1
|
Lu H, Wang X. Dual-mode detection of glucose based on pistol-like DNAzyme-mediated exonuclease-assisted signal cycle. Biotechniques 2024; 76:415-423. [PMID: 39101584 DOI: 10.1080/07366205.2024.2381403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Detecting glucose accurately and sensitively from clinical samples like tears and saliva is still difficult. We have created a sensor that can detect glucose with high sensitivity and accuracy by combining the use of glucose oxidase (GOx) to catalyze glucose, a pistol-like DNAzyme (PLDz) to transform the signal, gold nanoparticles (AuNPs) to enhance the optical properties and the exonuclease-III (Exo-III) to amplify the signal. As a result, the proposed method exhibits a low detection limit of 7.5 pM and a wide detection range covering seven orders of magnitude. The suggested dual-mode strategy provides a sensitive, precise and specific detection method for glucose. Another advantage is that the dual-mode technique significantly improves the precision and consistency of the measurements, demonstrating its immense potential for use in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Huiying Lu
- Northwest Women's & Children's Hospital, Obstetrics & Gynecology Department, Xi'an City, Shaanxi Province, 710000, China
| | - Xiaofeng Wang
- Northwest Women's & Children's Hospital, Obstetrics & Gynecology Department, Xi'an City, Shaanxi Province, 710000, China
| |
Collapse
|
2
|
Van Houten J, Dosajh A, Gulati S, Bhullar G, Copeman C, Ogata AF. Morphology Control of Self-Assembled Copper Coordination Polymers for Glucose Assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320270 DOI: 10.1021/acs.langmuir.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Low-cost analytical assays enable accessible detection of clinically and environmentally important analytes; however, common enzyme-based assays suffer from high production and storage costs. Catalytically active synthetic materials serve as replacements for natural enzymes, but development of cost-effective, highly efficient synthetic strategies remains a challenge. Here, we utilized a facile synthesis for copper bipyridine coordination polymers (CuBpyCPs) and investigated structure-function relationships to achieve optimal catalytic properties for a glucose assay. We demonstrated the manipulation of CuBpyCP morphology, resulting in nanoscale petal-like structures and microscale high-index faceted structures, and identified three pure crystal morphologies exhibiting a comparable catalytic activity (Km = 0.3-0.5 mM) to horseradish peroxidase.
Collapse
Affiliation(s)
- Justin Van Houten
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Advikaa Dosajh
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Shriya Gulati
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Gurjap Bhullar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| | - Christopher Copeman
- Department of Chemistry and Biochemistry, Centre for NanoScience, Concordia University, 7141 Sherbrooke St W., Montreal, QC H4N 1R6, Canada
| | - Alana F Ogata
- Department of Chemistry, University of Toronto, UTM 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 1867 Inner Circle Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
3
|
Roy L, Mondal S, Bhattacharyya N, Ghosh R, Banerjee A, Singh S, Chattopadhyay A, Ahmed SA, Jassas RS, Al-Rooqi MM, Moussa Z, Althagafi II, Bhattacharya D, Bhattacharya K, Mallick AK, Pal SK. A spectroscopy based prototype for the noninvasive detection of diabetes from human saliva using nanohybrids acting as nanozyme. Sci Rep 2023; 13:17306. [PMID: 37828100 PMCID: PMC10570348 DOI: 10.1038/s41598-023-44011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic-inorganic bio-compatible nano-hybrids of Mn3O4 nanoparticles, and characterized it by utilizing several optical methodologies for the structural characterization which shows the Michaelis Menten (MM) kinetics for glucose and alpha-amylase protein (well-known diabetes biomarkers). We have also studied the potentiality for the detection of alpha-amylase in human salivary secretion which is reported to be strongly correlated with uncontrolled hyperglycemia. Finally, we have developed a prototype for the measurement of glucose (LOD of 0.38 mg/dL, LOQ of 1.15 mg/dL) and HbA1c (LOD of 0.15% and LOQ of 0.45%) utilizing the basic knowledge in the study for the detection of uncontrolled hyperglycemia at the point-of-care. With the limited number of clinical trials, we have explored the potential of our work in combating the diabetic pandemic across the globe in near future.
Collapse
Affiliation(s)
- Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Susmita Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India
| | - Neha Bhattacharyya
- Department of Radio Physics and Electronics, University of Calcutta, Kolkata, 700009, India
| | - Ria Ghosh
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India
| | - Amrita Banerjee
- Department of Physics, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Soumendra Singh
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India
- Neo Care Inc, 27, Parker St, Dartmouth, NS, B2Y 2W1, Canada
- Electrical and Computer Engineering Department, Dalhousie University, 6299 South St, Halifax, NS, B3H 4R2, Canada
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town Block, DG 1/1, Action Area 1 New Town, Rajarhat, Kolkata, 700156, India
- Department of Physics, Sister Nivedita University, DG 1/2 New Town, Action Area 1, Kolkata, 700156, India
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Munirah M Al-Rooqi
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ismail I Althagafi
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Debasish Bhattacharya
- Department of Gynecology & Obstetrics, Nil Ratan Sircar Medical College & Hospital, 138, AJC Bose Road, Sealdah, Raja Bazar, Kolkata, 700014, India
| | - Kallol Bhattacharya
- Department of Applied Optics and Photonics, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Asim Kumar Mallick
- Department of Pediatrics, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
| |
Collapse
|
4
|
Yuwen Z, Zeng Q, Ye Q, Zhao Y, Zhu J, Chen K, Liu H, Yang R. A Quencher-Based Blood-Autofluorescence-Suppression Strategy Enables the Quantification of Trace Analytes in Whole Blood. Angew Chem Int Ed Engl 2023; 62:e202302957. [PMID: 37102382 DOI: 10.1002/anie.202302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600-700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2 S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2 S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2 S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qiaozhen Ye
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Jingxuan Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Kang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| |
Collapse
|
5
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Lee C. Click chemistry-based novel albumin nanoparticles for anticancer treatment via H 2O 2 generation. Colloids Surf B Biointerfaces 2023; 226:113335. [PMID: 37148665 DOI: 10.1016/j.colsurfb.2023.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Glucose oxidase (GOD) exerts anticancer effects by producing hydrogen peroxide (H2O2). However, the use of GOD is limited by its short half-life and low stability. Systemic H2O2 production following systemic absorption of GOD can also cause serious toxicity. GOD-conjugated bovine serum albumin nanoparticles (GOD-BSA NPs) may be useful for overcoming these limitations. Here, bioorthogonal copper-free click chemistry was employed to develop GOD-BSA NPs that are non-toxic and biodegradable and can effectively and rapidly conjugate proteins. These NPs retained their activity, unlike conventional albumin NPs. NPs using dibenzyl cyclooctyne (DBCO)-modified albumin, azide-modified albumin, and azide-modified GOD were fabricated in 10 min. After intratumoral administration, GOD-BSA NPs remained in the tumor for a longer period and displayed better anticancer activity than the effects of GOD alone. GOD-BSA NPs were approximately 240 nm in size and inhibited tumor growth to 40 mm3, whereas tumors treated with phosphate-buffered saline or albumin NPs had sizes of 1673 and 1578 mm3, respectively. GOD-BSA NPs prepared using click chemistry may be useful as a drug delivery system for protein enzymes.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, South Korea.
| |
Collapse
|
7
|
Park S, Kim J, Lee C. Injectable rapidly dissolving needle-type gelatin implant capable of delivering high concentrations of H2O2 through intratumoral injection. Biomed Pharmacother 2022; 156:113910. [DOI: 10.1016/j.biopha.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
|
8
|
Hossain L, De Francesco M, Tedja P, Tanner J, Garnier G. Nanocellulose coated paper diagnostic to measure glucose concentration in human blood. Front Bioeng Biotechnol 2022; 10:1052242. [DOI: 10.3389/fbioe.2022.1052242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
A new generation of rapid, easy to use and robust colorimetric point of care (POC) nanocellulose coated-paper sensors to measure glucose concentration in blood is presented in this study. The cellulose gel containing the enzyme with co-additive is coated and dried onto a paper substrate. Nanocellulose gel is used to store, immobilize and stabilize enzymes within its structure to prolong enzyme function and enhance its availability. Here, we immobilize glucose oxidase within the gel structure to produce a simple colorimetric blood glucose sensor. Increase in blood glucose concentration increases the concentration of reaction product which decreases the system pH detected by the pH indicative dye entrapped in the nanocellulose gel. The sensor produces a color change from red to orange as pH decreases due to the enzymatic reaction of glucose into gluconic acid and hydrogen peroxide. This sensor can measure glucose concentrations of 7–13 mM (medical range for diabetes control) at temperatures of 4°C–40°C. Stability tests confirm that no denaturation of enzyme occurs by measuring enzyme activity after 4 weeks. A prototype device is designed to instantly measure the glucose concentration from blood in a two steps process: 1) red blood cell separation and 2) quantification of glucose by color change. This study demonstrates nanocellulose sensor as an economical, robust, and sensitive diagnostic technology platform for a broad spectrum of diseases.
Collapse
|
9
|
Tang M, Zhang Z, Sun T, Li B, Wu Z. Manganese-Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Adv Healthc Mater 2022; 11:e2201733. [PMID: 36050895 DOI: 10.1002/adhm.202201733] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) has attracted widespread attention due to its low-cost, nontoxicity, and valence-rich transition. Various Mn-based nanomaterials have sprung up and are employed in diverse fields, particularly Mn-based nanozymes, which combine the physicochemical properties of Mn-based nanomaterials with the catalytic activity of natural enzymes, and are attracting a surge of research, especially in the field of biomedical research. In this review, the typical preparation strategies, catalytic mechanisms, advances and perspectives of Mn-based nanozymes for biomedical applications are systematically summarized. The application of Mn-based nanozymes in tumor therapy and sensing detection, together with an overview of their mechanism of action is highlighted. Finally, the prospective directions of Mn-based nanozymes from five perspectives: innovation, activity enhancement, selectivity, biocompatibility, and application broadening are discussed.
Collapse
Affiliation(s)
- Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Chen Y, Gao X, Xue H, Liu G, Zhou Y, Peng J. One-Pot Preparation of Imidazole-Ring-Modified Graphitic Carbon Nitride Nanozymes for Colorimetric Glucose Detection. BIOSENSORS 2022; 12:930. [PMID: 36354439 PMCID: PMC9688121 DOI: 10.3390/bios12110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes are highly desired to overcome the shortcomings of natural enzymes, such as low stability, high cost and difficult storage during biosensing applications. Herein, by imitating the structure of natural enzymes, we propose a one-pot annealing process to synthesis imidazole-ring-modified graphitic carbon nitride (g-C3N4-Im) with enhanced peroxidase-like activity. g-C3N4-Im shows enhanced peroxidase-like activity by 46.5 times compared to unmodified g-C3N4. Furthermore, imidazole rings of g-C3N4-Im make it possible to anchor Cu(II) active sites on it to produce g-C3N4-Im-Cu, which shows a further increase in peroxidase-like activity by three times. It should be noted that the as-prepared g-C3N4-Im-Cu could show obvious peroxidase-like activity over a broad range of pH values and at a low temperature (5 °C). The ultrahigh peroxidase-like activity is attributed to the electronic effect of imidazole rings and the active sites of Cu(II) for ·OH production. Based on the enhanced peroxidase-like activity, a H2O2 and glucose biosensor was developed with a high sensitivity (limit of detection, 10 nM) and selectivity. Therefore, the biosensor shows potential for applications in diabetic diagnoses in clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan 430022, China
| | - Xueyou Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Peng
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan 430022, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Besagarhally Shivappa S, Krishnegowda A. Spectrophotometric determination of glucose in human serum samples using para‐phenylenediamine and alpha‐naphthol as a chromogenic reagent. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
A smart tablet-phone-based system using dynamic light modulation for highly sensitive colorimetric biosensing. Talanta 2022; 252:123862. [DOI: 10.1016/j.talanta.2022.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
|
13
|
Lin MH, Gupta S, Chang C, Lee CY, Tai NH. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Silver-Based Hybrid Nanomaterials: Preparations, Biological, Biomedical, and Environmental Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Lee HA, Lin PY, Solomatina AI, Koshevoy IO, Tunik SP, Lin HW, Pan SW, Ho ML. Glucose Sensing in Human Whole Blood Based on Near-Infrared Phosphors and Outlier Treatment with the Programming Language "R". ACS OMEGA 2022; 7:198-206. [PMID: 35036691 PMCID: PMC8757351 DOI: 10.1021/acsomega.1c04344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A near-infrared paper-based analytical device (NIR-PAD) for glucose detection in whole blood was based on iridium(III) metal complexes embedded in a three-dimensional (3D) enzyme gel. These complexes emit NIR luminescence, can avoid interference from the color of blood, and increase the sensitivity of sensing glucose. The glucose reaction behaviors of another two different iridium(III) and platinum(II) complexes were also tested. When the glucose solution was added to the device, the oxidation of glucose by glucose oxidase caused oxygen consumption and increased the intensity of the phosphorescence emission. To the best of our knowledge, this is the first time that data have been treated with the programming language "R", which uses Tukey's test to identify the outliers in the data and calculate a median for establishing a calibration curve, in order to improve the accuracy of NIR-PADs for sensing glucose. Compared with other published devices, NIR-PADs exhibit a wider linear range (1-30 mM, [relative emission intensity] = 0.0250[glucose] + 0.0451, and R 2 = 0.9984), a low detection limit (0.7 mM), a short response time (<2 s), and a small sample volume (2 μL). Finally, blood specimens were obtained from 19 patients enrolled in Taipei Veterans General Hospital under an approved IRB protocol (Taiwan; 2017-12-002CC). The sensors exhibited remarkable characteristics for glucose detection in comparison with other methods, including the clinical method in hospitals as well as those without blood sample pretreatment or a dilution factor. The above results confirm that NIR-PAD sensors can be put to practical use for glucose detection.
Collapse
Affiliation(s)
- Hsia-An Lee
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Peng-Yi Lin
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Anastasia I. Solomatina
- Institute
of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Igor O. Koshevoy
- Department
of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Sergey P. Tunik
- Institute
of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Hui-Wen Lin
- Department
of Mathematics, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Sheng-Wei Pan
- Department
of Chest Medicine, Taipei Veterans General
Hospital, Taipei 11217, Taiwan
- School
of Medicine, National Yang Ming Chiao Tung
University, Taipei 11221, Taiwan
| | - Mei-Lin Ho
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| |
Collapse
|
16
|
Coşkuner Filiz B, Basaran Elalmis Y, Bektaş İS, Kantürk Figen A. Fabrication of stable electrospun blended chitosan-poly(vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int J Biol Macromol 2021; 192:999-1012. [PMID: 34655587 DOI: 10.1016/j.ijbiomac.2021.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
In this study, designing of a stable electrospun blended chitosan (CS)-poly(vinyl alcohol) (PVA) nanofibers for colorimetric glucose biosensing in an aqueous medium was investigated. CS and PVA solutions were blended to acquire an optimum content (CS/PVA:1/4) and electrospunned to obtain uniform and bead-free CS/PVA nanofiber structures following the optimization of the electrospinning parameters (33 kV, 20 cm, and 1.2 ml.h-1). Crosslinking process applied subsequently provided mechanically and chemically stable nanofibers with an average diameter of 378 nm. The morphological homogeneity, high fluid absorption ability (>%50), thermal (<230 °C) and morphological stability, surface hydrophilicity and degrability properties of cross-linked CS/PVA nanofiber demonstrated their great potential to be developed as an eye-readable strip for biosensing applications. The glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilized by physical adsorption on the cross-linked CS/PVA nanofiber. The glucose assay analysis by ultraviolet-visible (UV-Vis) spectrophotometry using the same enzymatic system of the proposed glucose strips in form of absorbance versus concentration plot was found to be linear over a glucose concentration range of 2.7 to 13.8 mM. The prepared naked eye colorimetric glucose detection strips, with lower detection limit of 2.7 mM, demonstrated dramatic color change from white (0 mM) to brownish-orange (13.8 mM). The developed cross-linked CS/PVA nanofiber strips, prepared by electrospinnig procedure, could be easily adapted to a color map, as an alternative material for glucose sensing. Design of a practical, low-cost, and environmental-friendly bio-based CS/PVA testing strips for eye readable detection were presented and suggested as an applicable medium for a wide range of glucose concentrations.
Collapse
Affiliation(s)
- Bilge Coşkuner Filiz
- Yıldız Technical University, Metallurgy and Materials Engineering Department, İstanbul 34210, Turkey.
| | | | - İrem Serra Bektaş
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| | - Aysel Kantürk Figen
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| |
Collapse
|
17
|
Ornelas-González A, Ortiz-Martínez M, González-González M, Rito-Palomares M. Enzymatic Methods for Salivary Biomarkers Detection: Overview and Current Challenges. Molecules 2021; 26:7026. [PMID: 34834116 PMCID: PMC8624596 DOI: 10.3390/molecules26227026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection is a key factor in patient fate. Currently, multiple biomolecules have been recognized as biomarkers. Nevertheless, their identification is only the starting line on the way to their implementation in disease diagnosis. Although blood is the biofluid par excellence for the quantification of biomarkers, its extraction is uncomfortable and painful for many patients. In this sense, there is a gap in which saliva emerges as a non-invasive and valuable source of information, as it contains many of the biomarkers found in blood. Recent technological advances have made it possible to detect and quantify biomarkers in saliva samples. However, there are opportunity areas in terms of cost and complexity, which could be solved using simpler methodologies such as those based on enzymes. Many reviews have focused on presenting the state-of-the-art in identifying biomarkers in saliva samples. However, just a few of them provide critical analysis of technical elements for biomarker quantification in enzymatic methods for large-scale clinical applications. Thus, this review proposes enzymatic assays as a cost-effective alternative to overcome the limitations of current methods for the quantification of biomarkers in saliva, highlighting the technical and operational considerations necessary for sampling, method development, optimization, and validation.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| |
Collapse
|
18
|
Rapid Detection of Gut Microbial Metabolite Trimethylamine N-Oxide for Chronic Kidney Disease Prevention. BIOSENSORS-BASEL 2021; 11:bios11090339. [PMID: 34562929 PMCID: PMC8469701 DOI: 10.3390/bios11090339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
The gut microbiota plays a critical role in chronic kidney disease (CKD) and hypertension. Trimethylamine-N-oxide (TMAO) and trimethylamine (TMA) are gut microbiota-derived metabolites, and both are known uraemic toxins that are implicated in CKD, atherosclerosis, colorectal cancer and cardiovascular risk. Therefore, the detection and quantification of TMAO, which is a metabolite from gut microbes, are important for the diagnosis of diseases such as atherosclerosis, thrombosis and colorectal cancer. In this study, a new “colour-switch” method that is based on the combination of a plasma separation pad/absorption pad and polyallylamine hydrochloride-capped manganese dioxide (PAH@MnO2) nanozyme was developed for the direct quantitative detection of TMAO in whole blood without blood sample pretreatment. As a proof of concept, a limit of quantitation (LOQ) of less than 6.7 μM for TMAO was obtained with a wide linear quantification range from 15.6 to 500 μM through quantitative analysis, thereby suggesting potential clinical applications in blood TMAO monitoring for CKD patients.
Collapse
|
19
|
Zhu D, Liu B, Wei G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. BIOSENSORS 2021; 11:bios11080259. [PMID: 34436061 PMCID: PMC8392748 DOI: 10.3390/bios11080259] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) materials such as graphene, graphene oxide, transition metal oxide, MXene and others have shown high potential for the design and fabrication of various sensors and biosensors due to their 2D layered structure and unique properties. Compared to traditional fluorescent, electrochemical, and electrical biosensors, colorimetric biosensors exhibit several advantages including naked-eye determination, low cost, quick response, and easy fabrication. In this review, we present recent advances in the design, fabrication, and applications of 2D material-based high-performance colorimetric biosensors. Potential colorimetric sensing mechanisms and optimal material selection as well as sensor fabrication are introduced in brief. In addition, colorimetric biosensors based on different 2D materials such as graphene, transition metal dichalcogenide/oxide, MXenes, metal-organic frameworks, and metal nanoplates for the sensitive detection of DNA, proteins, viruses, small molecules, metallic ions, and others are presented and discussed in detail. This work will be helpful for readers to understand the knowledge of 2D material modification, nanozymes, and the synthesis of hybrid materials; meanwhile, it could be valuable to promote the design, fabrication, and applications of 2D material-based sensors and biosensors in quick bioanalysis and disease diagnostics.
Collapse
Affiliation(s)
| | | | - Gang Wei
- Correspondence: ; Tel.: +86-150-6624-2101
| |
Collapse
|
20
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
21
|
Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1084. [PMID: 33922170 PMCID: PMC8145730 DOI: 10.3390/nano11051084] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
The expanding applications of nanotechnology seem to be a response to many technological, environmental, and medical challenges. The unique properties of nanoparticles allow for developing new technologies and therapies. Among many investigated compounds is manganese and its oxides, which in the form of nanoparticles, could be a promising alternative for gadolinium-based contrast agents used in diagnostic imaging. Manganese, which is essential for living organisms as an enzyme cofactor, under excessive exposure-for example, due to water contamination or as an occupational hazard for welders-can lead to neurological disorders, including manganism-a condition similar to Parkinson's disease. This review attempts to summarise the available literature data on the potential applications of manganese and manganese oxide nanoparticles and their biological activity. Some of the published studies, both in vitro and in vivo, show negative effects of exposure to manganese, mainly on the nervous system, whereas other data suggest that it is possible to develop functionalised nanoparticles with negligible toxicity and novel promising properties.
Collapse
Affiliation(s)
- Zuzanna Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Maciej Stępnik
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172 Gdańsk, Poland
| |
Collapse
|
22
|
Boselli L, Pomili T, Donati P, Pompa PP. Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing? MATERIALS 2021; 14:ma14081978. [PMID: 33920934 PMCID: PMC8071272 DOI: 10.3390/ma14081978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Making frequent large-scale screenings for several diseases economically affordable would represent a real breakthrough in healthcare. One of the most promising routes to pursue such an objective is developing rapid, non-invasive, and cost-effective home-testing devices. As a first step toward a diagnostic revolution, glycemia self-monitoring represents a solid base to start exploring new diagnostic strategies. Glucose self-monitoring is improving people's life quality in recent years; however, current approaches still present vast room for improvement. In most cases, they still involve invasive sampling processes (i.e., finger-prick), quite discomforting for frequent measurements, or implantable devices which are costly and commonly dedicated to selected chronic patients, thus precluding large-scale monitoring. Thanks to their unique physicochemical properties, nanoparticles hold great promises for the development of rapid colorimetric devices. Here, we overview and analyze the main instrument-free nanosensing strategies reported so far for glucose detection, highlighting their advantages/disadvantages in view of their implementation as cost-effective rapid home-testing devices, including the potential use of alternative non-invasive biofluids as samples sources.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| | - Tania Pomili
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paolo Donati
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
| | - Pier P. Pompa
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| |
Collapse
|
23
|
Jakubowski W, Atraszkiewicz R, Nowak D, Batory D, Szymański W, Sobczyk-Guzenda A, Kaczmarek Ł, Kula P, Cłapa M, Warga T, Czerniak-Reczulska M. Optimization of Glutathione Adhesion Process to Modified Graphene Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:756. [PMID: 33802987 PMCID: PMC8002596 DOI: 10.3390/nano11030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
The presented work shows the results of the functionalization of the graphene surface obtained by the growth on the liquid bimetallic matrices method. We used glutathione (GSH) as a peptide model, which allowed us to optimize the procedure to obtain high process efficiency. To establish the amount of GSH attached to the graphene surface, the Folina-Ciocalteu method was used, which allows the assessment of the concentration of colored reaction products with peptide bonds without the disadvantages of most methods based on direct colored reaction of peptide bonds. Samples surface morphology, quality of graphene and chemical structure in the subsequent stages of surface modification were tested-for this purpose Raman spectroscopy, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) were used.
Collapse
Affiliation(s)
- Witold Jakubowski
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Radomir Atraszkiewicz
- Division of Surface Engineering and Heat Treatment, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (R.A.); (P.K.)
| | - Dorota Nowak
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Witold Szymański
- Division of Nanomaterials Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Anna Sobczyk-Guzenda
- Division of Coating, Polymer and Non-Metal Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Łukasz Kaczmarek
- Division of Advanced Materials and Composite, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (Ł.K.); (T.W.)
| | - Piotr Kula
- Division of Surface Engineering and Heat Treatment, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (R.A.); (P.K.)
| | - Marian Cłapa
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| | - Tomasz Warga
- Division of Advanced Materials and Composite, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (Ł.K.); (T.W.)
| | - Małgorzata Czerniak-Reczulska
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| |
Collapse
|
24
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Qian R, Gao D, Liu L, Jiang Y. Colorimetric glucose sensing with multiple-color changes by using a MnO 2 NSs-TMB nanosystem. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:769-775. [PMID: 33459305 DOI: 10.1039/d0ay02184a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glucose performs many essential functions associated with metabolic processes in the living system, and is closely related to many diseases such as diabetes and hypoglycemia. Most of the existing glucose concentration detection methods require complex instruments, which undoubtedly limit its widespread use. Here, we have designed a glucose colorimetric detection system composed of glucose, glucose oxidase (GOD), manganese dioxide nanosheets (MnO2 NSs) and 3,3',5,5'-tetramethylbenzidine (TMB) to achieve colorimetric detection with the naked eye. Compared with the single-color change of the colorimetric method in previous studies, multiple-color changes have been realized. MnO2 NSs, as a kind of nanomaterial imitating oxidase, can directly oxidize TMB to oxTMB. Because oxTMB showed a dark yellow color when strongly oxidized and light blue when weakly oxidized, this feature can achieve multiple-color changes rather than a single-color change, which is helpful for colorimetric observation with the naked eye. Finally, we successfully used MnO2 NSs for colorimetric detection of glucose and realized multiple-color changes, making it easier to achieve colorimetric observation with the naked eye. The linear detection range is 0-4000 μM and limit of detection is 5.0 μM. This is not only useful for glucose, but also has an important significance for other experiments considering colorimetric experiments with the naked eye.
Collapse
Affiliation(s)
- Rui Qian
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China.
| | | | | | | |
Collapse
|
26
|
Polatoğlu İ, Yardım A. Determination of effective assay parameters on the activity of magnetite cross-linked invertase aggregates by personal glucose meter. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1876680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- İlker Polatoğlu
- Bioengineering Department, Manisa Celal Bayar University, Manisa, Turkey
| | - Ayşenur Yardım
- Food Engineering Department, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
27
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
28
|
Huang F, Xue L, Qi W, Cai G, Liu Y, Lin J. An ultrasensitive impedance biosensor for Salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification. Biosens Bioelectron 2020; 176:112921. [PMID: 33383398 DOI: 10.1016/j.bios.2020.112921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
An impedance biosensor using rotary magnetic separation and cascade reaction was developed for rapid and ultrasensitive detection of Salmonella typhimurium. First, magnetic nanoparticles (MNPs) modified with anti-Salmonella monoclonal antibodies were injected into a capillary at the presence of a rotary high gradient magnetic field, which was rotated by a stepper motor. Then, a bacterial sample was injected into the capillary and the target bacteria were continuous-flow captured onto the MNPs. After organic-inorganic hybrid nanoflowers were prepared using manganese dioxide (MnO2), glucose oxidase (GOx) and anti-Salmonella polyclonal antibodies (pAbs), they were injected to label the bacteria, resulting in the formation of MNP-bacteria-nanoflower sandwich complexes. Finally, glucose (low conductivity) was injected and oxidized by GOx on the complexes to produce H2O2 (low conductivity) and gluconic acid (high conductivity), leading to impedance decrease. Besides, the produced H2O2 triggered a cascade reduction of MnO2 into Mn2+, leading to further impedance decrease. The impedance changes were measured using an interdigitated microelectrode and used to determine the concentration of target bacteria. This biosensor was able to detect Salmonella ranging from 101 to 106 CFU/mL in 2 h with a low detection limit of 101 CFU/mL and a mean recovery of 100.1% for the spiked chicken samples.
Collapse
Affiliation(s)
- Fengchun Huang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuanjie Liu
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianhan Lin
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Liu M, Mou J, Xu X, Zhang F, Xia J, Wang Z. High-efficiency artificial enzyme cascade bio-platform based on MOF-derived bimetal nanocomposite for biosensing. Talanta 2020; 220:121374. [PMID: 32928400 DOI: 10.1016/j.talanta.2020.121374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
In this paper, a high-performance enzyme cascade bio-platform has been developed for biosensing by combining MOFs-based nanozyme and natural enzymes. Firstly, a novel porous mixed bi-metal oxide (MnCo2O4) derived from MOF with rod-like nanostructures was synthesized. Based on this, the nanozyme of bovine serum albumin-Pt nanoparticles@mesoporous MnCo2O4 (BSA-PtNP@MnCo2O4) was successfully synthesized and used to construct enzyme cascade bio-platform. The nanozyme had unique physicochemical surface properties and hierarchical structure. Due to the synergistic effect of protein, bimetal oxide and PtNP, the nanozyme presented excellent dual enzyme activity. On the one hand, BSA-PtNP@MnCo2O4 can be used as nanozyme with oxidase activity to achieve superior detection of glutathione with detection limit of 0.42 μM. On the other hand, BSA- PtNP@MnCo2O4 can also be used both as the nanozyme with great peroxidase activity and as a scaffold for immobilization of glucose oxidase (GOx), guiding an organized high-efficiency enzyme cascade bio-platform. The platform combined advantages of nanozyme and natural enzyme, and provided excellent glucose detection with the detection limit of 8.1 μM. The tandem catalytic system not only broadened the application of nanozyme in natural enzyme catalysis, but also provided a simple, efficient and organized enzyme cascade bio-platform for biosensing and other applications.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - Junsong Mou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - Xiaohan Xu
- Qingdao Cornerstone Bilingual School, Qingdao, 266071, PR China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
30
|
Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, Lin J. An impedance biosensor based on magnetic nanobead net and MnO 2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron 2020; 173:112800. [PMID: 33186789 DOI: 10.1016/j.bios.2020.112800] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Screening of pathogenic bacteria in foods is an effective way to prevent foodborne diseases. In this study, an impedance biosensor was developed for rapid and sensitive detection of Salmonella typhimurium using multiple magnetic nanobead (MNB) nets in a ring channel for continuous-flow separation of target bacteria from 10 mL of sample, manganese dioxide nanoflowers (MnO2 NFs) for efficient amplification of biological signal, and an interdigitated microelectrode for sensitive measurement of impedance change. First, the MNBs modified with capture antibodies were vortically injected from outer periphery of this ring channel to form multiple ring MNB nets at specific locations with high gradient magnetic fields. Then, the bacterial sample was continuous-flow injected, resulting in specific capture of target bacteria onto the nets, and the MnO2 NFs modified with detection antibodies were injected to form MNB-bacteria-MnO2 NF complexes. After the complexes were washed with deionized water to remove excessive nanoflowers and residual ions, H2O2 with poor conductivity was injected to reduce MnO2 NFs to conductive Mn2+ at neutral medium, leading to impedance decrease. Finally, impedance change was measured using the microelectrode for quantitative determination of Salmonella. This biosensor was able to separate ~60% of Salmonella from 10 mL of bacterial sample and detect Salmonella with a linear range of 3.0 × 101 to 3.0 × 106 CFU/mL in 1.5 h with lower detection limit of 19 CFU/mL. This biosensor might be further improved with higher sensitivity using a larger volume (100 mL or more) for routine screening of foodborne bacteria without bacterial pre-culture.
Collapse
Affiliation(s)
- Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Ruya Guo
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Fengchun Huang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Gaozhe Cai
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
31
|
Dai J, Zhang H, Huang C, Chen Z, Han A. A Gel-Based Separation-Free Point-of-Care Device for Whole Blood Glucose Detection. Anal Chem 2020; 92:16122-16129. [DOI: 10.1021/acs.analchem.0c03801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zheyuan Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Center for Remote Health Technologies & Systems, Texas A&M University, College Station, Texas 77843 United States
| |
Collapse
|
32
|
Lin C, Du Y, Wang S, Wang L, Song Y. Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111511. [PMID: 33255068 DOI: 10.1016/j.msec.2020.111511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/08/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
The work presents a novel glucose oxidase@Cu-hemin metal-organic frameworks (GOD@ Cu-hemin MOFs) with a ball-flower structure as bienzymatic catalysts for detection of glucose. The GOD@Cu-hemin MOFs exhibits great stability as compared with free horseradish peroxidase and GOD toward harsh conditions because the ball-flower-like shell of Cu-hemin MOF effectively protects from GOD. Thus, the GOD@Cu-Hemin MOFs can be used in external harsh conditions such as high temperature and acid/base. The GOD@Cu-hemin MOFs is capable of sensitive and selective detection of glucose via peroxidase-like of Cu-hemin MOFs and GOD by using 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. Under the existence of glucose, O2 is reduced into H2O2 via GOD@Cu-hemin MOFs. The produced H2O2 as well as Cu-hemin MOFs oxidize TMB into blue oxTMB which shows UV-Vis absorbance at 652. The absorption intensity of oxTMB linearly increases with the increasing concentration of glucose from 0.01 to 1.0 mM with detection limit of 2.8 μM. An integrated agarose hydrogel film (Aga/GOD@Cu-hemin MOF/TMB) sensor is rationally designed for colorimetric detection of glucose. The sensor displays a response range of 30 μM-0.8 mM with a detection limit of 0.01 mM. The result indicates that the Cu-hemin MOFs are an ideal carrier for the encapsulation of enzymes.
Collapse
Affiliation(s)
- Chunhua Lin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yue Du
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Shiqi Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
33
|
Rostami S, Mehdinia A, Jabbari A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111034. [DOI: 10.1016/j.msec.2020.111034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
|
34
|
A field-applicable colorimetric assay for notorious explosive triacetone triperoxide through nanozyme-catalyzed irreversible oxidation of 3, 3'-diaminobenzidine. Mikrochim Acta 2020; 187:431. [PMID: 32632565 DOI: 10.1007/s00604-020-04409-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
A field-applicable colorimetric assay for fast detection of notorious explosive triacetone triperoxide (TATP) has been developed through the selective irreversible oxidation of 3, 3'-diaminobenzidine by hydrogen peroxide (HP) liberated during the acidic hydrolysis/degradation of TATP in the presence of MnO2 nanozymes. The generated HP was detected by probing the absorbance of the product (indamine polymer) of the 3, 3'-diaminobenzidine (DAB) oxidation reaction at 460.0 nm. The UV-Vis measurements provided a linear range from 1.57 to 10.50 mg L-1 TATP with a detection limit of 0.34 mg L-1. The oxidation of DAB cannot proceed by molecular oxygen, thus it is selectively oxidized by H2O2; this prevents false-positive results from laundry detergents (containing O2-releasing substances). Moreover, a naked-eye field test was developed, and a fast spot test analyzing time of 5 s was achieved. The selectivity of the assay was checked by analyzing some synthetic samples prepared with a laundry detergent as camouflage. The results of the developed assay revealed quantitative recoveries for TATP whereas the standard nanozyme-based method showed significant false-positive results. Graphical abstract.
Collapse
|
35
|
Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Tripathi A, Harris KD, Elias AL. Peroxidase-Like Behavior of Ni Thin Films Deposited by Glancing Angle Deposition for Enzyme-Free Uric Acid Sensing. ACS OMEGA 2020; 5:9123-9130. [PMID: 32363264 PMCID: PMC7191584 DOI: 10.1021/acsomega.9b04071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/09/2020] [Indexed: 05/28/2023]
Abstract
We present a nanozyme-based biosensor fabricated from nanostructured Ni films deposited onto a silicon wafer by glancing angle deposition (GLAD) for enzyme-free colorimetric monitoring of uric acid (UA), a biomarker for gout, high blood pressure, heart disease, and kidney disease. The helically structured Ni GLAD nanozymes exhibit excellent peroxidase-like activity to accelerate the oxidation reaction of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product, oxidized TMB (oxTMB), mediated by H2O2. In the presence of UA, oxTMB is reduced, decreasing the optical absorbance by an amount determined by the concentration of UA in the solution. The nanozyme not only mimics peroxidase but also possesses the notable qualities of reusability, simple operation, and reliability, making it environment-friendly and suitable for on-demand analysis. We optimized essential working parameters (pH, TMB concentration, and H2O2 concentration) to maximize the initial color change of the TMB solution. The catalytic activity of this nanozyme was compared with conventional nanofilms using the Michaelis-Menten theory. Based on this, enzyme-free biosensors were developed for colorimetric detection of UA, providing a wide detection range and a limit of detection (3.3 μM) suitable for measurements of UA concentration in sweat. Furthermore, interference from glucose and urea was studied so as to explore the potential of the biosensor for use in the clinical diagnosis of UA biomarkers.
Collapse
Affiliation(s)
- Anuja Tripathi
- Department
of Chemical and Materials Engineering, Donadeo Innovation Centre for
Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kenneth D. Harris
- National
Research Council Canada, Nanotechnology
Research Centre, Edmonton, Alberta T6G 2M9, Canada
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Anastasia L. Elias
- Department
of Chemical and Materials Engineering, Donadeo Innovation Centre for
Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
37
|
Rosette-shaped graphitic carbon nitride acts as a peroxidase mimic in a wide pH range for fluorescence-based determination of glucose with glucose oxidase. Mikrochim Acta 2020; 187:286. [PMID: 32328802 DOI: 10.1007/s00604-020-04249-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Rosette-shaped graphitic carbon nitride (rosette-GCN) is described as a promising alternative to natural peroxidase for its application to fluorescence-based glucose assays. Rosette-GCN was synthesized via a rapid reaction between melamine and cyanuric acid for 10 min at 35 °C, followed by thermal calcination for 4 h. Importantly, rosette-GCN possesses a peroxidase-like activity, producing intense fluorescence from the oxidation of Amplex UltraRed in the presence of H2O2 over a broad pH-range of, including neutral pH; the peroxidase activity of rosette-GCN was ~ 10-fold higher than that of conventional bulk-GCN. This enhancement of peroxidase activity is presumed to occur because rosette-GCN has a significantly larger surface area and higher porosity while preserving its unique graphitic structure. Based on the high peroxidase activity of rosette-GCN along with the catalytic action of glucose oxidase (GOx), glucose was reliably determined down to 1.2 μM with a dynamic linear concentration range of 5.0 to 275.0 μM under neutral pH conditions. Practical utility of this strategy was also successfully demonstrated by determining the glucose levels in serum samples. This work highlights the advantages of GCNs synthesized via rapid methods but with unique structures for the preparation of enzyme-mimicking catalysts, thus extending their applications to the diagnostics field and other biotechnological fields. Graphical abstract.
Collapse
|
38
|
Yuan Y, Fu Z, Wang K, Zhao Z, Li H, Wang Z, Wang L. The design and characterization of a hypersensitive glucose sensor: two enzymes co-fixed on a copper phosphate skeleton. J Mater Chem B 2020; 8:244-250. [DOI: 10.1039/c9tb02294e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new glucose sensor GOx&DhHP-6–Cu3(PO4)2 showed the best catalytic ability at a neutral temperature and pH.
Collapse
Affiliation(s)
- Ye Yuan
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhendong Fu
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Kai Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhenyu Zhao
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Hui Li
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhi Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
- Key Laboratory for Molecular Enzymology and Engineering
| | - Liping Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
- Key Laboratory for Molecular Enzymology and Engineering
| |
Collapse
|
39
|
Mou J, Xu X, Zhang F, Xia J, Wang Z. Promoting Nanozyme Cascade Bioplatform by ZIF-Derived N-Doped Porous Carbon Nanosheet-based Protein/Bimetallic Nanoparticles for Tandem Catalysis. ACS APPLIED BIO MATERIALS 2019; 3:664-672. [DOI: 10.1021/acsabm.9b01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junsong Mou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Xianzhen Xu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
40
|
|
41
|
Díez‐Buitrago B, Barroso J, Saa L, Briz N, Pavlov V. Facile Synthesis and Characterization of Ag/Ag
2
S Nanoparticles Enzymatically Grown In Situ and their Application to the Colorimetric Detection of Glucose Oxidase. ChemistrySelect 2019. [DOI: 10.1002/slct.201901673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beatriz Díez‐Buitrago
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Javier Barroso
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Laura Saa
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Nerea Briz
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Valeri Pavlov
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| |
Collapse
|