1
|
Andatsu H, Terashima Y, Kawamura R, Matsuda Y, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of 2,2-Disubstituted 2,3-Dihydro-4-quinolones from Isatins and 2'-Aminoacetophenones. Org Lett 2024. [PMID: 39718907 DOI: 10.1021/acs.orglett.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an in situ generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee. Detailed density functional theory (DFT) calculations support the proposed reaction mechanism and the origin of asymmetric induction.
Collapse
Affiliation(s)
- Hidenori Andatsu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yuto Terashima
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Rio Kawamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Yokota T, Yu Y, Araseki K, Arai T. Bis(imidazolidine)-Derived NCN Nickel-Pincer-Catalyzed Asymmetric Reactions. Org Lett 2024; 26:7880-7884. [PMID: 39250615 DOI: 10.1021/acs.orglett.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A bis(imidazolidine)-derived NCN nickel-pincer complex (tBu-PhBidine-Ni-OTf: NCN-Ni-OTf) was synthesized by the oxidative addition of imidazolidine-containing aryl triflate to Ni(cod)2 in MeCN. NCN-Ni-OTf exhibited asymmetric induction in three reactions. In the Friedel-Crafts reaction of indoles with N-Boc imines, 3-indolylmethanamine products were obtained in 79% yield with 99% ee. In a conjugate addition reaction of malononitrile to nitroalkenes, products were obtained in 95% yield with 75% ee. In iodolactonization, the pincer-Ni complex showed catalytic activity superior to that of tBu-PhBidine-Pd-OTf.
Collapse
Affiliation(s)
- Tomoya Yokota
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Yan Yu
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Kensuke Araseki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Kong X, Ren J, Li J, Liu Y, Li K. Modular Synthesis of α-Aryl-α-Heteroaryl α-Amino Acid Derivatives via a Copper-Catalyzed Cross-Dehydrogenative-Coupling Reaction Using Air as the Sole Oxidant. Org Lett 2023; 25:7073-7077. [PMID: 37767976 DOI: 10.1021/acs.orglett.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A novel copper-catalyzed cross-dehydrogenative-coupling (CDC) process of arylglycine derivatives with N-heteroarenes for the straightforward synthesis of α-aryl-α-heteroaryl α-amino acid scaffolds has been successfully developed. This protocol exhibits a broad substrate scope with good functional group compatibility by utilizing air as the sole oxidant. The use of the reaction is also displayed through the late-stage functionalization of arylglycines bearing natural compounds or drug motifs.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jing Ren
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jinlong Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Yu Liu
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Kaizhi Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| |
Collapse
|
4
|
Biswas A. Aromatic C-H bond functionalization through organocatalyzed asymmetric intermolecular aza-Friedel-Crafts reaction: a recent update. Beilstein J Org Chem 2023; 19:956-981. [PMID: 37404800 PMCID: PMC10315893 DOI: 10.3762/bjoc.19.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
The aza-Friedel-Crafts reaction allows an efficient coupling of electron-rich aromatic systems with imines for the facile incorporation of aminoalkyl groups into the aromatic ring. This reaction has a great scope of forming aza-stereocenters which can be tuned by different asymmetric catalysts. This review assembles recent advances in asymmetric aza-Friedel-Crafts reactions mediated by organocatalysts. The mechanistic interpretation with the origin of stereoselectivity is also explained.
Collapse
Affiliation(s)
- Anup Biswas
- Department of Chemistry, Hooghly Women’s College, Vivekananda Road, Pipulpati, Hooghly - 712103, WB, India
| |
Collapse
|
5
|
Yokota T, Masu H, Arai T. Asymmetric Friedel-Crafts-Type Reaction of 2-Vinylindoles to N-Boc Imines Using a Chiral Imidazolidine-Containing NCN-Pincer Pd Catalyst. J Org Chem 2023. [PMID: 36802597 DOI: 10.1021/acs.joc.2c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A chiral imidazolidine-containing NCN-pincer Pd-OTf complex (NCN-Pd cat) promoted the asymmetric nucleophilic addition of unprotected 2-vinylindoles to N-Boc imines in a Friedel-Crafts-type manner. The chiral (2-vinyl-1H-indol-3-yl)methanamine products become nice platforms for constructing multiple ring systems.
Collapse
Affiliation(s)
- Tomoya Yokota
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Adili A, Webster JP, Zhao C, Mallojjala SC, Romero-Reyes MA, Ghiviriga I, Abboud KA, Vetticatt MJ, Seidel D. Mechanism of a Dually Catalyzed Enantioselective Oxa-Pictet-Spengler Reaction and the Development of a Stereodivergent Variant. ACS Catal 2023; 13:2240-2249. [PMID: 37711191 PMCID: PMC10501388 DOI: 10.1021/acscatal.2c05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes proceed under weakly acidic conditions utilizing a combination of two catalysts, an indoline HCl salt and a bisthiourea compound. Mechanistic investigations revealed the roles of both catalysts and confirmed the involvement of oxocarbenium ion intermediates, ruling out alternative scenarios. A stereochemical model was derived from density functional theory calculations, which provided the basis for the development of a highly enantioselective stereodivergent variant with racemic tryptophol derivatives.
Collapse
Affiliation(s)
- Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John-Paul Webster
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | - Moises A Romero-Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Mishra P, Shruti I, Kant R, Thakur TS, Kumar A, Rastogi N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Poornima Mishra
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ipsha Shruti
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Tejender S. Thakur
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Akhilesh Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
8
|
Duan M, Chen J, Wang T, Luo S, Wang M, Fan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Aza-Friedel-Crafts Addition of Naphthols with Isatin-Derived Ketimines. J Org Chem 2022; 87:15152-15158. [PMID: 36269152 DOI: 10.1021/acs.joc.2c01659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enantioselective Friedel-Crafts addition of naphthols with isatin-derived ketimines was developed with H8-BINOL-derived chiral biaryl phosphoric acid. A wide range of isatin-derived ketimines and naphthols were successfully applied and gave a series of chiral 3-amino-2-oxindoles in excellent yields with high optical purities.
Collapse
Affiliation(s)
- Mei Duan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Ting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Shaojian Luo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Meifen Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China.,Department School of Chemistry and Environment, Yunnan Minzu University, Kunming650504, Yunnan, China
| |
Collapse
|
9
|
Ogura K, Isozumi I, Takehara T, Suzuki T, Nakamura S. Enantioselective Reaction of N-Unprotected Activated Ketimines with Phosphine Oxides Catalyzed by Chiral Imidazoline-Phosphoric Acids. Org Lett 2022; 24:8088-8092. [DOI: 10.1021/acs.orglett.2c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuki Ogura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Itsuki Isozumi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Nakamura S, Matsuda Y, Takehara T, Suzuki T. Enantioselective Pictet-Spengler Reaction of Acyclic α-Ketoesters Using Chiral Imidazoline-Phosphoric Acid Catalysts. Org Lett 2022; 24:1072-1076. [PMID: 35080408 DOI: 10.1021/acs.orglett.1c04316] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enantioselective Pictet-Spengler reaction of acyclic α-ketoesters with tryptamines has been developed. Excellent yields and enantioselectivity were obtained for the reaction using chiral imidazoline-phosphoric acid catalysts. Density functional theory calculations suggested possible transition states that explain the origin of chiral induction. This process provides an efficient route for the synthesis of tetrahydro-β-carboline derivatives.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
12
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Ogura K, Takehara T, Suzuki T, Nakamura S. Enantioselective Vinylogous Mannich Reaction of Acyclic Vinylketene Silyl Acetals with Acyclic Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuki Ogura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
14
|
Fujita K, Miura M, Funahashi Y, Hatanaka T, Nakamura S. Enantioselective Reaction of 2 H-Azirines with Oxazol-5-(4 H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts. Org Lett 2021; 23:2104-2108. [PMID: 33650878 DOI: 10.1021/acs.orglett.1c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective reaction of 2H-azirines with oxazol-5-(4H)-ones (oxazolones) using a cinchona alkaloid sulfonamide catalyst has been developed. The reaction proceeded at the C-2 position of oxazolones to afford products with consecutive tetrasubstituted stereogenic centers in high yield with high diastereo- and enantioselectivity. The obtained aziridines were converted into various chiral compounds without loss of enantiopurity.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masataka Miura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
15
|
Sathieshkumar PP, Anand Saibabu MD, Nagarajan R. A Cascade Approach for the Synthesis of 5-(Indol-3-yl)hydantoin: An Application to the Total Synthesis of (±)-Oxoaplysinopsin B. J Org Chem 2021; 86:3730-3740. [PMID: 33599509 DOI: 10.1021/acs.joc.0c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cascade approach to the synthesis of 5-(indol-3-yl)hydantoin framework has been developed by the reaction of indole with glyoxylic acid/pyruvic acid under a deep eutectic solution, (+)-tartaric acid-dimethylurea. N,N'-Dimethylurea from a deep eutectic solution functions as a reactant as well as a solvent mixture. Isolation of the intermediate, 5-hydroxyhydantoin, and its reaction with indole provides the mechanistic evidence for this reaction. This method was successfully applied in the first total synthesis of an alkaloid, (±)-oxoaplysinopsin B, with an overall yield of 48%.
Collapse
Affiliation(s)
| | | | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
16
|
Hatano M, Toh K, Ishihara K. Enantioselective Aza-Friedel-Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral C1-Symmetric Bis(phosphoric Acid). Org Lett 2020; 22:9614-9620. [PMID: 33295179 DOI: 10.1021/acs.orglett.0c03662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hydrogen bonding network in chiral Brønsted acid catalysts is important for the construction of a chiral cavity and the enhancement of catalytic activity. In this regard, we developed a highly enantioselective aza-Friedel-Crafts reaction of indoles and pyrroles with acyclic α-ketimino esters in the presence of a chiral C1-symmetric BINOL-derived bis(phosphoric acid) catalyst. The desired alkylation products with chiral quaternary carbon centers were obtained in high yields with high enantioselectivities on up to a 1.2-g scale with 0.2 mol % catalyst loading. Interestingly, the absolute configurations of the products from indoles and pyrroles were opposite even with the use of the same chiral catalyst. Moreover, preliminary mechanistic considerations disclosed that a unique hydrogen bonding network with or without π-π interactions among the catalyst and substrates might partially play a pivotal role.
Collapse
Affiliation(s)
- Manabu Hatano
- Graduate School of Pharmaceutical Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada, Kobe 658-8558, Japan
| | - Kohei Toh
- Graduate School of Engineering, Nagoya University, Chikusa, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Chikusa, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
17
|
Nakamura S, Wada T, Takehara T, Suzuki T. Catalytic Enantioselective Synthesis of
N
,
N
‐Acetals from α‐Dicarbonyl Compounds Using Chiral Imidazoline‐Phosphoric Acid Catalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tatsumi Wada
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| |
Collapse
|
18
|
Zhai G, Liu X, Ma W, Wang G, Yang L, Li S, Wu Y, Hu X. B(C 6 F 5 ) 3 -Catalyzed Tandem Friedel-Crafts and C-H/C-O Coupling Reactions of Dialkylanilines. Chem Asian J 2020; 15:3082-3086. [PMID: 32770729 DOI: 10.1002/asia.202000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Indexed: 11/11/2022]
Abstract
Tandem Friedel-Crafts (FC) and C-H/C-O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6 F5 )3 ) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4-dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6 F5 )3 can activate the C=C and C-O bond for FC and C-H/C-O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C-H/C-O coupling.
Collapse
Affiliation(s)
- Gaowen Zhai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xueting Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Wentao Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Liu Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
19
|
Egorov IN, Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Ranu BC, Rusinov VL, Chupakhin ON. Direct Asymmetric Arylation of Imines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ilya N. Egorov
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya Str. Yekaterinburg 62099 Russian Federation
| | - Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya Str. Yekaterinburg 62099 Russian Federation
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Brindaban C. Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Vladimir L. Rusinov
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya Str. Yekaterinburg 62099 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya Str. Yekaterinburg 62099 Russian Federation
| |
Collapse
|
20
|
Li X, Ren B, Xie X, Tian Z, Chen FY, Gamble AB, Han B. Regiodivergent synthesis of aza-quaternary carbon derivatives from pyrazolinone ketimines and 1,2-dihydroquinolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Yamamoto K, Tsuda Y, Kuriyama M, Demizu Y, Onomura O. Copper-Catalyzed Enantioselective Synthesis of Oxazolines from Aminotriols via Asymmetric Desymmetrization. Chem Asian J 2020; 15:840-844. [PMID: 32030893 DOI: 10.1002/asia.201901742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/28/2020] [Indexed: 11/06/2022]
Abstract
A copper-catalyzed enantioselective transformation of tris(hydroxymethyl)aminomethane-derived aminotriols was developed to provide multisubstituted oxazolines with a tetrasubstituted carbon center. The present transformation consisted of sequential reactions involving mono-sulfonylation of aminotriols, subsequent intramolecular cyclization to afford prochiral oxazoline diols, and sulfonylative asymmetric desymmetrization of resultant oxazoline diols. In addition, the kinetic resolution process would be involved in the sulfonylative asymmetric desymmetrization step, which would amplify the enantiopurities of the desired products. Various aminotriols were tolerated in the present reaction, affording the desired oxazolines in good to high yields with excellent enantioselectivities. The synthetic utility of the present reaction was demonstrated by the transformation of the optically active oxazoline into a chiral α-tertiary amine motif.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yutaro Tsuda
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yosuke Demizu
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
22
|
Nakamura S, Matsuzaka K, Hatanaka T, Funahashi Y. Enantioselective Vinylogous Mannich Reaction of Acyclic Vinylketene Silyl Acetals with Ketimines Using Chiral Bis(imidazoline)–Cu(II) Catalysts. Org Lett 2020; 22:2868-2872. [DOI: 10.1021/acs.orglett.0c00289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Koichi Matsuzaka
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsubasa Hatanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
23
|
Iwanejko J, Brol A, Szyja BM, Daszkiewicz M, Wojaczyńska E, Olszewski TK. Aminophosphonates and aminophosphonic acids with tetrasubstituted stereogenic center: diastereoselective synthesis from cyclic ketimines. Org Biomol Chem 2019; 17:7352-7359. [PMID: 31338507 DOI: 10.1039/c9ob01346f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New chiral tetrasubstituted aminophosphonic acid derivatives of hexahydroquinoxalin-2(1H)-one were synthesised via highly diastereoselective hydrophosphonylation of the corresponding imines with tris(trimethylsilyl) phosphite as phosphorus nucleophile. High asymmetric induction, good yields, mild reaction conditions, and ease of purification of the final products are the key advantages of the presented protocol.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Wu H, Wang L, Zhang J, Jin Y. Urea-Derivative Catalyzed Enantioselective Hydroxyalkylation of Hydroxyindoles with Isatins. Molecules 2019; 24:molecules24213944. [PMID: 31683678 PMCID: PMC6864875 DOI: 10.3390/molecules24213944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
The enantioselective transformations of indoles preferentially take place in the more-reactive azole ring. However, the methods for the enantioselective functionalization of the indole benzene ring are scarce. In this paper, a series of bifunctional (thio)urea derivatives were used to organocatalyze the enantioselective Friedel-Crafts hydroxyalkylation of indoles with isatins. The resulting products were obtained in good yields (65-90%) with up to 94% enantiomer excess (ee). The catalyst type and the substrate scope were broadened in this methodology.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin 132013, China.
| | - Liming Wang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin 132013, China.
| | - Junwei Zhang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin 132013, China.
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin 132013, China.
| |
Collapse
|
25
|
Parida C, Maity R, Chandra Sahoo S, Chandra Pan S. α-Nitro-α,β-Unsaturated Ketones: An Electrophilic Acyl Transfer Reagent in Catalytic Asymmetric Friedel–Crafts and Michael Reactions. Org Lett 2019; 21:6700-6704. [DOI: 10.1021/acs.orglett.9b02310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Rajendra Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subas Chandra Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
26
|
Cheng X, Shan J, Tian X, Ren YL, Zhu Y. Benzylation of Arenes with Benzyl Halides under Promoter-Free and Additive-Free Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Jiankai Shan
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| | - Xinshe Tian
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| |
Collapse
|
27
|
Nakamura S, Tokunaga A, Saito H, Kondo M. Enantioselective conjugate addition of an α,α-dithioacetonitrile with nitroalkenes using chiral bis(imidazoline)–Pd complexes. Chem Commun (Camb) 2019; 55:5391-5394. [DOI: 10.1039/c9cc02443c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first highly enantioselective reaction of α,α-dithioacetonitriles with nitroolefins as electron deficient olefins using chiral Phebim–Pd catalysts was developed.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Akari Tokunaga
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hikari Saito
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Masaru Kondo
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| |
Collapse
|
28
|
You Y, Lu WY, Xie KX, Zhao JQ, Wang ZH, Yuan WC. Enantioselective synthesis of isoquinoline-1,3(2H,4H)-dione derivatives via a chiral phosphoric acid catalyzed aza-Friedel-Crafts reaction. Chem Commun (Camb) 2019; 55:8478-8481. [PMID: 31268101 DOI: 10.1039/c9cc04057a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly enantioselective aza-Friedel-Crafts reaction of structurally new ketimines with indoles and pyrrole is developed by using a chiral phosphoric acid as the catalyst. This protocol enables the first enantioselective synthesis of isoquinoline-1,3(2H,4H)-dione derivatives in good to excellent yields (up to 99% yield) and excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Ke-Xin Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. and National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
29
|
Odagi M, Araki H, Min C, Yamamoto E, Emge TJ, Yamanaka M, Seidel D. Insights into the Structure and Function of a Chiral Conjugate‐Base‐Stabilized Brønsted Acid Catalyst. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Minami Odagi
- Center for Heterocyclic Compounds Department of Chemistry University of Florida 32611 Gainesville Florida USA
| | - Hiroshi Araki
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Chang Min
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Eri Yamamoto
- Department of Chemistry Faculty of Science Rikkyo University 3‐34‐1 Nishi‐Ikebukuro 171‐8501 Toshima‐ku Tokyo Japan
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Masahiro Yamanaka
- Department of Chemistry Faculty of Science Rikkyo University 3‐34‐1 Nishi‐Ikebukuro 171‐8501 Toshima‐ku Tokyo Japan
| | - Daniel Seidel
- Center for Heterocyclic Compounds Department of Chemistry University of Florida 32611 Gainesville Florida USA
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| |
Collapse
|
30
|
Yonesaki R, Kondo Y, Akkad W, Sawa M, Morisaki K, Morimoto H, Ohshima T. 3-Mono-Substituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel-Crafts-Type Alkylation of N-Unprotected α-Ketiminoester. Chemistry 2018; 24:15211-15214. [PMID: 30098059 DOI: 10.1002/chem.201804078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Although BINOL-derived phosphoric acids are among the most widely used chiral Brønsted acid organocatalysts, their structures are mostly limited to 3,3'-disubstituted ones and simple 3-mono-substituted ones without any polar functionalities on the 3-substituent have not been used in highly enantioselective reactions. This work reports such 3-mono-substituted analogues as effective organocatalysts in direct highly enantioselective Friedel-Crafts-type alkylation of N-unprotected α-ketiminoester. The origin of the observed high enantioselectivity with the 3-mono-substituted catalyst is also discussed.
Collapse
Affiliation(s)
- Ryohei Yonesaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Walaa Akkad
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanao Sawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiro Morisaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
31
|
Alvim HGO, Pinheiro DLJ, Carvalho-Silva VH, Fioramonte M, Gozzo FC, da Silva WA, Amarante GW, Neto BAD. Combined Role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and Ionic Liquid Effect for the Enantioselective Biginelli Multicomponent Reaction. J Org Chem 2018; 83:12143-12153. [DOI: 10.1021/acs.joc.8b02101] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haline G. O. Alvim
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| | - Danielle L. J. Pinheiro
- Chemistry Department, Federal University of Juiz de Fora Rua José Lourenço Kelmer, Campus Universitário São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Valter H. Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, P.O. Box 459, Anápolis, Goiás 75001-970, Brazil
| | - Mariana Fioramonte
- Institute of Chemistry, University of Campinas (Unicamp), Campinas, São Paulo 13083-861, Brazil
| | - Fabio C. Gozzo
- Institute of Chemistry, University of Campinas (Unicamp), Campinas, São Paulo 13083-861, Brazil
| | - Wender A. da Silva
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| | - Giovanni W. Amarante
- Chemistry Department, Federal University of Juiz de Fora Rua José Lourenço Kelmer, Campus Universitário São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-970, Brazil
| |
Collapse
|
32
|
Schlegel M, Coburger P, Schneider C. A Novel Sc(OTf) 3 -Catalyzed (2+2+1)-Cycloannulation/Aza-Friedel-Crafts Alkylation Sequence toward Multicyclic 2-Pyrrolines. Chemistry 2018; 24:14207-14212. [PMID: 29939442 DOI: 10.1002/chem.201802478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The rapid assembly of molecular complexity continues to be at the forefront of novel reaction development. In the pursuit of that goal, we herein report a novel Sc(OTf)3 -catalyzed, one-pot multicomponent reaction that furnishes complex multicyclic 2-pyrrolines with excellent overall yields and perfect diastereocontrol. This process is based on our previously established (2+2+1)-cycloannulation of in situ generated 1-azaallyl cations, 1,3-dicarbonyls and primary amines. The newly formed and highly reactive aminal moiety is readily substituted with indoles and pyrroles both as external and internal π-nucleophiles to provide densely functionalized N-heterocycles with four new σ-bonds and two vicinal quaternary stereogenic centers. In addition, DFT calculations have been conducted to further characterize the intermediate 1-azaallyl cations.
Collapse
Affiliation(s)
- Marcel Schlegel
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Peter Coburger
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
33
|
Kayet A, Ajarul S, Paul S, Maiti DK. 5-Annulation of Ketoimines: TFA-Catalyzed Construction of Isoindolinone-3-carboxylates and Development of Photophysical Properties. J Org Chem 2018; 83:8401-8409. [PMID: 29979590 DOI: 10.1021/acs.joc.8b01049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein we have demonstrated the first report on 5-annulation of ketoimines to valuable isoindolinone-3-carboxylates. Instead of commonly used aldimine substrates, relatively less reactive ketoimines are employed for developing a TFA catalyzed organoreductive cyclization to furnish a variety of isoindolinones in excellent yield and reaction rate under mild reaction conditions. This is a metal-free event, which proceeds through a one pot ketoimine formation, hydride transfer from an organic reductant 2-(naphthalen-2-yl)-2,3-dihydrobenzo[ d]thiazole, and followed by five member cyclization sequences through TFA-activation of imine and ester groups. Studies on ESI-MS kinetics, leaving group aptitude, and control experiments led us to propose the mechanistic pathway of the new ketoimine-lactamization reaction. We have shown the synthetic utility of the emerging synthons through easy transformation of isoindolinones to different synthetic analogues. We investigated photophysical properties of the small molecules for their futuristic application as a pharmaceutical and materials, and the heterocycles displayed brilliant fluorescence activity.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry , University of Calcutta , University College of Science, 92, A. P. C. Road , Kolkata 700009 , India
| | - Sk Ajarul
- Department of Chemistry , University of Calcutta , University College of Science, 92, A. P. C. Road , Kolkata 700009 , India
| | - Sima Paul
- Department of Chemistry , University of Calcutta , University College of Science, 92, A. P. C. Road , Kolkata 700009 , India
| | - Dilip K Maiti
- Department of Chemistry , University of Calcutta , University College of Science, 92, A. P. C. Road , Kolkata 700009 , India
| |
Collapse
|
34
|
Iwanejko J, Wojaczyńska E. Cyclic imines – preparation and application in synthesis. Org Biomol Chem 2018; 16:7296-7314. [DOI: 10.1039/c8ob01874j] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic imines, available from various nitrogen-containing reactants, serve as versatile synthetic intermediates for biologically active compounds.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| | - Elżbieta Wojaczyńska
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| |
Collapse
|
35
|
Zhao MX, Dong ZW, Zhu GY, Zhao XL, Shi M. Diastereo- and enantioselective Mannich/cyclization cascade reaction of isocyanoacetates with cyclic sulfamide ketimines by cinchona alkaloid squaramide/AgOAc cooperative catalysis. Org Biomol Chem 2018; 16:4641-4649. [DOI: 10.1039/c8ob01090k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This reaction provides facile access to a variety of optically active imidazoline-fused sulfahydantoin derivatives in excellent yields and good to excellent stereoselectivities.
Collapse
Affiliation(s)
- Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhi-Wen Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guang-Yu Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiao-Li Zhao
- Department of Chemistry
- East China Normal University
- Shanghai
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|