapid classification of micro-particles has a vast range of applications in biomedical sciences and technology. In the given study, a prototype has been developed for the rapid detection of particle size using multi-angle dynamic light scattering and a machine learning approach by applying a support vector machine. The device consisted of three major parts: a laser light, an assembly of twelve sensors, and a data acquisition system. The laser light with a wavelength of 660 nm was directed towards the prepared sample. The twelve different photosensors were arranged symmetrically surrounding the testing sample to acquire the scattered light. The position of the photosensor was based on the Mie scattering theory to detect the maximum light scattering. In this study, three different spherical microparticles with sizes of 1, 2, and 4 μm were analyzed for the classification. The real-time light scattering signals were collected from each sample for 30 min. The power spectrum feature was evaluated from the acquired waveforms, and then recursive feature elimination was utilized to filter the features with the highest correlation. The machine learning classifiers were trained using the features with optimum conditions and the classification accuracies were evaluated. The results showed higher classification accuracies of 94.41%, 94.20%, and 96.12% for the particle sizes of 1, 2, and 4 μm, respectively. The given method depicted an overall classification accuracy of 95.38%. The acquired results showed that the developed system can detect microparticles within the range of 1-4 μm, with detection limit of 0.025 mg/ml. Therefore, the current study validated the performance of the device, and the given technique can be further applied in clinical applications for the detection of microbial particles.
Collapse
Affiliation(s)
- Xu He
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yichuan Wang
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Junxiao Yu
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yanfeng Zhao
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jianqing Li
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China,The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Mubashir Hussain
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China,Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou, China,*Correspondence: Mubashir Hussain, ; Bin Liu,
| | - Bin Liu
- Jiangsu Province Engineering Research Center of Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China,*Correspondence: Mubashir Hussain, ; Bin Liu,
| |
Collapse
|
37
|
Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation. Processes (Basel) 2022. [DOI: 10.3390/pr10122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The separation of red blood cells (RBCs) from blood plasma and the analysis of individual RBCs are of great importance, as they provide valuable information regarding the health of their donor. Recent developments in microfluidics and microfabrication have contributed to the fabrication of microsystems with complex features to promote the separation and analysis of RBCs. In this work, the separation capacity of a multi-step crossflow microfluidic device was evaluated by using a blood analogue fluid made by Brij L4 micelles and human RBCs separated from whole blood, suspended in a solution with hematocrits (Ht) of 0.5 and 1%. All the samples collected at the outlets of the device were experimentally analyzed and compared. The absorbance spectrum was also measured for the prepared blood samples. The results indicate that the tested blood analogue fluid has exhibited a flow behavior similar to that of blood. In addition, the optical absorbance spectrophotometry revealed that it was possible to evaluate the separation efficiency of the microfluidic device, concluding that the concentration of cells was lower at the most lateral outside outlets of the microchannel due to the cumulative effect of the multiple cross-flow filters.
Collapse
|
38
|
Kang H, Xiong Y, Ma L, Yang T, Xu X. Recent advances in micro-/nanostructure array integrated microfluidic devices for efficient separation of circulating tumor cells. RSC Adv 2022; 12:34892-34903. [PMID: 36540264 PMCID: PMC9724214 DOI: 10.1039/d2ra06339e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/06/2023] Open
Abstract
Circulating tumor cells (CTCs) released from the primary tumor to peripheral blood are promising targets for liquid biopsies. Their biological information is vital for early cancer detection, efficacy assessment, and prognostic monitoring. Despite the tremendous clinical applications of CTCs, development of effective separation techniques are still demanding. Traditional separation methods usually use batch processing for enrichment, which inevitably destroy cell integrity and affect the complete information acquisition. Considering the rarity and heterogeneity of CTCs, it is urgent to develop effective separation methods. Microfluidic chips with precise fluid control at the micron level are promising devices for CTC separation. Their further combination with micro-/nanostructure arrays adds more biomolecule binding sites and exhibit unique fluid barrier effect, which significantly improve the CTC capture efficiency, purity, and sensitivity. This review summarized the recent advances in micro-/nanostructure array integrated microfluidic devices for CTC separation, including microrods, nanowires, and 3D micro-/nanostructures. The mechanisms by which these structures contribute to improved capture efficiency are discussed. Two major categories of separation methods, based on the physical and biological properties of CTCs, are discussed separately. Physical separation includes the design and preparation of micro-/nanostructure arrays, while chemical separation additionally involves the selection and modification of specific capture probes. These emerging technologies are expected to become powerful tools for disease diagnosis in the future.
Collapse
Affiliation(s)
- Hanyue Kang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yuting Xiong
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University Hangzhou 310058 China
| | - Tongqing Yang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
39
|
Boran Z, Fan Y, Wenshuai W, Wuyi W, Wenhan Z, Qianbin Z. Investigation of particle manipulation mechanism and size sorting strategy in a double-layered microchannel. LAB ON A CHIP 2022; 22:4556-4573. [PMID: 36321548 DOI: 10.1039/d2lc00822j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditionally, comprehensive laboratorial experiments on newly proposed microfluidic devices are necessary for theoretical validation, technological design, methodological calibration and optimization. Multiple parameters and characteristics, such as the flow rate, particle size, microchannel dimensions, etc., should be studied by controlled trials, which could inevitably result in extensive experiments and a heavy burden on researchers. In this work, a novel numerical model was introduced to simulate particle migration within a complicated double-layered microchannel. Using the hybrid meshing method, the proposed model achieved a significant improvement in meshing quality, and remarkably reduced the required calculation resources at the same time. The robust, efficient and resource-saving numerical model was calibrated and validated with experimental results. Based on this model, 1) the mechanism of microparticle manipulation within the microchannel was revealed; 2) the primary reason for the microparticle focusing failure was investigated; and 3) the optimal microparticle sorting strategy at different flow rates was analyzed. In experiments, the obtained optimal strategy could approach a good sorting performance with a high recovery rate and high concentration ratio in a high-throughput manner. The proposed numerical model shows great potential in mechanism investigation and functional prediction for microfluidic technologies using unconventional designs.
Collapse
Affiliation(s)
- Zhang Boran
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Fan
- College of Engineering, Peking University, Beijing 100871, China
| | - Wu Wenshuai
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Wan Wuyi
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhao Wenhan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Zhao Qianbin
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| |
Collapse
|
40
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
41
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
42
|
Maurya A, Murallidharan JS, Sharma A, Agarwal A. Microfluidics geometries involved in effective blood plasma separation. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:73. [PMID: 36090664 PMCID: PMC9440999 DOI: 10.1007/s10404-022-02578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The last two decades witnessed a significant advancement in the field of diluted and whole blood plasma separation. This is one of the common procedures used to diagnose, cure and treat numerous acute and chronic diseases. For this separation purpose, various types of geometries of microfluidic devices, such as T-channel, Y-channel, trifurcation, constriction-expansion, curved/bend/spiral channels, a combination of any of the two geometries, etc., are being exploited, and this is detailed in this review article. The evaluation of the performance of such devices is based on the several parameters such as separation efficiency, flow rate, hematocrits, channel dimensions, etc. Thus, the current extensive review article endeavours to understand how particular geometry influences the separation efficiency for a given hematocrit. Additionally, a comparative analysis of various geometries is presented to demonstrate the less explored geometric configuration for the diluted and whole blood plasma separation. Also, a meta-analysis has been performed to highlight which geometry serves best to give a consistent separation efficiency. This article also presents tabulated data for various geometries with necessary details required from a designer's perspective such as channel dimensions, targeted component, studied range of hematocrit and flow rate, separation efficiency, etc. The maximum separation efficiency that can be achieved for a given hematocrits and geometry has also been plotted. The current review highlights the critical findings relevant to this field, state of the art understanding and the future challenges.
Collapse
Affiliation(s)
- Anamika Maurya
- Department of Mechanical Engineering, Indian Institute of Technology Mumbai, Mumbai, 400076 India
| | | | - Atul Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Mumbai, Mumbai, 400076 India
| | - Amit Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Mumbai, Mumbai, 400076 India
| |
Collapse
|
43
|
Piao J, Liu L, Cai L, Ri HC, Jin X, Sun H, Piao X, Shang HB, Jin X, Pu Q, Cai Y, Yao Z, Nardiello D, Quinto M, Li D. High-Resolution Micro-object Separation by Rotating Magnetic Chromatography. Anal Chem 2022; 94:11500-11507. [PMID: 35943850 DOI: 10.1021/acs.analchem.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work. Magnetic nanoparticles, placed in a microfluidic separation channel, are forced to move in well-defined trajectories by an external magnetic field, colliding with microparticles that are in this way separated on the basis of their dimensions with high accuracy and reproducibility. The method was optimized by using fluorescein isothiocyanate-modified polystyrene particles (chosen as a reference standard) and then applied to the analysis of cancer cells like Hep-3B and SK-Hep-1, allowing their fast and high-resolution chromatographic separation as a function of their dimensions. Due to its unmatched sub-micrometer cell separation capabilities, RMC can be considered a break-through technique that can unlock new perspectives in different scientific fields, that is, in medical oncology.
Collapse
Affiliation(s)
- Jishou Piao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Long Cai
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hyok Chol Ri
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangzi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangfan Piao
- Engineering College Department of Electronics, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xuejun Jin
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong Cai
- College of Life Science, Jilin University, Changchun City, Jilin province 130012, China
| | - Zhongping Yao
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Donatella Nardiello
- DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China.,DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| |
Collapse
|
44
|
Al-Ali A, Waheed W, Abu-Nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. J Chromatogr A 2022; 1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
|
45
|
Agarwal D, Thakur AD, Thakur A. Magnetic microbot-based micromanipulation of surrogate biological objects in fluidic channels. JOURNAL OF MICRO-BIO ROBOTICS 2022. [DOI: 10.1007/s12213-022-00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. BIOSENSORS 2022; 12:bios12070459. [PMID: 35884262 PMCID: PMC9313151 DOI: 10.3390/bios12070459] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Taking the life of nearly 10 million people annually, cancer has become one of the major causes of mortality worldwide and a hot topic for researchers to find innovative approaches to demystify the disease and drug development. Having its root lying in microelectronics, microfluidics seems to hold great potential to explore our limited knowledge in the field of oncology. It offers numerous advantages such as a low sample volume, minimal cost, parallelization, and portability and has been advanced in the field of molecular biology and chemical synthesis. The platform has been proved to be valuable in cancer research, especially for diagnostics and prognosis purposes and has been successfully employed in recent years. Organ-on-a-chip, a biomimetic microfluidic platform, simulating the complexity of a human organ, has emerged as a breakthrough in cancer research as it provides a dynamic platform to simulate tumor growth and progression in a chip. This paper aims at giving an overview of microfluidics and organ-on-a-chip technology incorporating their historical development, physics of fluid flow and application in oncology. The current applications of microfluidics and organ-on-a-chip in the field of cancer research have been copiously discussed integrating the major application areas such as the isolation of CTCs, studying the cancer cell phenotype as well as metastasis, replicating TME in organ-on-a-chip and drug development. This technology’s significance and limitations are also addressed, giving readers a comprehensive picture of the ability of the microfluidic platform to advance the field of oncology.
Collapse
Affiliation(s)
- Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur 44700, Nepal
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Chetan Poudel
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
- Correspondence:
| |
Collapse
|
47
|
Geometry effect in multi-step crossflow microfluidic devices for red blood cells separation and deformability assessment. Biomed Microdevices 2022; 24:20. [PMID: 35670892 DOI: 10.1007/s10544-022-00616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
The efficient separation of blood components using microfluidic systems can help to improve the detection and diagnosis of several diseases, such as malaria and diabetes. Therefore, a novel multi-step microfluidic device, based on passive crossflow filters was developed. Three different designs were proposed, fabricated and tested in order to evaluate the most suitable geometry to perform, simultaneously, blood cells separation and cell deformability measurements. All the proposed geometries include a main channel and three sequential separation steps, all comprised of symmetrical crossflow filters, with multiple rows of pillars, to reduce the amount of red blood cells (RBCs) flowing to the outlets of the microfluidic device (MD). Sets of hyperbolic constrictions located at the outlets allow the assessment of cells deformability. Based on the proposed geometries, the three correspondent MD were evaluated and compared, by measuring the RBCs velocities, the cell-free layer (CFL) effect through the microchannels and by quantifying the amount of RBCs at the outlets. The results suggest that the proposed MD 3 configuration was the most effective one for the desired application, due to the formation of a wider CFL. As a result, a minor amount of RBCs flow through the hyperbolic contraction at the third separation level of the device. Nevertheless, for all the proposed geometries, the existence of three separation levels shows that it is possible to achieve a highly efficient cell separation. If needed, such microdevices have the potential for further improvements by increasing the number of separation levels, aiming the total separation of blood cells from plasma.
Collapse
|
48
|
Sun Y, Li H, Cui G, Wu X, Yang M, Piao Y, Bai Z, Wang L, Kraft M, Zhao W, Wen L. A magnetic nanoparticle assisted microfluidic system for low abundance cell sorting with high recovery. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Juang YJ, Chiu YJ. Fabrication of Polymer Microfluidics: An Overview. Polymers (Basel) 2022; 14:polym14102028. [PMID: 35631909 PMCID: PMC9147778 DOI: 10.3390/polym14102028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Microfluidic platform technology has presented a new strategy to detect and analyze analytes and biological entities thanks to its reduced dimensions, which results in lower reagent consumption, fast reaction, multiplex, simplified procedure, and high portability. In addition, various forces, such as hydrodynamic force, electrokinetic force, and acoustic force, become available to manipulate particles to be focused and aligned, sorted, trapped, patterned, etc. To fabricate microfluidic chips, silicon was the first to be used as a substrate material because its processing is highly correlated to semiconductor fabrication techniques. Nevertheless, other materials, such as glass, polymers, ceramics, and metals, were also adopted during the emergence of microfluidics. Among numerous applications of microfluidics, where repeated short-time monitoring and one-time usage at an affordable price is required, polymer microfluidics has stood out to fulfill demand by making good use of its variety in material properties and processing techniques. In this paper, the primary fabrication techniques for polymer microfluidics were reviewed and classified into two categories, e.g., mold-based and non-mold-based approaches. For the mold-based approaches, micro-embossing, micro-injection molding, and casting were discussed. As for the non-mold-based approaches, CNC micromachining, laser micromachining, and 3D printing were discussed. This review provides researchers and the general audience with an overview of the fabrication techniques of polymer microfluidic devices, which could serve as a reference when one embarks on studies in this field and deals with polymer microfluidics.
Collapse
Affiliation(s)
- Yi-Je Juang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
- Core Facility Center, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, No.1 University Road, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-62757575 (ext. 62653); Fax: +886-62344496
| | - Yu-Jui Chiu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
| |
Collapse
|
50
|
Detection of prostate specific antigen in whole blood by microfluidic chip integrated with dielectrophoretic separation and electrochemical sensing. Biosens Bioelectron 2022; 204:114057. [DOI: 10.1016/j.bios.2022.114057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
|