1
|
Badami-Behjat A, Galeotti G, Gutzler R, Pastoetter DL, Heckl WM, Feng X, Lackinger M. Iodine passivation facilitates on-surface synthesis of robust regular conjugated two-dimensional organogold networks on Au(111). NANOSCALE HORIZONS 2024; 9:1042-1051. [PMID: 38639757 DOI: 10.1039/d3nh00496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional conjugated organogold networks with anthra-tetrathiophene repeat units are synthesized by thermally activated debrominative coupling of 2,5,9,12-tetrabromoanthra[1,2-b:4,3-b':5,6-b'':8,7-b''']tetrathiophene (TBATT) precursor molecules on Au(111) surfaces under ultra-high vacuum (UHV) conditions. Performing the reaction on iodine-passivated Au(111) surfaces promotes formation of highly regular structures, as revealed by scanning tunneling microscopy (STM). In contrast, coupling on bare Au(111) surfaces results in less regular networks due to the simultaneous expression of competing intermolecular binding motifs in the absence of error correction. The carbon-Au-carbon bonds confer remarkable robustness to the organogold networks, as evidenced by their high thermal stability. In addition, as suggested by density functional theory (DFT) calculations and underscored by scanning tunneling spectroscopy (STS), the organogold networks exhibit a small electronic band gap in the order of 1.0 eV due to their high π-conjugation.
Collapse
Affiliation(s)
- Arash Badami-Behjat
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Gianluca Galeotti
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Rico Gutzler
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Wolfgang M Heckl
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Markus Lackinger
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany.
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Fu B, Lu J, Geng J, Zhang Y, Sun S, Xiong W, Zhang Y, Niu G, Gao L, Cai J. On-surface synthesis of two types of cyano-substituted polyfluorene derivatives via Ullmann coupling on Au(111). NANOSCALE 2024. [PMID: 38436109 DOI: 10.1039/d3nr06186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Using 4-(3,6-dibromo-9H-carbazol-9-yl)benzonitrile (DBCB) precursors, we successfully constructed two types of cyano-substituted polymers on Au(111) by the molecular beam epitaxy method. According to the geometry, the two polymers are referred to as w-type polymers composed of cis-dimers and z-type polymers composed of trans-dimers. The intermediate dimers and final polymers were well characterized by high-resolution scanning tunneling microscopy (HR-STM). Moreover, the productivities of these two polymers can be controlled by adjusting the heating rate and different treatment methods. High heating rates and hot deposition can provide more ample space and time for molecular diffusion, which is conducive to the formation of w-type polymers with relatively low density. In addition, by combining scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations, we have shown that the addition of CN groups reduces the band gap of the two polymers. Our investigation thus shows the controllable construction of nanostructures through efficient surface synthesis parameters and reveals the potential of using functional groups as tools to modify the electronic properties of polymers.
Collapse
Affiliation(s)
- Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Jianqun Geng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, China.
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
- Southwest United Graduate School, Kunming, 650000, China
| |
Collapse
|
3
|
Wang T, Angulo-Portugal P, Berdonces-Layunta A, Jancarik A, Gourdon A, Holec J, Kumar M, Soler D, Jelinek P, Casanova D, Corso M, de Oteyza DG, Calupitan JP. Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs. J Am Chem Soc 2023; 145:10333-10341. [PMID: 37099608 PMCID: PMC10176464 DOI: 10.1021/jacs.3c02027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 04/27/2023]
Abstract
The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section. In particular, the antiaromaticity of cyclobutadiene as the coupling motif and its position within the structure play a decisive role in shifting the natural orbital occupancies toward a stronger diradical electronic character. Understanding these structure-property relations is desirable not only for fundamental reasons but also for designing new complex and functional molecular structures.
Collapse
Affiliation(s)
- Tao Wang
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | | | - Alejandro Berdonces-Layunta
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Andrej Jancarik
- Univ.
Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Jan Holec
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Manish Kumar
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Pavel Jelinek
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Jan Patrick Calupitan
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| |
Collapse
|
4
|
Ruiz Del Árbol N, Sánchez-Sánchez C, Martínez JI, Rodríguez L, Serrate D, Verdini A, Floreano L, Jacobson P, Grill L, Martín-Gago JA, López MF. On-surface synthesis of metal-organic frameworks: the critical role of the reaction conditions. Chem Commun (Camb) 2023; 59:2954-2957. [PMID: 36804728 DOI: 10.1039/d3cc00185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Two different metal-organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal-organic networks.
Collapse
Affiliation(s)
- Nerea Ruiz Del Árbol
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Carlos Sánchez-Sánchez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - José I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Luis Rodríguez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-UNIZAR, 50009 Zaragoza, Spain.,Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Alberto Verdini
- Laboratorio TASC, CNR-IOM, Basovizza SS-14, Km 163.5, I-34149 Trieste, Italy
| | - Luca Floreano
- Laboratorio TASC, CNR-IOM, Basovizza SS-14, Km 163.5, I-34149 Trieste, Italy
| | - Peter Jacobson
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Leonhard Grill
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - José A Martín-Gago
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - María F López
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Song L, Yang B, Fan X, Mao Y, Shan H, Wang J, Niu K, Hao Z, Zeng Z, Li Y, Zhao A, Lin H, Chi L, Li Q. Intra- and Inter-Self-Assembly of Identical Supramolecules on Silver Surfaces. J Phys Chem Lett 2022; 13:8902-8907. [PMID: 36126251 DOI: 10.1021/acs.jpclett.2c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembly of identical organometallic supramolecules into ordered superstructures is of great interest in both chemical science and nanotechnology due to its potential to generate neoteric properties through collective effects. In this work, we demonstrate that large-scale self-organization of atomically precise organometallic supramolecules can be achieved through cascaded on-surface chemical reactions, by the combination of intra- and inter-supramolecular interactions. Supramolecules with defined size and shape are first built through intramolecular reaction and intermolecular metal coordination, followed by the formation of well-ordered two-dimensional arrays with the assistance of Br atoms by -C-H···Br interactions. The mechanism of this process has been investigated from the perspectives of thermodynamics and kinetics.
Collapse
Affiliation(s)
- Luying Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xing Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Yahui Mao
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huan Shan
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Zhiwen Zeng
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Aidi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
6
|
Tang Y, Ejlli B, Niu K, Li X, Hao Z, Xu C, Zhang H, Rominger F, Freudenberg J, Bunz UHF, Muellen K, Chi L. On‐Surface Debromination of 2,3‐Bis(dibromomethyl)‐ and 2,3‐Bis(bromomethyl)naphthalene: Dimerization or Polymerization? Angew Chem Int Ed Engl 2022; 61:e202204123. [PMID: 35474405 PMCID: PMC9401070 DOI: 10.1002/anie.202204123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Barbara Ejlli
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Frank Rominger
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Klaus Muellen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering (MIMSE) MUST-SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa 999078 Macao China
| |
Collapse
|
7
|
Tang Y, Ejlli B, Niu K, Li X, Hao Z, Xu C, Zhang H, Rominger F, Freudenberg J, Bunz UHF, Muellen K, Chi L. On‐Surface Debromination of 2,3‐Bis(dibromomethyl)‐ and 2,3‐Bis(bromomethyl)naphthalene: Dimerization or Polymerization? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Barbara Ejlli
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Frank Rominger
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Klaus Muellen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering (MIMSE) MUST-SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa 999078 Macao China
| |
Collapse
|
8
|
Li X, Han D, Qin T, Xiong J, Huang J, Wang T, Ding H, Hu J, Xu Q, Zhu J. Selective synthesis of Kagome nanoporous graphene on Ag(111) via an organometallic template. NANOSCALE 2022; 14:6239-6247. [PMID: 35403634 DOI: 10.1039/d1nr08136e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kagome nanoporous graphenes (NPGs) are fascinating due to their exotic electronic and magnetic properties. The emerging on-surface synthesis (mostly on metal surfaces) provides a new opportunity to fabricate Kagome NPGs with atomic resolution. Previously the Kagome NPGs synthesized on surfaces were largely heteroatom-doped and suffer from morphological defects (evidently on metal surfaces). The on-surface synthesis of pristine Kagome NPG with improved structural quality is extremely desirable. In this paper, using a halogenated precursor, we report a bottom-up fabrication of pristine NPG with Kagome topology on Ag(111) via classic Ullmann coupling. The templating effect of organometallic (OM) intermediates for subsequent covalent coupling is determined by comparing the OM phase and resultant covalent product. The reaction parameters are found to have a significant impact on the topology and quality of OM intermediates. Specifically, a higher surface temperature and lower evaporation rate favor the growth of better-quality and higher-yield OM Kagome NPGs. The covalent Kagome NPGs obtained by further annealing of these OM networks are affected likewise due to the template effect of OM intermediates. Our work further confirms the generality of the OM template effect. It also offers a novel method to achieve the selective synthesis of Kagome lattice networks.
Collapse
Affiliation(s)
- Xingyu Li
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Tianchen Qin
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Juanjuan Xiong
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Jianmin Huang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Tao Wang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Jun Hu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Qian Xu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China.
| |
Collapse
|
9
|
Han D, Zhu J. Surface-assisted fabrication of low-dimensional carbon-based nanoarchitectures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:343001. [PMID: 34111858 DOI: 10.1088/1361-648x/ac0a1b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
On-surface synthesis, as an alternative to traditional in-solution synthesis, has become an emerging research field and attracted extensive attention over the past decade due to its ability to fabricate nanoarchitectures with exotic properties. Compared to wet chemistry, the on-surface synthesis conducted on atomically flat solid surfaces under ultrahigh vacuum exhibits unprecedented characteristics and advantages, opening novel reaction pathways for chemical synthesis. Various low-dimensional nanostructures have been fabricated on solid surfaces (mostly metal surfaces) based on this newly developed approach. This paper reviews the classic and latest works regarding carbon-based low-dimensional nanostructures since the arrival of on-surface synthesis era. These nanostructures are categorized into zero-, one- and two-dimensional classes and each class is composed of numerous sub-nanostructures. For certain specific nanostructures, comprehensive reports are given, including precursor design, substrate choice, synthetic strategies and so forth. We hope that our review will shed light on the fabrication of some significant nanostructures in this young and promising scientific area.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| |
Collapse
|
10
|
Huang J, Pan Y, Wang T, Cui S, Feng L, Han D, Zhang W, Zeng Z, Li X, Du P, Wu X, Zhu J. Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure versus Porous Graphene Nanoribbon. ACS NANO 2021; 15:4617-4626. [PMID: 33591725 DOI: 10.1021/acsnano.0c08920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective control on the topology of low-dimensional covalent organic nanostructures in on-surface synthesis has been challenging. Herein, with combined scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we report a successful topology-selective coupling reaction on the Cu(111) surface by tuning the thermal annealing procedure. The precursor employed is 1,3,5-tris(2-bromophenyl)benzene (TBPB), for which Ullmann coupling is impeded due to the intermolecular steric hindrance. Instead, its chemisorption on the Cu(111) substrate has triggered the ortho C-H bond activation and the following dehydrogenative coupling at room temperature (RT). In the slow annealing experimental procedure, the monomers have been preorganized by their self-assembly at RT, which enhances the formation of dendritic structures upon further annealing. However, the chaotic chirality of dimeric products (obtained at RT) and hindrance from dense molecular island make the fabrication of high-quality porous two-dimensional nanostructures difficult. In sharp contrast, direct deposition of TBPB molecules on a hot surface led to the formation of ordered porous graphene nanoribbons and nanoflakes, which is confirmed to be the energetically favorable reaction pathway through density functional theory-based thermodynamic calculations and control experiments. This work demonstrates that different thermal treatments could have a significant influence on the topology of covalent products in on-surface synthesis and presents an example of the negative effect of molecular self-assembly to the ordered covalent nanostructures.
Collapse
Affiliation(s)
- Jianmin Huang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Yu Pan
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Synergetic Innovation of Quantum Information and Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P.R. China
| | - Tao Wang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Shengsheng Cui
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Synergetic Innovation of Quantum Information and Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P.R. China
| | - Lin Feng
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Wenzhao Zhang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Zhiwen Zeng
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xingyu Li
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Pingwu Du
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Synergetic Innovation of Quantum Information and Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P.R. China
| | - Xiaojun Wu
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Synergetic Innovation of Quantum Information and Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P.R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| |
Collapse
|
11
|
Structural characterisation of molecular conformation and the incorporation of adatoms in an on-surface Ullmann-type reaction. Commun Chem 2020; 3:166. [PMID: 36703404 PMCID: PMC9814584 DOI: 10.1038/s42004-020-00402-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 01/29/2023] Open
Abstract
The on-surface synthesis of covalently bonded materials differs from solution-phase synthesis in several respects. The transition from a three-dimensional reaction volume to quasi-two-dimensional confinement, as is the case for on-surface synthesis, has the potential to facilitate alternative reaction pathways to those available in solution. Ullmann-type reactions, where the surface plays a role in the coupling of aryl-halide functionalised species, has been shown to facilitate extended one- and two-dimensional structures. Here we employ a combination of scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and X-ray standing wave (XSW) analysis to perform a chemical and structural characterisation of the Ullmann-type coupling of two iodine functionalised species on a Ag(111) surface held under ultra-high vacuum (UHV) conditions. Our results allow characterisation of molecular conformations and adsorption geometries within an on-surface reaction and provide insight into the incorporation of metal adatoms within the intermediate structures of the reaction.
Collapse
|
12
|
Krug CK, Nieckarz D, Fan Q, Szabelski P, Gottfried JM. The Macrocycle versus Chain Competition in On-Surface Polymerization: Insights from Reactions of 1,3-Dibromoazulene on Cu(111). Chemistry 2020; 26:7647-7656. [PMID: 32031714 PMCID: PMC7318695 DOI: 10.1002/chem.202000486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Ring/chain competition in oligomerization reactions represents a long‐standing topic of synthetic chemistry and was treated extensively for solution reactions but is not well‐understood for the two‐dimensional confinement of surface reactions. Here, the kinetic and thermodynamic principles of ring/chain competition in on‐surface synthesis are addressed by scanning tunneling microscopy, X‐ray photoelectron spectroscopy, and Monte Carlo simulations applied to azulene‐based organometallic oligomers on Cu(111). Analysis of experiments and simulations reveals how the ring/chain ratio can be controlled through variation of coverage and temperature. At room temperature, non‐equilibrium conditions prevail and kinetic control leads to preferential formation of the entropically favored chains. In contrast, high‐temperature equilibrium conditions are associated with thermodynamic control, resulting in increased yields of the energetically favored rings. The optimum conditions for ring formation include the lowest possible temperature within the regime of thermodynamic control and a low coverage. The general implications are discussed and compared to the solution case.
Collapse
Affiliation(s)
- Claudio K Krug
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Damian Nieckarz
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, Lublin, 20-031, Poland
| | - Qitang Fan
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, Lublin, 20-031, Poland
| | - J Michael Gottfried
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| |
Collapse
|
13
|
Hou ICY, Sun Q, Eimre K, Di Giovannantonio M, Urgel JI, Ruffieux P, Narita A, Fasel R, Müllen K. On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon-Heptagon Pairs. J Am Chem Soc 2020; 142:10291-10296. [PMID: 32428409 PMCID: PMC7304065 DOI: 10.1021/jacs.0c03635] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Multiple
fused pentagon–heptagon pairs are frequently found
as defects at the grain boundaries of the hexagonal graphene lattice
and are suggested to have a fundamental influence on graphene-related
materials. However, the construction of sp2-carbon skeletons
with multiple regularly fused pentagon–heptagon pairs is challenging.
In this work, we found that the pentagon–heptagon skeleton
of azulene was rearranged during the thermal reaction of an azulene-incorporated
organometallic polymer on Au(111). The resulting sp2-carbon
frameworks were characterized by high-resolution scanning probe microscopy
techniques and feature novel polycyclic architectures composed of
multiple regularly fused pentagon–heptagon pairs. Moreover,
the calculated analysis of its aromaticity revealed a peculiar polar
electronic structure.
Collapse
Affiliation(s)
- Ian Cheng-Yi Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department Chemie, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Qiang Sun
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - José I Urgel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department Chemie, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
Lu H, E W, Cai L, Ma Z, Xu W, Yang X. Dissymmetric On-Surface Dehalogenation Reaction Steered by Preformed Self-Assembled Structure. J Phys Chem Lett 2020; 11:1867-1872. [PMID: 32073272 DOI: 10.1021/acs.jpclett.9b03688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ullmann coupling of 4,4″-dibromo-p-terphenyl (DBTP) thermally catalyzed on a Ag(111) surface was studied by scanning tunneling microscopy. Detailed experimental measurement shows that the Ullmann coupling reaction pathways of DBTP molecules can be controlled by pre-self-assembly, and the dissymmetric dehalogenation reaction is realized. Moreover, self-assembly of the reactants in a rectangular network undergoes a dissymmetric debromination transfer to a newly observed rhombic network formed by organometallic dimers prior to the formation of longer symmetric organometallic intermediates on a Ag(111) surface, while the ladder assembled phase is more likely to induce the symmetric debromination reaction and converts into the symmetric organometallic intermediate. These findings help us to understand the essentials of the dissymmetric dehalogenation reaction that originated from a symmetric compound and pave new avenues for advancing the emerging field of on-surface synthesis.
Collapse
Affiliation(s)
- Hui Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Wenlong E
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Liangliang Cai
- Interdisciplinary Materials Research Center and College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhibo Ma
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center and College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Guangdong, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Template-controlled on-surface synthesis of a lanthanide supernaphthalocyanine and its open-chain polycyanine counterpart. Nat Commun 2019; 10:5049. [PMID: 31695045 PMCID: PMC6834595 DOI: 10.1038/s41467-019-13030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Phthalocyanines possess unique optical and electronic properties and thus are widely used in (opto)electronic devices, coatings, photodynamic therapy, etc. Extension of their π-electron systems could produce molecular materials with red-shifted absorption for a broader range of applications. However, access to expanded phthalocyanine analogues with more than four isoindoline units is challenging due to the limited synthetic possibilities. Here, we report the controlled on-surface synthesis of a gadolinium-supernaphthalocyanine macrocycle and its open-chain counterpart poly(benzodiiminoisoindoline) on a silver surface from a naphthalene dicarbonitrile precursor. Their formation is controlled by the on-surface high-dilution principle and steered by different metal templates, i.e., gadolinium atoms and the bare silver surface, which also act as oligomerization catalysts. By using scanning tunneling microscopy, photoemission spectroscopy, and density functional theory calculations, the chemical structures along with the mechanical and electronic properties of these phthalocyanine analogues with extended π-conjugation are investigated in detail. Extending the π‐conjugation of phthalocyanine dyes, while synthetically challenging, has the potential to produce desirable new molecular materials. Here, the authors use a templated on‐surface approach to synthesize several extended phthalocyanine derivatives from the same building block, including a lanthanide superphthalocyanine and an open‐chain polycyanine.
Collapse
|
16
|
Reaction selectivity of homochiral versus heterochiral intermolecular reactions of prochiral terminal alkynes on surfaces. Nat Commun 2019; 10:4122. [PMID: 31511503 PMCID: PMC6739358 DOI: 10.1038/s41467-019-12102-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
Controlling selectivity between homochiral and heterochiral reaction pathways on surfaces remains a great challenge. Here, competing reactions of a prochiral alkyne on Ag(111): two-dimensional (2D) homochiral Glaser coupling and heterochiral cross-coupling with a Bergman cyclization step have been examined. We demonstrate control strategies in steering the reactions between the homochiral and heterochiral pathways by tuning the precursor substituents and the kinetic parameters, as confirmed by high-resolution scanning probe microscopy (SPM). Control experiments and density functional theory (DFT) calculations reveal that the template effect of organometallic chains obtained under specific kinetic conditions enhances Glaser coupling between homochiral molecules. In contrast, for the reaction of free monomers, the kinetically favorable reaction pathway is the cross-coupling between two heterochiral molecules (one of them involving cyclization). This work demonstrates the application of kinetic control to steer chiral organic coupling pathways at surfaces. Controlling selectivity between homochiral and heterochiral reaction pathways on surfaces is intriguing but challenging. Here, the authors demonstrate strategies in steering the reactions of prochiral terminal alkynes between the homochiral and heterochiral pathways by tuning the precursor substituents and the kinetic parameters.
Collapse
|
17
|
Colazzo L, Mohammed MSG, Gallardo A, Abd El-Fattah ZM, Pomposo JA, Jelínek P, de Oteyza DG. Controlling the stereospecific bonding motif of Au-thiolate links. NANOSCALE 2019; 11:15567-15575. [PMID: 31402370 DOI: 10.1039/c9nr04383g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au3BMB3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.
Collapse
Affiliation(s)
- Luciano Colazzo
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Aurelio Gallardo
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic and Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic
| | | | - José A Pomposo
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain and Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Fan Q, Gottfried JM. Topology‐Selective Ullmann Coupling on Metal Surfaces by Precursor Design and Adsorbate‐Substrate Interaction: Towards the Control over Polymer versus Macrocycle Formation. Chemphyschem 2019; 20:2311-2316. [DOI: 10.1002/cphc.201900493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Qitang Fan
- Department of ChemistryPhilipps University Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - J. Michael Gottfried
- Department of ChemistryPhilipps University Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
19
|
Wang CX, Chen JL, Shu CH, Shi KJ, Liu PN. On-surface synthesis of 2D COFs on Cu(111) via the formation of thermodynamically stable organometallic networks as the template. Phys Chem Chem Phys 2019; 21:13222-13229. [PMID: 31179470 DOI: 10.1039/c9cp01843c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Template-directed polymerization is an effective approach used to afford regular 2D covalent organic frameworks (COFs), thus the regularity of the template is crucial for the quality of the resulting 2D COFs. For the Ullmann reactions on Cu(111), aryl iodides and bromides are activated at low temperature to form organometallic C-Cu-C structures, which lead to kinetic trapping and irregular organometallic networks. Therefore, the subsequent annealing step can only afford irregular 2D COFs. In this manuscript, the molecule 4,4''-dibromo-5'-(4-chlorophenyl)-1,1':3',1''-terphenyl incorporated two Br terminals and one Cl terminal has been used to demonstrate different reactivities of a C-Cl bond and a C-Br bond via the hierarchical activation of the C-Br bond and the C-Cl bond on Cu(111). At room temperature, zigzag, armchair, and ring-like organometallic chains formed due to the activation of the C-Br bond to generate a C-Cu-C structure while C-Cl remained intact, illustrating that the C-Cl bond is more stable than C-Br. Further annealing at 433 K activated the C-Cl bond to produce regular organometallic networks as the thermodynamic product. Using the simpler molecule 1,3,5-tris(4-chlorophenyl)benzene as the precursor, the self-assembly of the intact molecules was observed on Cu(111) at 300 K without activation of the C-Cl bond. After annealing at 433 K, similar thermodynamically stable organometallic networks formed directly, which were used as a template to generate regular 2D COFs upon further annealing at 510 K.
Collapse
Affiliation(s)
- Cheng-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | | | | | | | | |
Collapse
|
20
|
Liu M, Li S, Zhou J, Zha Z, Pan J, Li X, Zhang J, Liu Z, Li Y, Qiu X. High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS NANO 2018; 12:12612-12618. [PMID: 30513200 DOI: 10.1021/acsnano.8b07349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rationally designed halogenated hydrocarbons are widely used building blocks to fabricate covalent-bonded carbon nanostructures on surfaces through a reaction pathway involving generation and dissociation of organometallic intermediates and irreversible covalent bond formation. Here, we provide a comprehensive picture of the on-surface-assisted homocoupling reaction of 1,3-bis(2-bromoethynyl)benzene on Au(111), aiming for the synthesis of graphdiyne nanostructures. Submolecular resolution scanning tunneling microscopy and noncontact atomic force microscopy observations identify the organometallic intermediates and their self-assemblies formed in the dehalogenation process. The demetallization of the organometallic intermediates at increased temperatures produces butadiyne moieties that spontaneously formed two different covalent structures ( i.e., graphdiyne zigzag chains and macrocycles), whose ratio was found to depend on the initial coverage of organometallic intermediates. At the optimal condition, the stepwise demetallization and cyclization led to a high-yield production of graphdiyne macrocycles up to 95%. Statistical analysis and theoretical calculations suggested that the favored formation of macrocycles resulted from the complex interplay between thermodynamic and kinetic processes involving the organometallic bonded intermediates and the covalently bonded butadiyne moieties.
Collapse
Affiliation(s)
- Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
| | - Shichao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jingyuan Zhou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P.R. China
- Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , P.R. China
| | - Zeqi Zha
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jinliang Pan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xin Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P.R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P.R. China
| | - Yuanchang Li
- Advanced Research Institute of Multidisciplinary Science , Beijing Institute of Technology , Beijing 100081 , P.R. China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|