1
|
Mishra R, Saha A, Chatterjee P, Kundu S, Verma M, Sarkar S, Sivakumar S, Datta A, Patra AK. Unravelling the Relaxation Pathway and Excited State Dynamics of Ruthenium(II) Polypyridyl Complexes Incorporating Phosphorus-Based Monodentate Ligands. Chemistry 2024:e202404231. [PMID: 39740089 DOI: 10.1002/chem.202404231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp=p-tolyl terpyridine; bpy=2,2'-bipyridyl; phen=1,10-phenanthroline and PTA=1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation. However, when excited around their respective MLCT bands at 77 K, luminescence bands at ~600 nm were observed. N-methylation of the coordinated PTA in complex [1]2+ resulted in [Ru(p-ttp)(bpy)(MePTA]3+ {[1-Me]3+} (MePTA=N-methyl-1,3,5-triaza-7-phosphaadamantane). The differences in the photophysical and electrochemical properties of [1]2+ and [1-Me]3+ were rationalized by DFT calculations. The transient absorption spectroscopic analysis was used to unravel the relaxation pathway of the complexes, suggesting the involvement of the 3MC state in the relaxation process. The effect of electronic modulation resulted from the N-methylation of PTA on the excited state dynamics of the complexes was observed. The MTT assays in various cancer cells revealed their non-cytotoxic nature in the dark or upon irradiation with 470 nm blue LED. The non-toxicity of the complexes, despite being internalized in cancer cells as established by ICP-MS, is attributed to their dark and photostability and the inability to generate 1O2.
Collapse
Affiliation(s)
- Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Abhijit Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Sucheta Kundu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Madhu Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
2
|
Mishra R, Chatterjee P, Butcher RJ, Patra AK. A serendipitous crossed aldol reaction in the ligand periphery of a Ru(II) polypyridyl complex in silica bed: prospects for delivering anticancer agents for photoactivated chemotherapy. Dalton Trans 2024; 53:18484-18493. [PMID: 39466686 DOI: 10.1039/d4dt02337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The localized drug action in tumors to overcome the side effects of chemotherapy has become an impetus for the development of photoactivated chemotherapy (PACT). As potential PACT agents, ruthenium(II) polypyridyl complexes have emerged as efficient photocages for anticancer agents. Bioactive molecules possessing functional groups such as nitrile, thioether, pyridine, imidazole, etc. are often directly attached to the primary coordination sphere of Ru(II) polypyridyl complexes for this purpose. Herein, we propose an alternative design strategy to attach potential anticancer agents lacking these functional groups with Ru(II) polypyridyl complexes through a pyridyl linker moiety. The proposition is, however, a thoughtful extrapolation of a serendipitous crossed aldol reaction that took place between the Ru(II)-coordinated 4-Pyridinecarboxaldehyde (4-PyCHO) and acetone, discovered while the Ru(II)-complex [Ru(ttp)(dppz)(4-PyCHO)]2+ {[1]} [ttp = p-tolyl terpyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine, 4-PyCHO = 4-Pyridinecarboxaldehyde] was being purified by silica gel column chromatography with acetone/water/saturated aqueous KNO3 solution as the eluent. The resultant pure aldol product [Ru(ttp)(dppz)(4-PyCHAc)]2+ {[1-Ac]} [4-PyCHAc = aldol modified 4-Pyridinecarboxaldehyde, i.e., 4-hydroxy-4-(pyridin-4-yl)butan-2-one)], was unambiguously characterized by a variety of spectroscopic techniques and X-ray crystallography. Furthermore, a 1H NMR study after 470 nm light irradiation and subsequent ESI-MS analysis revealed that 4-PyCHO could be photo-released from [1-Ac] as its in situ generated aldol adduct 4-PyCHAc. Therefore, this finding serves as a proof-of-concept that provides a simpler alternative design strategy for appending cancer-selective agents having carbonyl groups with α-hydrogens to ruthenium(II) polypyridyl complexes and their photorelease for selective and targeted anticancer chemotherapy.
Collapse
Affiliation(s)
- Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
3
|
Yin CW, Zhuo LT, Chen JY, Lin YH, Lin YT, Chen HY, Tsai MK, Chen YJ. Intrinsic 77 K Phosphorescence Characteristics and Computational Modeling of Ru(II)-(Bidentate Cyclometalated-Aromatic Ligand) Chromophores: Their Relatively Low Nonradiative Rate Constants Originating from Low Spin-Orbit Coupling Driven Vibronic Coupling Amplitudes between Emitting and Ground States. Inorg Chem 2024; 63:21981-21993. [PMID: 39509593 DOI: 10.1021/acs.inorgchem.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We investigated the photoinduced relaxation of Kasha-type emitting ruthenium-(bidentate cyclometalated aromatic ligand), Ru-CM, chromophores of [Ru(pzpy)2(CM)]+ ions (CM = 1-phenylisoquinoline, 2,3-diphenylpyrazine, and 1,4-diazatriphenylene and pzpy = 2-pyrazol-1-yl-pyridine). This is the first report of the phosphorescence behavior of pure Ru-(bidentate CM) chromophores. The 77 K photoinduced relaxation characteristics of phosphorescence chromophores showed emission quantum yields higher than those of reference Ru-bpy (bpy = 2,2'-bipyridine) chromophores in the emission region of 670-900 nm. This phenomenon of the Ru-CM chromophores could be attributed to their unusually low magnitudes for 77 K nonradiative rate constants (kNRD), although their radiative rate-constants (kRAD) are not remarkable. In order to examine the 77 K photoinduced behavioral relaxation difference between Ru-CM and Ru-bpy chromophores, we used computational simulation, applying the fundamental formalism of kRAD and temperature-independent kNRD equations, which included calculated spin-orbit coupling values.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Li-Ting Zhuo
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Jie Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Hui Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Ting Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Kang Tsai
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
4
|
Kuznetsov KM, Cariou K, Gasser G. Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer. Chem Sci 2024:d4sc04608k. [PMID: 39464604 PMCID: PMC11499979 DOI: 10.1039/d4sc04608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited application in cases of low cellular oxygenation, which is typical of cancerous tissues. Therefore, a strategy to overcome this drawback has been to combine this therapy with photoactivated chemotherapy (PACT), which works independently of the presence of oxygen. In this perspective, we examine compounds that act as both PDT and PACT agents and summarize their photophysical and biological characteristics.
Collapse
Affiliation(s)
- Kirill M Kuznetsov
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| |
Collapse
|
5
|
Cole HD, Vali A, Roque JA, Shi G, Talgatov A, Kaur G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties. Inorg Chem 2024; 63:9735-9752. [PMID: 38728376 PMCID: PMC11166183 DOI: 10.1021/acs.inorgchem.3c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A series of Ru(II) complexes incorporating two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (4,4'-btfmb) coligands and thienyl-appended imidazo[4,5-f][1,10]phenanthroline (IP-nT) ligands was characterized and assessed for phototherapy effects toward cancer cells. The [Ru(4,4'-btfmb)2(IP-nT)]2+ scaffold has greater overall redox activity compared to Ru(II) polypyridyl complexes such as [Ru(bpy)3]2+. Ru-1T-Ru-4T have additional oxidations due to the nT group and additional reductions due to the 4,4'-btfmb ligands. Ru-2T-Ru-4T also exhibit nT-based reductions. Ru-4T exhibits two oxidations and eight reductions within the potential window of -3 to +1.5 V. The lowest-lying triplets (T1) for Ru-0T-2T are metal-to-ligand charge-transfer (3MLCT) excited states with lifetimes around 1 μs, whereas T1 for Ru-3T-4T is longer-lived (∼20-24 μs) and of significant intraligand charge-transfer (3ILCT) character. Phototoxicity toward melanoma cells (SK-MEL-28) increases with n, with Ru-4T having a visible EC50 value as low as 9 nM and PI as large as 12,000. Ru-3T and Ru-4T retain some of this activity in hypoxia, where Ru-4T has a visible EC50 as low as 35 nM and PI as high as 2900. Activity over six biological replicates is consistent and within an order of magnitude. These results demonstrate the importance of lowest-lying 3ILCT states for phototoxicity and maintaining activity in hypoxia.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Alisher Talgatov
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
6
|
Rafic E, Ma C, Shih BB, Miller H, Yuste R, Palomero T, Etchenique R. RuBi-Ruxolitinib: A Photoreleasable Antitumor JAK Inhibitor. J Am Chem Soc 2024; 146:13317-13325. [PMID: 38700457 DOI: 10.1021/jacs.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.
Collapse
Affiliation(s)
- Estefania Rafic
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE, CONICET, Buenos Aires C1428EHA, Argentina
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE, CONICET, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
7
|
Dunbar MN, Steinke SJ, Piechota EJ, Turro C. Differences in Photophysical Properties and Photochemistry of Ru(II)-Terpyridine Complexes of CH 3CN and Pyridine. J Phys Chem A 2024; 128:599-610. [PMID: 38227956 DOI: 10.1021/acs.jpca.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A series of 22 Ru(II) complexes of the type [Ru(tpy)(L)(L')]n+, where tpy is the tridentate ligand 2,2';6,2″-terpyridine, L represents bidentate ligands with varying electron-donating ability, and L' is acetonitrile (1a-11a) or pyridine (1b-11b), were investigated. The dissociation of acetonitrile occurs from the 3MLCT state in 1a-11a, such that it does not require the population of a 3LF state. Electrochemistry and spectroscopic data demonstrate that the ground states of these series do not differ significantly. Franck-Condon line-shape analysis of the 77 K emission data shows no significant differences between the emitting 3MLCT states in both series. Arrhenius analysis of the temperature dependence of 3MLCT lifetimes shows that the energy barrier (Ea) to thermally populating a 3LF state from a lower energy 3MLCT state is significantly higher in the pyridine than in the CH3CN series, consistent with the photostability of complexes 1b-11b, which do not undergo pyridine photodissociation under our experimental conditions. Importantly, these results demonstrate that ligand photodissociation of pyridine in 1b-11b does not take place directly from the 3MLCT state, as is the case for 1a-11a. These findings have potential impact on the rational design of complexes for a number of applications, including photochemotherapy, dye-sensitized solar cells, and photocatalysis.
Collapse
Affiliation(s)
- Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Cole HD, Vali A, Roque JA, Shi G, Kaur G, Hodges RO, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg Chem 2023; 62:21181-21200. [PMID: 38079387 PMCID: PMC10754219 DOI: 10.1021/acs.inorgchem.3c03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 μs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 μs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 μM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 μM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| |
Collapse
|
9
|
Mishra R, Saha A, Chatterjee P, Bhattacharyya A, Patra AK. Ruthenium(II) Polypyridyl-Based Photocages for an Anticancer Phytochemical Diallyl Sulfide: Comparative Dark and Photoreactivity Studies of Caged and Precursor Uncaged Complexes. Inorg Chem 2023; 62:18839-18855. [PMID: 37930798 DOI: 10.1021/acs.inorgchem.3c02038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The spatiotemporal control over the drug's action offered by ruthenium(II) polypyridyl complexes by the selective activation of the prodrug inside the tumor has beaconed toward much-desired selectivity issues in cancer chemotherapy. The photocaging of anticancer bioactive ligands attached synergistically with cytotoxic Ru(II) polypyridyl cores and selective release thereof in cancer cells are a promising modality for more effective drug action. Diallyl sulfide (DAS) naturally found in garlic has anticancer, antioxidant, and anti-inflammatory activities. Herein, we designed two Ru(II) polypyridyl complexes to cage DAS having a thioether-based donor site. For in-depth photocaging studies, we compared the reactivity of the DAS-caged compounds with the uncaged Ru(II)-complexes with the general formula [Ru(ttp)(NN)(L)]+/2+. Here, in the first series, ttp = p-tolyl terpyridine, NN = phen (1,10-phenanthroline), and L = Cl- (1-Cl) and H2O (1-H2O), while for the second series, NN = dpq (pyrazino[2,3-f][1,10]phenanthroline), and L = Cl- (2-Cl) and H2O (2-H2O). The reaction of DAS with 1-H2O and 2-H2O yielded the caged complexes [Ru(ttp)(NN)(DAS)](PF6)2, i.e., 1-DAS and 2-DAS, respectively. The complexes were structurally characterized by X-ray crystallography, and the solution-state characterization was done by 1H NMR and ESI-MS studies. Photoinduced release of DAS from the Ru(II) core was monitored by 1H NMR and UV-vis spectroscopy. When irradiated with a 470 nm blue LED in DMSO, the photosubstitution quantum yields (Φ) of 0.035 and 0.057 were observed for 1-DAS and 2-DAS, respectively. Intriguing solution-state speciation and kinetic behaviors of the uncaged and caged Ru(II)-complexes emerged from 1H NMR studies in the dark, and they are depicted in this work. The caged 1-DAS and 2-DAS complexes remained mostly structurally intact for a reasonably long period in DMSO. The uncaged 1-Cl and 2-Cl complexes, although did not undergo substitution in only DMSO but in the 10% DMSO/H2O mixture, completely converted to the corresponding DMSO-adduct within 16 h. Toward gaining insights into the reactivity with the biological targets, we observed that 1-Cl upon hydrolysis formed an adduct with 5'-GMP, while a small amount of GSSG-adduct was observed when 1-Cl was reacted with GSH in H2O at 323 K. 1-Cl after hydrolysis reacted with l-methionine, although the rate was slightly slower compared with that with DMSO, suggesting varying reaction kinetics with different sulfur-based linkages. Although 1-H2O reacted with sulfoxide and thioether ligands at room temperature, the rate was much faster at higher temperatures obviously, and thiol-based systems needed higher thermal energy for conjugation. Overall, these studies provide insight for thoughtful design of new generation Ru(II) polypyridyl complexes for caging suitable bioactive organic molecules.
Collapse
Affiliation(s)
- Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Abhijit Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Atish Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
10
|
Zhang L, Wang P, Zhou XQ, Bretin L, Zeng X, Husiev Y, Polanco EA, Zhao G, Wijaya LS, Biver T, Le Dévédec SE, Sun W, Bonnet S. Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors. J Am Chem Soc 2023. [PMID: 37379365 DOI: 10.1021/jacs.3c04855] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 μM for the binding of Λ-[1]Cl2 to αIIbβ3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yurii Husiev
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ehider A Polanco
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Lukas S Wijaya
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
11
|
Steinke SJ, Piechota EJ, Loftus LM, Turro C. Acetonitrile Ligand Photosubstitution in Ru(II) Complexes Directly from the 3MLCT State. J Am Chem Soc 2022; 144:20177-20182. [DOI: 10.1021/jacs.2c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean J. Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Eric J. Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
12
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Beirne DF, Dalla Via M, Velasco-Torrijos T, Montagner D. Metal-Tyrosine Kinase Inhibitors: Targeted metal-drug conjugates. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
15
|
Steinke SJ, Gupta S, Piechota EJ, Moore CE, Kodanko JJ, Turro C. Photocytotoxicity and photoinduced phosphine ligand exchange in a Ru(ii) polypyridyl complex. Chem Sci 2022; 13:1933-1945. [PMID: 35308843 PMCID: PMC8848995 DOI: 10.1039/d1sc05647f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Two new tris-heteroleptic Ru(ii) complexes with triphenylphosphine (PPh3) coordination, cis-[Ru(phen)2(PPh3)(CH3CN)]2+ (1a, phen = 1,10-phenanthroline) and cis-[Ru(biq)(phen)(PPh3)(CH3CN)]2+ (2a, biq = 2,2'-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH3CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru(ii) polypyridyl complex has not previously been reported, and calculations reveal that it results from a trans-type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh3 and CH3CN for use in photochemotherapy.
Collapse
Affiliation(s)
- Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| |
Collapse
|
16
|
Cole HD, Roque JA, Lifshits LM, Hodges R, Barrett PC, Havrylyuk D, Heidary D, Ramasamy E, Cameron CG, Glazer EC, McFarland SA. Fine-Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity †. Photochem Photobiol 2022; 98:73-84. [PMID: 33559191 PMCID: PMC8349932 DOI: 10.1111/php.13395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023]
Abstract
In an earlier study of π-expansive ruthenium complexes for photodynamic and photochemo-therapies, it was shown that a pair of structural isomers differing only in the connection point of a naphthalene residue exhibited vastly different biological activity. These isomers are further explored in this paper through the activity of their functionalized derivatives. In normoxia, the inactive 2-NIP isomer (5) can be made as photocytotoxic as the active 1-NIP isomer (1) by functionalizing with methyl or methoxy groups, while methoxy variants of the 1-NIP isomer became inactive. In all cases, the singlet oxygen sensitization quantum yield was below 1%. Hypoxic photocytotoxicity was attenuated, with only three of the series showing any activity, notwithstanding the photodissociative ligands. The results here are consistent with the earlier findings in that seemingly minor structural modifications on the non-strained ligand can dramatically modulate the normoxic and hypoxic activity of these strained compounds and that these changes appear to exert a greater influence on photocytotoxicity than singlet oxygen sensitization or rates of photosubstitution in cell-free conditions would suggest.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Dmytro Havrylyuk
- Department of Chemistry, University of Kentucky, Lexington, KY, 76019-0065 United States, 40506-0055
| | - David Heidary
- Department of Chemistry, University of Kentucky, Lexington, KY, 76019-0065 United States, 40506-0055
| | - Elamparuthi Ramasamy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States,Corresponding authors: C.G.C <>; E.C.G. <>; S.A.M. <>
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, Lexington, KY, 76019-0065 United States, 40506-0055,Corresponding authors: C.G.C <>; E.C.G. <>; S.A.M. <>
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States,Corresponding authors: C.G.C <>; E.C.G. <>; S.A.M. <>
| |
Collapse
|
17
|
Chakraborty A, Roy S, Chakraborty MP, Roy SS, Purkait K, Koley TS, Das R, Acharya M, Mukherjee A. Cytotoxic Ruthenium(II) Complexes of Pyrazolylbenzimidazole Ligands That Inhibit VEGFR2 Phosphorylation. Inorg Chem 2021; 60:18379-18394. [PMID: 34780170 DOI: 10.1021/acs.inorgchem.1c02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eight new ruthenium(II) complexes of N,N-chelating pyrazolylbenzimidazole ligands of the general formula [RuII(p-cym)(L)X]+ [where the ligand L is 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole (L1) substituted at the 4 position of the pyrazole ring by Cl (L2), Br (L3), or I (L4) and X = Cl- and I-] were synthesized and characterized using various analytical techniques. Complexes 1 and 3 were also characterized by single-crystal X-ray crystallography, and they crystallized as a monoclinic crystal system in space groups P21/n and P21/c, respectively. The complexes display good solution stability at physiological pH 7.4. The iodido-coordinated pyrazolylbenzimidazole ruthenium(II) p-cymene complexes (2, 4, 6, and 8) are more resistant toward hydrolysis and have less tendency to form monoaquated complexes in comparison to their chlorido analogues (1, 3, 5, and 7). The halido-substituted 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole ligands, designed as organic-directing molecules, inhibit vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation. In addition, the ruthenium(II) complexes display a potential to bind to DNA bases. The cytotoxicity profile of the complexes (IC50 ca. 9-12 μM for 4-8) against the triple-negative breast cancer cells (MDA-MB-231) show that most of the complexes are efficient. The lipophilicity and cellular accumulation data of the complexes show a good correlation with the cytotoxicity profile of 1-8. The representative complexes 3 and 7 demonstrate the capability of arresting the cell cycle in the G2/M phase and induce apoptosis. The inhibition of VEGFR2 phosphorylation with the representative ligands L2 and L4 and the corresponding metal complexes 3 and 7 in vitro shows that the organic-directing ligands and their complexes inhibit VEGFR2 phosphorylation. Besides, L2, L4, 3, and 7 inhibit the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and proto-oncogene tyrosine-protein kinase (Src), capable of acting downstream of VEGFR2 as well as independently. Compounds L2, L4, 3, and 7 have a lesser effect on ERK1/2 and more prominently affect Src phosphorylation. We extended the study for L2 and 3 in the Tg(fli1:gfp) zebrafish model and found that L2 is more effective in vivo compared to 3 in inhibiting angiogenesis.
Collapse
|
18
|
Toupin N, Steinke SJ, Nadella S, Li A, Rohrabaugh TN, Samuels ER, Turro C, Sevrioukova IF, Kodanko JJ. Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. J Am Chem Soc 2021; 143:9191-9205. [PMID: 34110801 DOI: 10.1021/jacs.1c04155] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandeep Nadella
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
19
|
Bataglioli JC, Gomes LMF, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Modification of amyloid-beta peptide aggregation via photoactivation of strained Ru(ii) polypyridyl complexes. Chem Sci 2021; 12:7510-7520. [PMID: 34163842 PMCID: PMC8171320 DOI: 10.1039/d1sc00004g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aβ) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aβ peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aβ peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aβ peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aβ peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aβ1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aβ1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.
Collapse
Affiliation(s)
| | - Luiza M F Gomes
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Camille Maunoir
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Julia McCain
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Tim Storr
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| |
Collapse
|
20
|
Karges J, Stokes RW, Cohen SM. Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. Dalton Trans 2021; 50:2757-2765. [PMID: 33564808 PMCID: PMC7944940 DOI: 10.1039/d0dt04290k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adoption of compounds that target metalloenzymes comprises a relatively low (<5%) percentage of all FDA approved therapeutics. Metalloenzyme inhibitors typically coordinate to the active site metal ions and therefore contain ligands with charged or highly polar functional groups. While these groups may generate highly water-soluble compounds, this functionalization can also limit their pharmacological properties. To overcome this drawback, drug candidates can be formulated as prodrugs. While a variety of protecting groups have been developed, increasing efforts have been devoted towards the use of caging groups that can be removed upon exposure to light to provide spatial and temporal control over the treatment. Among these, the application of Ru(ii) polypyridine complexes is receiving increased attention based on their attractive biological and photophysical properties. Herein, a conjugate consisting of a metalloenzyme inhibitor and a Ru(ii) polypyridine complex as a photo-cage is presented. The conjugate was designed using density functional theory calculations and docking studies. The conjugate is stable in an aqueous solution, but irradiation of the complex with 450 nm light releases the inhibitor within several minutes. As a model system, the biochemical properties were investigated against the endonucleolytic active site of the influenza virus. While showing no inhibition in the dark in an in vitro assay, the conjugate generated inhibition upon light exposure at 450 nm, demonstrating the ability to liberate the metalloenzyme inhibitor. The presented inhibitor-Ru(ii) polypyridine conjugate is an example of computationally-guided drug design for light-activated drug release and may help reveal new avenues for the prodrugging of metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
21
|
Liu ZY, Zhang J, Sun YM, Zhu CF, Lu YN, Wu JZ, Li J, Liu HY, Ye Y. Photodynamic antitumor activity of Ru(ii) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor targeting photosensitizers. J Mater Chem B 2021; 8:438-446. [PMID: 31833531 DOI: 10.1039/c9tb02103e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two novel Ru(ii) polypyridyl complexes bearing imidazo-phenanthroline conjugated hydroxybenzoic acid groups were designed to enhance the tumor targeting ability as photosensitizers for photodynamic therapy. [Ru(bpy)2(phcpip)] (ClO4)2 (Ru-1) and [Ru(bpy)2(ohcpip)] (ClO4)2 (Ru-2) (bpy = 2,2'-bipyridine; phcpip = 2-(3-carboxyl-4-hydroxyphenyl) imidazo [4,5-f]phenanthroline; ohcpip = 2-(2-hydroxyl-3-carboxyphenyl) imidazo [4,5-f] [1,10] phenanthroline) were synthesized and their photodynamic antitumor activities were investigated. Both complexes displayed high photocytotoxicity toward cancerous cell lines HepG2, A549, MCF-7, and MDA-MB-231, but low photocytotoxicity toward normal cell lines GES-1 and Huvec. They were mainly localized at the nucleus of HepG2 cells after 24 h incubation, arrested the cell cycle at the G2/M phase and induced cancer cell apoptosis through reactive oxygen species (ROS) mediated pathways. Tumor targeting of the complexes is attributed to stronger molecular binding to DNA.
Collapse
Affiliation(s)
- Ze-Yu Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
23
|
Kumar P, Singh P, Saren S, Pakira S, Sivakumar S, Patra AK. Kinetically labile ruthenium(II) complexes of terpyridines and saccharin: effect of substituents on photoactivity, solvation kinetics, and photocytotoxicity. Dalton Trans 2021; 50:8196-8217. [PMID: 34031678 DOI: 10.1039/d1dt00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we designed six kinetically labile ruthenium(ii) complexes containing saccharin (sac) and 4'-substituted-2,2':6',2''-terpyridines (R-tpy), viz. trans-[Ru(sac)2(H2O)3(dmso-S)] (1) and [RuII(R-tpy)(sac)2(X)] [X = solvent molecule] (2-6). We intentionally kept the labile hydrolysable Ru-X bonds that were potentially activated via solvent-exchange reactions. This strategy generates a coordinative vacancy that allows further binding with potential biological targets. To gain insight into the electronic effects of ancillary ligands on Ru-X ligand-exchange kinetics or photoreactions, we have used a series of substituted terpyridines (R-tpy) and studied their solvation kinetics. The ternary complexes were also studied for their potential utility in Ru-assisted photoactivated chemotherapy (PACT) synergized with release of saccharin as a highly selective carbonic anhydrase IX (CA-IX) inhibitor, over-expressed in hypoxic tumors. The ternary complexes exhibit distorted octahedral geometry around Ru(ii) from two monodentate transoidal saccharin in the axial position, and tridentate terpyridines and labile solvent molecules at the basal plane (2-6). We studied their speciation, solvation kinetics, and photoreactivity in the presence of green LED light (λirr = 530 nm). All the complexes are relatively labile and undergo solvation in coordinating solvents (e.g. DMSO/DMF). The complexes undergo the ligand-substitution reaction, and their speciation and kinetics were studied by UV-Vis, ESI-MS, 1H-NMR, and structural analysis. We also attempted to assess the effect of various substituents on the ancillary terpyridine ligand (R-tpy) in photo-reactivity and ligand-exchange reactions. The photo-induced absorption and emission measurements suggested dissociation of the saccharin from the Ru-center supporting PACT pathways. The complexes display a significant binding affinity with CT-DNA (Kb ∼ 104-105 M-1) and bovine serum albumin (BSA) (KBSA ∼ 105 M-1). Cytotoxicity was studied in the dark and the presence of low energy UV-A light (365 nm) in cervical cancer cells (HeLa) and breast cancer cells (MCF7). Photoirradiation of the complexes induces the generation of reactive oxygen species (ROS) assessed using 1,3-diphenylisobenzofuran (DPBF) and intracellular DCFDA assays. The complexes are sufficiently internalized in cancer cells throughout the cytoplasm and nucleus and induce apoptosis as studied by staining with dual dyes using confocal microscopy.
Collapse
Affiliation(s)
- Priyaranjan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Prerana Singh
- Department of Chemical Engineering, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India and Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sanjoy Saren
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Sandip Pakira
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
24
|
Saha S, Peña B, Dunbar KR. Partially Solvated Dinuclear Ruthenium Compounds Bridged by Quinoxaline-Functionalized Ligands as Ru(II) Photocage Architectures for Low-Energy Light Absorption. Inorg Chem 2019; 58:14568-14576. [PMID: 31647230 DOI: 10.1021/acs.inorgchem.9b02232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium compounds with coordinated photolabile molecules that can be selectively released by irradiation with a visible light source are finding increasing applications in photoactivated chemotherapy (PCT) as photocages. Earlier photocages based on mononuclear Ru(II) compounds lack absorption in the therapeutic window (λ > 600 nm). In previous work, we synthesized the first partially solvated tppz bridged (tppz= 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine) dinuclear Ru(II) complex capable of photoinduced ligand exchange at both metal centers. To further explore the effect of the bridging ligand on Ru(II) photocage design, we used quinoxaline-functionalized bridging ligand platforms to prepare [{RuII(NCCH3)4}2(μ-BL)](PF6)4[BL = dpq, 2,3-di(pyridin-2-yl)quinoxaline (1); BL = dpb, 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (2)]. The compounds are capable of absorbing green light with tails extending beyond 650 nm which can be exploited for applications as PCT agents. Experimental results were additionally verified by DFT calculations. The use of two Ru(II) centers equipped with quinoxaline-based bridging ligands is a promising design strategy for the synthesis of a new family of dinuclear Ru(II) photocage prototypes with the ability to absorb low-energy visible light.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Bruno Peña
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| |
Collapse
|
25
|
Zhao J, Liu N, Sun S, Gou S, Wang X, Wang Z, Li X, Zhang W. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer. J Inorg Biochem 2019; 196:110684. [PMID: 31054419 DOI: 10.1016/j.jinorgbio.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/25/2023]
Abstract
Targeted delivery of clinically approved anticancer drug to tumor sites is an effective way to achieve enhanced drug efficacy as well as reduced side effects and toxicity. Here bicalutamide is caged by the Ru(II) center through the nitrile group, and three photoactive Ru(II) complexes were designed and synthesized. Docking study showed that the ruthenium(II) fragments can effectively block the binding of complexes 1-3 with AR (androgen receptor) owing to the large steric structures, thus bicalutamide in complexes 1-3 could not interact with AR-LBD (ligand binding domain). Once irradiation with blue light (465nm), complexes 1-3 can release bicalutamide and anticancer Ru(II) fragments, which possesses dual-action of AR binding and DNA interaction simultaneously. In vitro cytotoxicity study on these complexes further confirmed that complexes 1-3 exhibited considerable cytotoxicity upon irradiation with blue light. Significantly, complex 3 could be activated at 660nm, which greatly increases the scope of complex 3 to treat deeper within tissue. Theoretical calculations showed that the lowest singlet excitation energy of complex 3 is lower than those of complexes 1-2, which explains the experimental results well. Moreover, the 3MC (metal centered) states of these complexes are more stable than their 3MLCT (metal to ligand charge transfer) states, indicating that the photoactive processes of these complexes are likely to result in ligand dissociation.
Collapse
Affiliation(s)
- Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Nannan Liu
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Xinyi Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
26
|
Pickens RN, Neyhouse BJ, Reed DT, Ashton ST, White JK. Visible Light-Activated CO Release and 1O2 Photosensitizer Formation with Ru(II),Mn(I) Complexes. Inorg Chem 2018; 57:11616-11625. [DOI: 10.1021/acs.inorgchem.8b01759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rachael N. Pickens
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Bertrand J. Neyhouse
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Demi T. Reed
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Shanan T. Ashton
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Jessica K. White
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|