1
|
Zhao P, Liu M, Li Y, Wang L, Duan Z. Reactions of Benzyl Phosphine Oxide/Sulfide with (COCl) 2: Synthesis of Novel Acyl Chloride-Substituted Chlorophosphonium Ylides. J Org Chem 2024; 89:14305-14314. [PMID: 39316752 DOI: 10.1021/acs.joc.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
New reactions of benzyl phosphine oxide/sulfide with oxalyl chloride are presented. The resulting reactive intermediates, acyl chloride-substituted chlorophosphonium ylides, are capable of undergoing esterification and Friedel-Crafts acylation reactions, ultimately yielding either methyl 2-(2-bromophenyl)-2-(diphenylphosphoryl)acetate or β-carbonyl-diarylphosphine oxide derivatives. Additionally, when an alkynyl group is contained in the acyl chloride-substituted chlorophosphonium ylide, intramolecular cyclization occurs, leading to the formation of a pair of trans- and cis-dichlorophosphonyl benzofulvene isomers. The generation process of acyl chloride-substituted chlorophosphonium ylide was carefully monitored by using 31P{1H} NMR spectroscopy, and a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mengting Liu
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Seitz A, Maddigan-Wyatt JT, Cao J, Breugst M, Lupton DW. Enantioselective Synthesis of Cyclopentenes by (3+2) Annulation via a 2-Carbon Phosphonium. Angew Chem Int Ed Engl 2024; 63:e202408397. [PMID: 38747007 DOI: 10.1002/anie.202408397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Herein we report a catalytic enantioselective (3+2) annulation, in which a vinyl phosphonium intermediate serves as the 2-carbon component. The reaction involves an α-umpolung β-umpolung coupling sequence, enabled by β-haloacrylates and chiral enantioenriched phosphepine catalysts. The reaction shows good generality, providing access to an array of cyclopentenes, with mechanistic studies supporting stereospecific formation of the vinyl phosphonium intermediate which, then undergoes annulation with turn over limiting catalyst elimination. Beyond defining a new approach to cyclopentenes, these studies demonstrate that β-haloacrylates can replace ynoates in reaction designs that require exclusive umpolung coupling at the α- and β-positions.
Collapse
Affiliation(s)
- Antonia Seitz
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | - Jing Cao
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
3
|
Noda N, Yamaoka S, Ogi U, Horie M, Okano K, Mori A. A Ni 0(cod)(dq) (COD: 1,5-cycloctadiene; DQ: duroquinone) complex as a catalyst precursor for oligothiophene and polythiophene synthesis. Org Biomol Chem 2024; 22:2574-2579. [PMID: 38482726 DOI: 10.1039/d4ob00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Nickel-catalyzed syntheses of oligothiophene and polythiophene were carried out with Ni(cod)(dq) (COD: 1,5-cycloctadiene; DQ: duroquinone) as a catalyst precursor. Studies on the ligand exchange of Ni(cod)(dq) revealed that a high temperature was necessary to replace COD and DQ with PPh3 and N-heterocyclic carbene IPr. A coupling reaction of a metalated 3-hexylthiophene with 2-chloro-3-hexylthiophene employing Ni(cod)(dq) with IPr proceeded with a remarkably reduced amount of homocoupling byproduct. Polymerization of 2-chloro-3-hexylthiophene with Ni(cod)(dq)/DPPP also resulted in the reduction of the regioregularity defect.
Collapse
Affiliation(s)
- Naoki Noda
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Seiha Yamaoka
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Ukyo Ogi
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Grewelinger P, Wiesmeier T, Präsang C, Morgenstern B, Scheschkewitz D. Diboriranide σ-Complexes of d- and p-Block Metals. Angew Chem Int Ed Engl 2023; 62:e202308678. [PMID: 37522813 DOI: 10.1002/anie.202308678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Diboriranides are the smallest conceivable monoanionic aromatic cycles, yet only limited examples have been reported and their reactivity and complexation behavior remain completely unexplored. We report a straightforward synthesis of the first peraryl diboriranide c-(DurB)2 CPh- as its lithium salt in three steps via the corresponding non-classical diborirane from a readily available 1,2-dichlorodiborane(4) (Dur=2,3,5,6-tetramethylphenyl). With the preparation and complete characterization of representative complexes with tin, copper, gold and zinc, we demonstrate the strong preference of the diboriranide for σ-type coordination modes towards main group and transition metal centers under unperturbed retention of the three-membered B2 C-ring's 2e- π-system.
Collapse
Affiliation(s)
- Philipp Grewelinger
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Tim Wiesmeier
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Carsten Präsang
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray diffraction, Saarland University, 66123, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Al-Sulaimi S, Rajendran K, Nikitin K, Gilheany DG. Unexpected rapid P-stereomutation of phosphine oxides catalysed by chlorophosphonium salts. Chem Commun (Camb) 2023; 59:11696-11699. [PMID: 37700722 DOI: 10.1039/d3cc03719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
P-Stereomutation of phosphine oxides is extremely slow. We show that it is catalysed by chlorophosphonium salts (CPS) which can directly be formed in the system in situ. The racemization of phosphine oxides at ambient conditions catalysed by 1 mol% of CPS takes 1-2 hours and can be arrested by additon of a primary alcohol. The process probably proceeds via the development of oxodiphosphonium P-O-P species.
Collapse
Affiliation(s)
- Sulaiman Al-Sulaimi
- Department of Biological Science & Chemistry, College of Arts and Sciences, University of Nizwa, Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Kamalraj Rajendran
- School of Chemistry, University College Dublin, Dublin 4, Belfield, Ireland.
| | - Kirill Nikitin
- School of Chemistry, University College Dublin, Dublin 4, Belfield, Ireland.
| | - Declan G Gilheany
- School of Chemistry, University College Dublin, Dublin 4, Belfield, Ireland.
| |
Collapse
|
6
|
Fan YX, Huang HL, Su QQ, Lv YZ, Li S, Ma YH, Mao YX, Ma CL, Du JY. Brønsted acid-mediated tandem cyclization of triarylphosphines and in situ generated ortho-alkynyl quinone methides: access to heterocyclic quaternary phosphonium salts. Chem Commun (Camb) 2023; 59:3463-3466. [PMID: 36872868 DOI: 10.1039/d2cc06994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Heterocyclic Quaternary Phosphonium Salts (HQPS) have emerged as promising chemicals for organic synthesis and medicinal chemistry. However, the present synthetic methodology of this type of compound is still limited. Here, we report a deconstructive reorganization strategy based on Brønsted acid-mediated tandem 1,4 addition/intramolecular cyclization of triphenylphosphine derivatives and in situ generated o-AQMs for the first time. This protocol provides a novel approach to heterocyclic quaternary phosphonium salts. The method also features a non-metal catalyst, mild reaction conditions, high efficiency and wide substrate scope. Moreover, a series of obtained heterocyclic phosphonium salts can be converted to isotopically labelled 2-benzofuran compounds directly by simple deuteration reactions.
Collapse
Affiliation(s)
- Ya-Xin Fan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Qing-Qiang Su
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yong-Zheng Lv
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Shan Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Xin Mao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
7
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
8
|
1,3,3,3′,3′-Pentaisopropyl-1,3,3′,6,6′,7,7′-heptahydro-1λ5-1,1′-spirobi[acenaphtho 5,6-cd][1,2,6]oxadiphosphinine]-3,3′-diium Triiodide. MOLBANK 2022. [DOI: 10.3390/m1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reaction of bis(peri-substituted) triphosphine iPrP(AcenapPiPr2)2 (Acenap = acenaphthene-5,6-diyl) with iodine, followed by hydrolysis, afforded ionic species with [iPrP(AcenapP(O)iPr2)2] dication, containing P-O-P-O-P motif, balanced by triiodide anions. The new species were fully characterised, including single crystal X-ray diffraction. The formation of the unusual double-bridged motif is likely a result of crowding in the peri-region.
Collapse
|
9
|
Quaternary phosphonium salts in the synthetic chemistry: Recent progress, development, and future perspectives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Bodrikov IV, Titov EY, Vorotyntsev AV, Pryakhina VI, Titov DY. Synthesis of Decorated Carbon Structures with Encapsulated Components by Low-Voltage Electric Discharge Treatment. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Polycondensation of complexes of chloromethanes with triphenylphosphine by the action of low-voltage electric discharges in the liquid phase gives nanosized solid products. The elemental composition involving the generation of element distribution maps (scanning electron microscopy–energy dispersive X‑ray spectroscopy mapping) and the component composition (by direct evolved gas analysis–mass spectrometry) of the solid products have been studied. The elemental and component compositions of the result-ing structures vary widely depending on the chlorine content in the substrate and on the amount of triphenylphosphine taken. Thermal desorption analysis revealed abnormal behavior of HCl and benzene present in the solid products. In thermal desorption spectra, these components appear at an uncharacteristically high temperature. The observed anomaly in the behavior of HCl is due to HCl binding into a complex of the solid anion $${\text{HCl}}_{2}^{ - }$$ with triphenyl(chloromethyl)phosphonium chloride, which requires a relatively high temperature (up to 800 K) to decompose. The abnormal behavior of benzene is associated with its encapsulated state in nanostructures. The appearance of benzene begins at 650 K and continues up to temperatures above 1300 K.
Collapse
|
11
|
Alam P, Cheung TS, Leung NLC, Zhang J, Guo J, Du L, Kwok RTK, Lam JWY, Zeng Z, Phillips DL, Sung HHY, Williams ID, Tang BZ. Organic Long-Persistent Luminescence from a Single-Component Aggregate. J Am Chem Soc 2022; 144:3050-3062. [DOI: 10.1021/jacs.1c11480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Tsz Shing Cheung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Nelson L. C. Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ryan T. K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Herman H. Y. Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Ian D. Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Guangzhou 510530, China
- Center for Aggregation-Induced Emission, from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Martins FA, Chagas P, Thomasi SS, Oliveira LCA, Diniz R, Freitas MP. Theoretical and X-ray evidence of electrostatic phosphonium anti and gauche effects. Chemphyschem 2022; 23:e202100856. [PMID: 34995018 DOI: 10.1002/cphc.202100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Sulfur, not phosphorus, is the only known third-row element capable of experiencing an electrostatic gauche effect with fluorine. Some six-membered rings containing an endocyclic phosphorus atom and a β-fluorine substituent that can interconvert to axial ( gauche relative to phosphorus) and equatorial positions were then analysed. While phosphines do not establish an electrostatic attraction between fluorine and phosphorus, some oxidised forms exhibit surprising stability for the sterically disfavoured axial orientation. Because the nature of this behaviour was not obvious, since an intramolecular hydrogen bond can appear, a phosphonium derivative was further studied and its axial conformation was found to be highly stable. A preference for the gauche arrangement appears even for the acyclic and sterically hindered (2-fluoroethyl)triphenylphosphonium cation. On the other hand, (ethane-1,2-diyl)bis(phosphonium) cations are exclusively in anti conformation due to an (+/+)-electrostatic repulsion between the positively charged phosphonium groups.
Collapse
Affiliation(s)
- Francisco A Martins
- Federal University of Lavras: Universidade Federal de Lavras, Chemistry, Av. Lagoa Azul, Casa, Lavras, 37200-900, Lavras, BRAZIL
| | | | - Sérgio S Thomasi
- Federal University of Lavras: Universidade Federal de Lavras, Chemistry, BRAZIL
| | | | - Renata Diniz
- Universidade Federal de Minas Gerais, Chemistry, BRAZIL
| | - Matheus P Freitas
- Federal University of Lavras, Department of Chemsitry, Campus UFLA, CP 3037, 37200-000, Lavras, BRAZIL
| |
Collapse
|
13
|
Babu KN, Massarwe F, Shioukhi I, Masarwa A. Sequential Selective C-H and C(sp 3 )- + P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angew Chem Int Ed Engl 2021; 60:26199-26209. [PMID: 34618394 DOI: 10.1002/anie.202111164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Organophosphonium salts containing C(sp3 )-+ P bonds are among the most utilized reagents in organic synthesis for constructing C-C double bonds. However, their use as C-selective electrophilic groups is rare. Here, we explore an efficient and general transition-metal-free method for sequential chemo- and regioselective C-H and C(sp3 )-+ P bond functionalizations. In the present study, C-H alkylation resulting in the synthesis of benzhydryl triarylphosphonium salts was achieved by one-pot, four-component cross-coupling reactions of simple and commercially available starting materials. The utility of the resulting phosphonium salt building blocks was demonstrated by the chemoselective post-functionalization of benzylic C(sp3 )-+ PPh3 groups to achieve aminations, thiolations, and arylations. In this way, benzhydrylamines, benzhydrylthioethers, and triarylmethanes, structural motifs that are present in many pharmaceuticals and agrochemicals, are readily accessed. These include the synthesis of two anticancer agents from simple materials in only two to three steps. Additionally, a protocol for late-stage functionalization of bioactive drugs has been developed using benzhydrylphosphonium salts. This new approach should provide novel transformations for application in both academic and pharmaceutical research.
Collapse
Affiliation(s)
- K Naresh Babu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Fedaa Massarwe
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Israa Shioukhi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
14
|
Babu KN, Massarwe F, Shioukhi I, Masarwa A. Sequential Selective C−H and C(sp
3
)−
+
P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. Naresh Babu
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Fedaa Massarwe
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Israa Shioukhi
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Ahmad Masarwa
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
15
|
Terekhova N, Khailova LS, Rokitskaya TI, Nazarov PA, Islamov DR, Usachev KS, Tatarinov DA, Mironov VF, Kotova EA, Antonenko YN. Trialkyl(vinyl)phosphonium Chlorophenol Derivatives as Potent Mitochondrial Uncouplers and Antibacterial Agents. ACS OMEGA 2021; 6:20676-20685. [PMID: 34396013 PMCID: PMC8359139 DOI: 10.1021/acsomega.1c02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 05/08/2023]
Abstract
Trialkyl phosphonium derivatives of vinyl-substituted p-chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number (n) of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with n from 4 to 7 also proved to be rather potent antibacterial agents. Methylation of the chlorophenol hydroxyl group suppressed the effects of P555 and P444 on the respiration and membrane potential of mitochondria but not those of P666, thereby suggesting a mechanistic difference in the mitochondrial uncoupling by these derivatives, which was predominantly protonophoric (carrier-like) in the case of P555 and P444 but detergent-like with P666. The latter was confirmed by the carboxyfluorescein leakage assay on model liposomal membranes.
Collapse
Affiliation(s)
- Natalia
V. Terekhova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Lyudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Daut R. Islamov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Konstantin S. Usachev
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Dmitry A. Tatarinov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vladimir F. Mironov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
16
|
Luo Y, Tan T, Wang S, Pang R, Jiang L, Li D, Feng J, Zhang H, Zhang S, Li C. Multivariant ligands stabilize anionic solvent-oriented α-CsPbX 3 nanocrystals at room temperature. NANOSCALE 2021; 13:4899-4910. [PMID: 33625426 DOI: 10.1039/d0nr08697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cubic phase CsPbX3 nanocrystals (NCs) are promising candidates for optoelectronic applications. However, their chemical stability heavily depends on the dynamic ionic surface. In this work, based on the interdependency of the ligands and the reaction solvent, a protocol is developed for high-quality α-CsPbX3 under ambient conditions. Utilizing this method, the size and full width at half maximum of CsPbX3 NCs can be simply tuned via changing the cationic ligands or reaction solvent, such as CH3Cl, CH2Cl2, or toluene. One remarkable result is the synthesis of cubic CsPbI3 NCs, for which large-scale syntheses have not been reported in the literature except for our method, due to significant phase transition at room temperature. Another result is that we have realized ultrasmall sized CsPbCl3 NCs with emission at 385 nm for the first time. Furthermore, the elimination of reaction solvent (such as ODE, DMSO, DMF) in our protocol reduces the purification-induced surface ligand loss and the irreversible phase transition to a nonfluorescent phase. Our CsPbX3 NCs show near-perfect photoluminescence quantum yield (PL QY) and long-term stability in the presence of moisture. Further characterization demonstrates that all the ligands, whether the initial paired X type or the degenerated hybrid L-X type, remain perfectly passivating on the defect sites throughout.
Collapse
Affiliation(s)
- Yanqing Luo
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kapuśniak Ł, Plessow PN, Trzybiński D, Woźniak K, Hofmann P, Jolly PI. A Mild One-Pot Reduction of Phosphine(V) Oxides Affording Phosphines(III) and Their Metal Catalysts. Organometallics 2021; 40:693-701. [PMID: 33867621 PMCID: PMC8043083 DOI: 10.1021/acs.organomet.0c00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 02/06/2023]
Abstract
![]()
The metal-free reduction
of a range of phosphine(V) oxides employing
oxalyl chloride as an activating agent and hexachlorodisilane as reducing
reagent has been achieved under mild reaction conditions. The method
was successfully applied to the reduction of industrial waste byproduct
triphenylphosphine(V) oxide, closing the phosphorus cycle to cleanly
regenerate triphenylphosphine(III). Mechanistic studies and quantum
chemical calculations support the attack of the dissociated chloride
anion of intermediated phosphonium salt at the silicon of the disilane
as the rate-limiting step for deprotection. The exquisite purity of
the resultant phosphine(III) ligands after the simple removal of volatiles
under reduced pressure circumvents laborious purification prior to
metalation and has permitted the facile formation of important transition
metal catalysts.
Collapse
Affiliation(s)
- Łukasz Kapuśniak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland
| | - Peter Hofmann
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Phillip Iain Jolly
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury Street 101, 02-089 Warsaw, Poland.,Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Vetter AC, Gilheany DG, Nikitin K. Wittig Olefination Using Phosphonium Ion-Pair Reagents Incorporating an Endogenous Base. Org Lett 2021; 23:1457-1462. [PMID: 33529039 DOI: 10.1021/acs.orglett.1c00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite common perception, the use of strong bases in Wittig chemistry is utterly unnecessary: we report a series of novel ion-pair phosphonium carboxylate reagents which are essentially "storable ylides". These reagents are straightforwardly prepared in excellent yields, and their fluxional nature permits clean olefination of a broad range of aldehydes and even hemiacetals.
Collapse
Affiliation(s)
- Anna C Vetter
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan G Gilheany
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kirill Nikitin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Tannoux T, Casaretto N, Bourcier S, Gandon V, Auffrant A. Reaction of Phosphines with 1-Azido-(2-halogenomethyl)benzene Giving Aminophosphonium-Substituted Indazoles. J Org Chem 2021; 86:3017-3023. [PMID: 33356238 DOI: 10.1021/acs.joc.0c02371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between a 1-azido-(2-halogenomethyl)benzene and a phosphine gives different products depending on the nature of the halogen, the phosphine itself, and the solvent employed. While PPh3 (2 equiv) reacts with the chloro reagent in toluene to give the expected iminophosphorane-phosphonium adduct, trialkylphosphines (PCy3 and PEt3) surprisingly furnish an aminophosphonium substituted by a zwitterionic indazole. The bicyclic product can also form from PPh3 using the bromo reagent in acetonitrile. A mechanism is proposed for this cyclization based on DFT calculations.
Collapse
Affiliation(s)
- Thibault Tannoux
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
20
|
Belyaev A, Chou P, Koshevoy IO. Cationic Organophosphorus Chromophores: A Diamond in the Rough among Ionic Dyes. Chemistry 2021; 27:537-552. [PMID: 32492231 PMCID: PMC7821147 DOI: 10.1002/chem.202001853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/21/2022]
Abstract
Tunable electron-accepting properties of the cationic phosphorus center, its geometry and unique preparative chemistry that allows combining this unit with diversity of π-conjugated motifs, define the appealing photophysical and electrochemical characteristics of organophosphorus ionic chromophores. This Minireview summarizes the achievements in the synthesis of the π-extended molecules functionalized with P-cationic fragments, modulation of their properties by means of structural modification, and emphasizes the important effect of cation-anion interactions, which can drastically change physical behavior of these two-component systems.
Collapse
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| |
Collapse
|
21
|
An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers (Basel) 2020; 12:polym12122878. [PMID: 33266285 PMCID: PMC7759937 DOI: 10.3390/polym12122878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.
Collapse
|
22
|
Ling I, Sobolev AN, Skelton BW, Raston CL. Understanding the structural properties of p-xylylenebis(triphenylphosphonium) cation under different pH and anion conditions. CrystEngComm 2020. [DOI: 10.1039/d0ce01274b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cis- and trans-conformers of the p-xylylenebis(triphenylphosphonium) dication can be accommodated in crystalline solids, depending on the pH of the solution and the presence of auxiliary anions (including p-sulfonatocalix[4]arene) and cations.
Collapse
Affiliation(s)
- Irene Ling
- School of Science
- Monash University Malaysia
- 47500 Bandar Sunway
- Malaysia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA, M310
- The University of Western Australia
- Perth
- Australia
| | - Brian W. Skelton
- School of Molecular Sciences and CMCA, M310
- The University of Western Australia
- Perth
- Australia
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology
- College of Science and Engineering
- Flinders University
- Bedford Park
- Australia
| |
Collapse
|
23
|
Bugaenko DI, Volkov AA, Livantsov MV, Yurovskaya MA, Karchava AV. Catalyst-Free Arylation of Tertiary Phosphines with Diaryliodonium Salts Enabled by Visible Light. Chemistry 2019; 25:12502-12506. [PMID: 31339601 DOI: 10.1002/chem.201902955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/11/2022]
Abstract
The visible-light-induced arylation of tertiary phosphines with aryl(mesityl)iodonium triflates to produce the quaternary phosphonium salts occurs under mild, metal, and catalyst-free conditions. Photo-excited EDA complexes between diaryliodonium salts and phosphines supposedly enable this transformation, which is difficult to achieve through the traditional ground-state reactions. Demonstrating high functional group tolerance, broad scope, and complete selectivity of the aryl group transfer, the method is particularly compatible with sterically congested phosphines, which are challenging under metal-based catalytic methods.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Alexey A Volkov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Mikhail V Livantsov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Marina A Yurovskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Alexander V Karchava
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
24
|
Rokitskaya TI, Terekhova NV, Khailova LS, Kotova EA, Plotnikov EY, Zorov DB, Tatarinov DA, Antonenko YN. Zwitterionic Protonophore Derived from 2-(2-Hydroxyaryl)alkenylphosphonium as an Uncoupler of Oxidative Phosphorylation. Bioconjug Chem 2019; 30:2435-2443. [PMID: 31374173 DOI: 10.1021/acs.bioconjchem.9b00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
2-(2-Hydroxyaryl)alkenylphosphonium salts (here coined as PPR) representing derivatives of quaternary phosphonium with two phenyl (P) and one alkyl (R) substituents linked through alkenyl bridge to substituted phenol were applied here to planar bilayer lipid membranes (BLM), isolated mitochondria, and cell culture. PPR with six carbon atoms in R (PP6) induced proton-selective currents across BLM and caused mitochondrial uncoupling. In particular, PP6 at submicromolar concentrations accelerated respiration, decreased membrane potential, and reduced ATP synthesis in isolated rat liver mitochondria (RLM). Methylation of a hydroxyl group substantially suppressed the protonophoric activity of PP6 on BLM and its uncoupling potency in RLM. Of note, the methylated derivative PP6-OMe was synthesized here via a new synthetic route including cyclization of PP6 with subsequent ring opening. PPR were considered as protonophoric uncouplers of a zwitterionic type, capable of penetrating membranes both as a zwitterion composed of a deprotonated phenol and a cationic quaternary phosphonium, and as a protonated cation. The protonophoric and uncoupling properties of PPR found here were speculated to account for their strong antibacterial activity described previously.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| | - Natalia V Terekhova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , Kazan 420088 , Russian Federation
| | - Lyudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| | - Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , Kazan 420088 , Russian Federation.,Kazan Federal University , Kremlevskaya Str. 18 , Kazan 420008 , Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Leninskie Gory 1 , Moscow 119991 , Russian Federation
| |
Collapse
|
25
|
Yu F, Mao R, Yu M, Gu X, Wang Y. Generation of Aryl Radicals from Aryl Halides: Rongalite-Promoted Transition-Metal-Free Arylation. J Org Chem 2019; 84:9946-9956. [PMID: 31310121 DOI: 10.1021/acs.joc.9b01113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new and practical method for the generation of aryl radicals from aryl halides is reported. Rongalite as a novel precursor of super electron donors was used to initiate a series of electron-catalyzed reactions under mild conditions. These transition-metal-free radical chain reactions enable the efficient formation of C-C, C-S, and C-P bonds through homolytic aromatic substitution or SRN1 reactions. Moreover, the synthesis of antipsychotic drug Quetiapine was performed on gram scale through the described method. This protocol demonstrated its potential as a promising arylation method in organic synthesis.
Collapse
Affiliation(s)
- Fazhi Yu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , China
| | - Runyu Mao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , China
| | - Mingcheng Yu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , China
| |
Collapse
|
26
|
Vetter AC, Nikitin K, Gilheany DG. Exploring an Umpolung strategy for quaternization of phosphorus. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1541242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna C. Vetter
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - Kirill Nikitin
- School of Chemistry, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
27
|
Khasiyatullina NR, Mironov VF, Voloshina AD, Sapunova AS. Synthesis and Antimicrobial Properties of Novel Phosphonium Salts Bearing 1,4-Dihydroxyaryl Fragment. Chem Biodivers 2019; 16:e1900039. [PMID: 30817850 DOI: 10.1002/cbdv.201900039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
A versatile two-step pathway to the synthesis of triaryl(2,5-dihydroxy-6-methyl-3-(propan-2-yl)phenyl)- and triaryl(1,4-dihydroxynaphthyl)phosphonium salts from triarylphosphonium trifluoroacetates was developed. The reaction proceeds under mild conditions (20 °C, CH2 Cl2 ) with high yields (88-95 %). Some representatives of this series possess low hemolytic and high bactericidal activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Nadezhda R Khasiyatullina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Vladimir F Mironov
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Alexandra D Voloshina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Anastasiya S Sapunova
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| |
Collapse
|
28
|
Zhao Y, Lin JH, Hang XC, Xiao JC. Ag-Mediated Trifluoromethylthiolation of Inert Csp3–H Bond. J Org Chem 2018; 83:14120-14125. [DOI: 10.1021/acs.joc.8b02207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|