1
|
Zheng J, Liu D, Liu X, Wang Z, Li J, Wang X, Wang J, Fu Q, Cao Y, Jiang L, Chen Y. Ag/ZnO microcavities with high sensitivity and self-cleaning properties for fast repetitive SERS detection. Phys Chem Chem Phys 2024; 26:17083-17089. [PMID: 38842138 DOI: 10.1039/d4cp01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A SERS substrate with high sensitivity and reusability was proposed. The chip consists of multiple ZnO microcavities loaded with silver particles. Based on structural characteristics, this coupling between cavity modes and localized surface plasmon modes can highly localize the electric field, where experimental results revealed a detection limit of 10-11 M for R6G. In addition, during carrier control in semiconductors with localized electromagnetic fields, our substrate also exhibits high self-cleaning efficiency and in situ detection stability. Even in a dry environment, it exhibits excellent light-mediated cleaning ability across multiple reuse test cycles. The convenient, rinse-free substrate, with its cost-effective and sustainable features, shows great promise for the study on detection and degradation of active materials.
Collapse
Affiliation(s)
- Jiale Zheng
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Dongliang Liu
- School of Science, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Xilong Liu
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zekai Wang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Junfeng Li
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinxin Wang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Wang
- School of Science, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Qiang Fu
- Department of Optoelectronic Information Science and Engineering, School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Yanqiang Cao
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liyong Jiang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yikai Chen
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing, 210094, China
| |
Collapse
|
2
|
Nguyen HA, Mai QD, Nguyet Nga DT, Pham MK, Nguyen QK, Do TH, Luong VT, Lam VD, Le AT. Paper/GO/e-Au flexible SERS sensors for in situ detection of tricyclazole in orange juice and on cucumber skin at the sub-ppb level: machine learning-assisted data analysis. NANOSCALE ADVANCES 2024; 6:3106-3118. [PMID: 38868820 PMCID: PMC11166118 DOI: 10.1039/d3na01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Despite being an excellent surface enhanced Raman scattering (SERS) active material, gold nanoparticles were difficult to be loaded onto the surface of filter paper to fabricate flexible SERS substrates. In this study, electrochemically synthesized gold nanoparticles (e-AuNPs) were deposited on graphene oxide (GO) nanosheets in solution by ultrasonication, resulting in the formation of a GO/Au hybrid material. Thanks to the support of GO, the hybrid material could adhere onto the surface of filter paper, which was immersed into a GO/Au solution for 24 h and dried naturally at room temperature. The paper-based materials were then employed as substrates for a surface enhanced Raman scattering (SERS) sensing platform to detect tricyclazole (TCZ), a widely used pesticide, resulting in better sensitivity compared to the use of paper/Au SERS sensors. With the most optimal GO content of 4%, paper/GO/Au SERS sensors could achieve a limit of detection of 1.32 × 10-10 M in standard solutions. Furthermore, the filter paper-based SERS sensors also exhibited significant advantages in sample collection in real samples. On one hand, the sensors were dipped into orange juice, allowing TCZ molecules in this real sample to be adsorbed onto their SERS active surface. On the other hand, they were pasted onto cucumber skin to collect the analytes. As a result, the paper/GO/Au SERS sensors could sense TCZ in orange juice and on cucumber skin at concentrations as low as 10-9 M (∼2 ppb). In addition, a machine learning model was designed and developed, allowing the sensing system to discriminate TCZ from nine other organic compounds and predict the presence of TCZ on cucumber skin at concentrations down to 10-9 M.
Collapse
Affiliation(s)
- Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quan Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Minh Khanh Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quoc Khanh Nguyen
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Trong Hiep Do
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Van Thien Luong
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Vu Dinh Lam
- Institute of Materials Science (IMS), Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
3
|
Tan L, Lou Y, Zhu JJ. High-performance SERS chips for sensitive identification and detection of antibiotic residues with self-assembled hollow Ag octahedra. Chem Commun (Camb) 2023; 59:14443-14446. [PMID: 37982297 DOI: 10.1039/d3cc05297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
High-performance SERS chips via self-assembled hollow Ag octahedra on PDMS were employed to achieve the sensitive identification and detection of antibiotic residues. The developed SERS chips were successfully applied in the detection of ciprofloxacin (CIP), amoxicillin (AMX) and cefazolin (CZL) in wastewater and tap water samples, as well as enrofloxacin (ENR) in milk, demonstrating the sensitive determination of antibiotics in the real environment. From this perspective, these SERS chips are expected to expand the on spot sensitive detection and identification field of antibiotic residues.
Collapse
Affiliation(s)
- Lu Tan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
4
|
Tian L, Chen C, Gong J, Han Q, Shi Y, Li M, Cheng L, Wang L, Dong B. The Convenience of Polydopamine in Designing SERS Biosensors with a Sustainable Prospect for Medical Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:4641. [PMID: 37430555 PMCID: PMC10223239 DOI: 10.3390/s23104641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Tian
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Cong Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Jing Gong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Qi Han
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Liang Cheng
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Zhu L, Meng Z, Hu S, Zhao T, Zhao B. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22730-22736. [PMID: 37125659 DOI: 10.1021/acsami.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although there has been intense research on plasmon-induced charge transfer within metal/semiconductor heterostructures, previous studies have all focused on the surface plasmonic resonance (SPR) of only noble metals. Herein and for the first time, we observe and take into account the plasmonic coupling between SPR of both noble-metal and semiconductor nanostructures. A W18O49/Ag heterostructure composed of metallic Ag nanoparticles (Ag NPs) and semiconducting W18O49 nanowires (W18O49 NWs) is designed and fabricated, which exhibits a broad and strong SPR absorption in the visible wavelength range. This SPR band is attributed to the SPR coupling between the SPR of both Ag NPs and W18O49 NWs. Surface-enhanced Raman scattering (SERS) is then used to reveal the interactions between the metal SPR, semiconductor SPR, and the heterostructure's charge transfer (CT) process, demonstrating that such coupled SPR enhanced the heterostructure's internal CT and SERS signals. Finally, we proposed a new coupled-plasmon-induced charge transfer mechanism to interpret the improved CT efficiency between the SERS substrate and molecules. Our work provides insight for further studies on plasmonic effects and interfacial charge transfer in metal/semiconductor heterostructures.
Collapse
Affiliation(s)
- Lin Zhu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Zhen Meng
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Saizhen Hu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Tiancong Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Bing Zhao
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
6
|
Pusty M, Shirage PM. Defect-Induced Self-Poling in a W 18O 49/PVDF Piezoelectric Energy Harvester. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11787-11800. [PMID: 36112780 DOI: 10.1021/acs.langmuir.2c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
W18O49 nanostructures, previously used for electrocatalysis, energy storage, electrochromic, and gas sensing applications, are incorporated in poly(vinylidene fluoride) (PVDF) in this work for mechanical energy-harvesting applications. X-ray diffraction spectroscopy (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), and the polarization-electric (P-E) field loop test prompts the addition of W18O49 nanorods in PVDF nucleates and stabilizes the piezoelectric polar γ-phase in the nanocomposite. Electrochemical experiments were employed for the first time to relate the event of the evolution of crystalline phases in PVDF to the transfer of electrons to the electrolyte from PVDF using the data from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High dielectric constant (ε') and low dielectric loss (ε″) values were obtained proportionately for different weight percentage additions of W18O49 nanorods in PVDF. DSC was employed to study the crystallization kinetics of γ-phase evolution. Piezoresponse force microscopy (PFM) was used to compare the piezoelectric responses from the PVDF nanocomposites. The W18O49/PVDF nanocomposite could generate a peak open circuit voltage of ∼6 V and a peak short circuit current of ∼700 nA. The W18O49/PVDF nanocomposite could light two commercial blue-light-emitting diodes (LEDs) with hand impulse imparting.
Collapse
Affiliation(s)
- Manojit Pusty
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Parasharam M Shirage
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
7
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Li H, Wang J, Fang H, Xu H, Yu H, Zhou T, Liu C, Che G, Wang D. Hydrophilic modification of PVDF-based SERS imprinted membrane for the selective detection of L-tyrosine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114260. [PMID: 34915386 DOI: 10.1016/j.jenvman.2021.114260] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The polyvinylidene difluoride (PVDF) membrane has received considerable attention as a flexible surface enhanced Raman scattering (SERS) substrate due to its excellent mechanical and physicochemical properties. However, the poor fouling resistance of PVDF membrane due to its intrinsic hydrophobic property limits its practical application. To address this, in this investigation, a SERS imprinted membrane is synthesized based on W18O49/Ag composites. Firstly, to promote hydrophilicity, N-vinyl-2-pyrrolidone (NVP) and triethoxyvinylsilane (VTES) are copolymerized by hydrolysis condensation and linked with engineered polyvinypyrrolidone (PVP) chains exposed on the surface of membrane. Furthermore, W18O49/Ag composites are dispersed on the membrane under the assistance of polydopamine (pDA) to promote the pollution resistance. Subsequently, in order to demonstrate the practical detection property, W18O49/Ag/PVDF membrane is selected as the SERS substrate to synthesize SERS imprinted membrane by precipitation polymerization for the selective detection of L-tyrosine. The characteristic results reveal that the SERS-imprinted membrane exhibits satisfactory hydrophilicity, and it can effectively degrade the pollutant molecules absorbed on its surface under ultraviolet light illumination. It is proved from the detection results that the LOD of WADP-MIMs for L-tyrosine reached 10-9 mol L-1 when the concentration of L-tyrosine changed between 10-3-10-9 mol L-1. The correlation coefficient (R2) is 0.994 and the limit of detection is 10-9 mol L-1. Meanwhile, it can be applied for the selective detection of L-tyrosine in mixture samples. Overall, this study presents a novel approach for the hydrophilic modification and pollution resistance enhancement of PVDF-based SERS imprinted membrane, which can be effectively utilized for the selective detection of practical samples.
Collapse
Affiliation(s)
- Hongji Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Junfu Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, PR China
| | - Haoqi Fang
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hongda Xu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Haochen Yu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Chunbo Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China.
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Dandan Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China.
| |
Collapse
|
9
|
Zhu P, Sun X, Wang Y, Zhang J, Gu X, Zheng Z. Multifunctional oxygen vacancies in WO3– for catalytic alkylation of C–H by alcohols under red-light. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
|
11
|
Paloly AR, Bushiri MJ. Fabrication of antireflective silver-capped tin oxide nano-obelisk arrays as high sensitive SERS substrate. NANOTECHNOLOGY 2021; 32:205504. [PMID: 33561839 DOI: 10.1088/1361-6528/abe48b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid noble metal-semiconductor oxide nanostructures often provide unique and synergetic functionalities that are highly desirable in various practical applications. However, the fabrication of such systems with desired functionalities using cost-effective techniques is still a great challenge. In this work, we report a facile route for the preparation of novel Ag/SnO2 nano-obelisk arrayed thin films on silicon substrates by spray pyrolysis and thermal evaporation techniques. The prepared samples exhibited broadband antireflectance in both UV and visible regions attributed to the refractive index gradient and scattering provided by the nano-obelisk arrays. The localised surface plasmon resonance of silver nanocaps further enhanced the light absorption contributing to the antireflective property of the hybrid system. Ag/SnO2 nano-obelisk arrayed thin film exhibited excellent SERS performance with an enhancement factor of 1.13 × 108 with a limit of detection value of 10-12 M for the trace detection of R6G dye. In addition, Ag/SnO2 nano-obelisk arrayed thin film based SERS substrate exhibited good homogeneity across the measured spots and outstanding stability which are essential for quantitative field analysis. The results indicate that the Ag/SnO2 nano-obelisk arrayed thin films are efficient SERS substrates with the merits of having the ease of production, high sensitivity and stability for various practical sensing applications.
Collapse
Affiliation(s)
- Abdul Rasheed Paloly
- Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - M Junaid Bushiri
- Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| |
Collapse
|
12
|
Cong S, Liu X, Jiang Y, Zhang W, Zhao Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation (N Y) 2020; 1:100051. [PMID: 34557716 PMCID: PMC8454671 DOI: 10.1016/j.xinn.2020.100051] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Surface enhanced Raman scattering (SERS) is a fingerprint spectral technique whose performance is highly dependent on the physicochemical properties of the substrate materials. In addition to the traditional plasmonic metal substrates that feature prominent electromagnetic enhancements, boosted SERS activities have been reported recently for various categories of non-metal materials, including graphene, MXenes, transition-metal chalcogens/oxides, and conjugated organic molecules. Although the structural compositions of these semiconducting substrates vary, chemical enhancements induced by interfacial charge transfer are often the major contributors to the overall SERS behavior, which is distinct from that of the traditional SERS based on plasmonic metals. Regarding charge-transfer-induced SERS enhancements, this short review introduces the basic concepts underlying the SERS enhancements, the most recent semiconducting substrates that use novel manipulation strategies, and the extended applications of these versatile substrates.
Collapse
Affiliation(s)
- Shan Cong
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuxiao Jiang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
13
|
Zhu L, Ma H, Wang H, Li P, Guo L, Zhao B. Enhanced Raman scattering on lead iodide film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117336. [PMID: 31302565 DOI: 10.1016/j.saa.2019.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman scattering (SERS) on organic-inorganic hybrid perovskites have been proved a promising SERS-active substrate. As its inorganic skeleton, lead iodide (PbI2) also represents a novel semiconductor substrate material that serves as either a complement or an alternative to conventional metal-based SERS. Here, for the first time, enhanced Raman scattering (ERS) of 1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on PbI2 film is observed. To our surprise, we obtained the same ERS spectra on the PbI2 as SERS spectra obtained on the perovskites, which demonstrates the enhancement of substrate comes from inorganic skeleton rather than organic-inorganic hybrid perovskites. Compared with the normal Raman spectrum of BPE molecules, we find the Bu mode of the BPE molecule was selectively enhanced. We demonstrate that it involves a charge transfer (CT) resonance mechanism and takes place between the HOMO of BPE and the conduction band edge of PbI2. Moreover, the PbI2 substrate performs good reproducibility, uniformity and good Raman enhancement (EF ≥ 105). It is believed that this unusual discovery not only enables PbI2 to be an enhanced substrate, which also provides a new advance toward a better understanding of SERS chemical mechanism.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - He Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Peng Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Lin Guo
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
14
|
Xiao Y, Tao X, Qiu G, Dai Z, Gao P, Li B. Optimal synthesis of a direct Z-scheme photocatalyst with ultrathin W18O49 nanowires on g-C3N4 nanosheets for solar-driven oxidation reactions. J Colloid Interface Sci 2019; 550:99-109. [DOI: 10.1016/j.jcis.2019.04.081] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/10/2023]
|
15
|
Fang Z, Jiao S, Wang B, Yin W, Pang G. A Flexible, Self-Floating Composite for Efficient Water Evaporation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800085. [PMID: 31565378 PMCID: PMC6551412 DOI: 10.1002/gch2.201800085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 06/10/2023]
Abstract
A flexible, self-floating W18O49/carbon foam composite is fabricated by calcining melamine foam with W18O49 as an adsorbate in N2 atmosphere. This self-floating property is simply realized by a carbonization process other than the complicated surface modification process. The simple synthesis procedure helps to increase not only the solar absorption but also the retention of W18O49 in the porous net structure. This composite absorbs almost the whole solar spectrum and generates localized heat at the surface, which is beneficial for water evaporation. Its water evaporation rate is 6.6 times higher than that of pure water. It has a stable cyclic performance over ten cycles under the illumination of simulated sunlight (500 W Xe lamp). Its flexibility makes it easy to reuse and transfer, which is evaluated by the bending deformation test. The W18O49/carbon foam composite is a prospective material in solar energy conversion field, and the preparation procedure is feasible to scale-up.
Collapse
Affiliation(s)
- Zhenxing Fang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- College of Science and TechnologyNingbo UniversityNingbo315200P. R. China
| | - Shihui Jiao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Boran Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wen Yin
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Guangsheng Pang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|