1
|
Zhao Y, Ma F, Chen Y, Gu S, Zhu F, Cao J, Zhu S, Xie LG. Photoinduced SF 6 degradation for deoxyfluorination of propargyl alcohols. Org Biomol Chem 2024. [PMID: 39699173 DOI: 10.1039/d4ob01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Deoxyfluorination is one of the most practical methods for introducing fluorine atoms, since hydroxyl groups are commonly found in organic small molecules. Traditional fluorination methods often rely on hazardous fluorinating reagents. Herein, we report the deoxyfluorination of propargyl alcohols using sulfur hexafluoride (SF6) as a safe fluorinating agent under photocatalytic conditions.
Collapse
Affiliation(s)
- Yue Zhao
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Fengxiang Ma
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feng Zhu
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Jun Cao
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Shan Zhu
- Anhui Electric Power Research Institute, State Grid, Hefei 230601, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Yadav R, Sharma A, Das B, Majumder C, Das A, Sen S, Kundu S. Air and Water Stable Bicyclic (Alkyl)(Amino)Carbene Stabilized Phosphenium Cation: Reactivity and Selective Fluoride Ion Affinity. Chemistry 2024; 30:e202401730. [PMID: 39145545 DOI: 10.1002/chem.202401730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The synthesis and reactivity of an air and water stable Bicyclic (alkyl)(amino)carbene (BICAAC) stabilized phosphenium cation (1) is reported. Air and water stable phosphenium cation are rare in the literature. Compound 1 is obtained by reaction of BICAAC with Ph2PCl in THF followed by anion exchange with LiOTf. The reduction and oxidation of 1 yielded corresponding α-radical phosphine species (2) and BICAAC stabilized phosphenium oxide (3) respectively. All compounds are well characterized by single crystal X-ray diffraction studies. The Lewis acidity of compounds 1 and 3 are determined by conducting fluoride ion affinity experiments using UV-Vis spectrophotometry and multinuclei NMR spectroscopy. Compounds 1 and 3 exhibited selective binding to fluoride anion but did not interact with other halides (Cl- and Br-). Quantum chemical calculations were performed to understand the structure and nature of bonding interactions in these compounds, as well as to comprehend the specific bonding affinity to fluoride over other halide ions.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bindusagar Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chinmoy Majumder
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ayantika Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Saumik Sen
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Center forScientific Computing, Theory, and Data, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), SIB), 1015 Lausanne, Switzerland
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
3
|
Röthel MB, Schöler A, Buß F, Löwe P, Dielmann F. Phosphonium SF 5 - Salts Derived from Sulfur Hexafluoride as Deoxyfluorination Reagents. Chemistry 2024; 30:e202402028. [PMID: 38958451 DOI: 10.1002/chem.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Sulfur based deoxyfluorination reagents are usually derived from the corrosive gas SF4. Herein, we report the synthesis and properties of an easily accessible phosphonium salt [(tmg)3PF]+SF5 - (1) which was obtained from the reaction of sulfur hexafluoride (SF6) with tris(tetramethylguanidinyl)phosphine. The performance of this crystalline SF5 - salt as a reagent in deoxyfluorination reactions was investigated together with a second SF5 - salt [(R1)3PF]+SF5 - (2) containing bulky substituents (R1=1,3-di-tert-butylimidazolidin-2-ylidenamino). Both reagents proved to be effective for the deoxyfluorination of various functional groups including alcohols, anhydrides, and amides.
Collapse
Affiliation(s)
- Maike B Röthel
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Schöler
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| | - Florenz Buß
- Institute of Inorganic and Analytical Chemistry, Universität Münster, 48149, Münster, Germany
| | - Pawel Löwe
- Institute of Inorganic and Analytical Chemistry, Universität Münster, 48149, Münster, Germany
| | - Fabian Dielmann
- Institute of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Béland V, Nöthling N, Leutzsch M, Cornella J. Activation and Catalytic Degradation of SF 6 and PhSF 5 at a Bismuth Center. J Am Chem Soc 2024; 146:25409-25415. [PMID: 39226694 PMCID: PMC11421020 DOI: 10.1021/jacs.4c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In this work, we report the catalytic degradation of SF6 and PhSF5 using N,C,N pincer bismuthinidene complexes (1 and 5). Exposure of SF6 and PhSF5 to 1 results in the reduction of the S(VI) substrates and concomitant formation of Bi(III) and Bi(II) compounds, which were isolated and characterized. The oxidized bismuth-based products were demonstrated to undergo reduction with PMe3, recovering the starting complex 1. Having established a synthetic redox cycle, the catalytic degradation of SF6 and PhSF5 was developed through ligand optimization to 5, leading to a 528 TON for SF6 and the first reported TON for PhSF5 (3.2).
Collapse
Affiliation(s)
- Vanessa
A. Béland
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| |
Collapse
|
5
|
Dean AC, Randle EH, Lacey AJD, Marczak Giorio GA, Doobary S, Cons BD, Lennox AJJ. Alkene 1,3-Difluorination via Transient Oxonium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404666. [PMID: 38695434 DOI: 10.1002/anie.202404666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 06/21/2024]
Abstract
The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.
Collapse
Affiliation(s)
- Alice C Dean
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - E Harvey Randle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Andrew J D Lacey
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Sayad Doobary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | |
Collapse
|
6
|
Zuo YW, Zhao Y, Zhang YF, Guo XY, Wu TR, Jin RX, Wang XS. Visible-Light-Induced Oxidative Decarboxylative Coupling of Phenylacetic Acid Derivatives Using SF 6 as an Oxidant. Org Lett 2024; 26:5652-5656. [PMID: 38941116 DOI: 10.1021/acs.orglett.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A visible-light-mediated decarboxylative coupling reaction of phenylacetic acid derivatives, featuring sulfur hexafluoride (SF6) as the oxidant, has been developed. This metal-free method allows for the synthesis of a series of bibenzyl derivatives and complex all-carbon skeletons, facilitating efficient utilization and degradation of the greenhouse gas SF6.
Collapse
Affiliation(s)
- Ya-Wen Zuo
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- State Grid Anhui Electric Power Research Institute, Hefei, Anhui 230601, China
| | - Yi-Fan Zhang
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Xiao-Yu Guo
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Tian-Rui Wu
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| |
Collapse
|
7
|
Röther A, Farmer JC, Portwich FL, Görls H, Kretschmer R. Anion-Dependent Reactivity of Mono- and Dinuclear Boron Cations. Chemistry 2023; 29:e202302544. [PMID: 37641815 DOI: 10.1002/chem.202302544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The dinuclear bis(N-heterocyclic carbene) borane adduct 2 rapidly reacts with tritylium salts at room temperature but the outcome is strongly impacted by the respective counter-ion. Using tritylium tetrakis(perfluoro-tert-butoxy)aluminate affords - depending on the solvent - either the bis(boronium) ion 4 or the hydride-bridged dication 5. In case of tritylium hexafluorophosphate, however, H/F exchange occurs between boron and phosphorus yielding the dinuclear BF3 adduct 3 along with phosphorus dihydride trifluoride. H/F exchange also takes place when using the mononuclear N-heterocyclic carbene BH3 adduct 6 and hence provides a facile route to PH2 F3 , which is usually synthesized in more complex reaction sequences regularly involving toxic hydrogen fluoride. DFT calculations shed light on the H/F exchange between the borenium ion and the [PF6 ]- counter-ion and the computed mechanism features only small barriers in line with the experimental observations.
Collapse
Affiliation(s)
- Alexander Röther
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - James C Farmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Flavio L Portwich
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Germany
| |
Collapse
|
8
|
Lee TC, Tong Y, Fu WC. Advances in Continuous Flow Fluorination Reactions. Chem Asian J 2023; 18:e202300723. [PMID: 37707985 DOI: 10.1002/asia.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Fluorination reactions are important in constructing organofluorine motifs, which contribute to favorable biological properties in pharmaceuticals and agrochemicals. However, fluorination reagents and reactions are associated with various problems, such as their hazardous nature, high exothermicity, and poor selectivity and scalability. Continuous flow has emerged as a transformative technology to provide many advantages relative to batch syntheses. This review article summarizes recent continuous flow techniques that address the limitations and challenges of fluorination reactions. Approaches based on different flow techniques are discussed, including gas-liquid reactions, packed-bed reactors, in-line purifications, streamlined multistep synthesis, large-scale reactions well as flow photoredox- and electrocatalysis.
Collapse
Affiliation(s)
- Tsz Chun Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yi Tong
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Wai Chung Fu
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Herbstritt D, Tomar P, Müller R, Kaupp M, Braun T. A 2,2-Difluoroimidazolidine Derivative for Deoxyfluorination Reactions: Mechanistic Insights by Experimental and Computational Studies. Chemistry 2023; 29:e202301556. [PMID: 37341145 DOI: 10.1002/chem.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
A N-heterocyclic deoxyfluorinating agent SIMesF2 was synthesized by nucleophilic fluorination of N,N-1,3-dimesityl-2-chloroimidazolidinium chloride (3) at room temperature. SIMesF2 was applied to deoxyfluorinate carboxylic acids and alcohols and convert benzaldehyde into difluorotoluene. Mechanistic studies by NMR spectroscopy suggest reaction pathways of the carboxylic acid to acyl fluoride via outer-sphere fluorinations at an imidazolidinium ion by polyfluoride. DFT studies give further insight by exploring mechanistic details which distinguish the fluorination of aldehydes from that of carboxylic acids. Furthermore, a consecutive reaction sequence for the oxidation of an aldehyde followed by in situ fluorination of the generated carboxylic acid was developed.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Pooja Tomar
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
10
|
Herbstritt D, Tomar P, Braun T. Activation of SF 5CF 3 by the N-Heterocyclic Carbene SIMes. Molecules 2023; 28:6693. [PMID: 37764468 PMCID: PMC10535660 DOI: 10.3390/molecules28186693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The greenhouse gas SF5CF3 was photochemically activated with SIMes (1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) to give 1,3-dimesityl-2,2-difluoroimidazolidine (SIMesF2), and 1,3-dimesitylimidazolidine-2-sulfide, as well as the trifluoromethylated carbene derivative 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine. CF3 radicals, as well as SF4, serve presumably as intermediates of the conversions. In addition, the photochemical activation of SF5CF3 was performed in the presence of triphenylphosphine. The formation of triphenyldifluorophosphorane and triphenylphosphine sulfide was observed.
Collapse
Affiliation(s)
| | | | - Thomas Braun
- Department of Chemistry, Humboldt–Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Herbstritt D, Braun T. Reduction of SF 5CF 3via iridium catalysis: radical trifluoromethylation of aromatics. Chem Commun (Camb) 2023; 59:3850-3853. [PMID: 36891951 DOI: 10.1039/d3cc00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The greenhouse gas SF5CF3 acts as CF3 source for the photocatalytic trifluoromethylation of arenes on using [Ir(dtbbpy)(ppy)2]PF6 (4,4'-di-tert-butyl-2,2'-dipyridyl, ppy = 2-phenylpyridine) as catalyst. The trifluoromethylation of C6D6 in the presence of 1-octanol results in the concomitant generation of 1-fluorooctane, presumably by intermediate SF4.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
12
|
Eder T, Buß F, Wilm LFB, Seidl M, Podewitz M, Dielmann F. Oxidative Fluorination of Selenium and Tellurium Compounds using a Thermally Stable Phosphonium SF 5 - Salt Accessible from SF 6. Angew Chem Int Ed Engl 2022; 61:e202209067. [PMID: 36018610 PMCID: PMC9826459 DOI: 10.1002/anie.202209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Fluorinated group 16 moieties are attractive building blocks in synthetic chemistry but only few synthetic methods are available to prepare them. Herein, we report a new oxidative fluorination reagent capable of stabilizing reactive fluorinated anions. It consists of an SF5 - anion and a chemically inert phosphonium cation and is exceptionally thermally stable. Accordingly, it was used to generate the SeF5 - and TeF5 - anions from the elemental chalcogens and to prepare the unknown tetrafluoro(phenyl)-λ5 -selenate PhSeF4 - and -tellurate PhTeF4 - from the corresponding diphenyl dichalcogenides. In addition, we show that further derivatization of [PhTeF4 ]- by oxidation to trans-PhTeF4 O- and subsequent alkylation gives access to a new class of trans-(alkoxy)(phenyl)tetrafluoro-λ6 -tellanes (trans-PhTeF4 OR), thus providing an approach to introduce the functional group into organic molecules.
Collapse
Affiliation(s)
- Tobias Eder
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Florenz Buß
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Lukas F. B. Wilm
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Michael Seidl
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maren Podewitz
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Fabian Dielmann
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
13
|
Eder T, Buß F, Wilm LFB, Seidl M, Podewitz M, Dielmann F. Oxidative Fluorination of Selenium and Tellurium Compounds using a Thermally Stable Phosphonium SF5‐ Salt Accessible from SF6. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias Eder
- Leopold Franzens Universität für Innsbruck: Universitat Innsbruck Inorganic Chemistry AUSTRIA
| | - Florenz Buß
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Inorganic Chemistry GERMANY
| | - Lukas F. B. Wilm
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Inorganic Chemistry GERMANY
| | - Michael Seidl
- Leopold Franzens Universität für Innsbruck: Universitat Innsbruck Inorganic Chemistry AUSTRIA
| | - Maren Podewitz
- TU Wien: Technische Universitat Wien Institute of Materials Chemistry AUSTRIA
| | - Fabian Dielmann
- Universitat Innsbruck Fakultat fur Chemie und Pharmazie Institut für Allgemeine, Anorganische und Theoretische Chemie Innrain 80-82 6020 Innsbruck AUSTRIA
| |
Collapse
|
14
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal-Free SF 6 Activation: A New SF 5 -Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022; 61:e202204623. [PMID: 35471641 DOI: 10.1002/anie.202204623] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The activation of SF6 , a potent greenhouse gas, under metal-free and visible light conditions is reported. Herein, mechanistic investigations including EPR spectroscopy, NMR studies and cyclic voltammetry allowed the rational design of a new fluorinating reagent which was synthesized from the 2-electron activation of SF6 with commercially available TDAE. This new SF5 -based reagent was efficiently employed for the deoxyfluorination of CO2 and the fluorinative desulfurization of CS2 allowing the formation of useful fluorinated amines. Moreover, for the first time we demonstrated that our SF5 -based reagent could afford the mild generation of Cl-SF5 gas. This finding was exploited for the chloro-pentafluorosulfanylation of alkynes and alkenes.
Collapse
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire (ICR)ICR UMR 7273, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
15
|
Sheldon DJ, Crimmin MR. Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem Soc Rev 2022; 51:4977-4995. [PMID: 35616085 PMCID: PMC9207706 DOI: 10.1039/d1cs01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| |
Collapse
|
16
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal‐Free SF
6
Activation: A New SF
5
‐Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Julie Broggi
- Aix Marseille Univ, CNRS Institut de Chimie Radicalaire (ICR)ICR UMR 7273 Faculty of Pharmacy 27 Bd Jean Moulin 13385 Marseille France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
17
|
Kim S, Nagorny P. Electrochemical Synthesis of Glycosyl Fluorides Using Sulfur(VI) Hexafluoride as the Fluorinating Agent. Org Lett 2022; 24:2294-2298. [PMID: 35298181 PMCID: PMC10543653 DOI: 10.1021/acs.orglett.2c00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This manuscript describes the electrochemical synthesis of 17 different glycosyl fluorides in 73-98% yields on up to a 5 g scale that relies on the use of SF6 as an inexpensive and safe fluorinating agent. Cyclic voltammetry and related mechanistic studies carried out subsequently suggest that the active fluorinating species generated through the cathodic reduction of SF6 are transient under these reductive conditions and that the sulfur and fluoride byproducts are effectively scavenged by Zn(II) to generate benign salts.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Haufe G. Synthesis and application of pentafluorosulfanylation reagents and derived aliphatic SF5-containing building blocks. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Dirican D, Talavera M, Braun T. Fluorination Reactions at a Platinum Carbene Complex: Reaction Routes to SF 3 , S(=O)F and Fluorido Complexes. Chemistry 2021; 27:17707-17712. [PMID: 34634177 PMCID: PMC9298267 DOI: 10.1002/chem.202103311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 01/10/2023]
Abstract
The electron-rich Pt complex [Pt(IMes)2 ] (IMes: [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidine]) can be used as precursor for the syntheses of a variety of fluorido ligand containing compounds. The sulfur fluoride SF4 undergoes a rapid oxidative addition at Pt0 to yield trans-[Pt(F)(SF3 )(IMes)2 ]. A photolytic reaction of SF6 at [Pt(IMes)2 ] in the presence of IMes gave the fluorido complexes trans-[Pt(F)2 (IMes)2 ] and trans-[Pt(F)(SF3 )(IMes)2 ] along with trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)(IMes')(IMes)] (IMes': cyclometalated IMes ligand), the latter being products produced by reaction with adventitious water. trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)2 (IMes)2 ] were synthesized independently by treatment of [Pt(IMes)2 ] with SOF2 or XeF2 . A reaction of [Pt(IMes)2 ] with a HF source gave trans-[Pt(H)(F)(IMes)2 ], and an intermediate bifluorido complex trans-[Pt(H)(FHF)(IMes)2 ] was identified. Compound trans-[Pt(H)(F)(IMes)2 ] converts in the presence of CsF into trans-[Pt(F)(IMes')(IMes)].
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Maria Talavera
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Thomas Braun
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
20
|
|
21
|
Huang S, Wang Y, Hu C, Yan X. Nucleophilic Activation of Sulfur Hexafluoride by N-Heterocyclic Carbenes and N-Heterocyclic Olefins: A Computational Study. Chem Asian J 2021; 16:2687-2693. [PMID: 34320272 DOI: 10.1002/asia.202100770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Indexed: 11/10/2022]
Abstract
Sulfur hexafluoride (SF6 ) is considered as a potent greenhouse gas, whose effective degradation is challenging. Here we report a computational study on the nucleophilic activation of sulfur hexafluoride by N-heterocyclic carbenes and N-heterocyclic olefins. The result shows that the activation of SF6 is both thermodynamically and kinetically favorable at mild condition using NHOs with fluoro-substituted azolium and sulfur pentafluoride anion being formed. The Gibbs free energy barrier during the activation of SF6 has a linear relationship with the energy of HOMO of substrates, which could be a guideline for applying those compounds that feature higher energy in HOMO to activate SF6 in high efficiency.
Collapse
Affiliation(s)
- Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yedong Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Chubin Hu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
22
|
Sheldon DJ, Crimmin MR. Complete deconstruction of SF 6 by an aluminium(I) compound. Chem Commun (Camb) 2021; 57:7096-7099. [PMID: 34159971 PMCID: PMC8291285 DOI: 10.1039/d1cc02838c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The room-temperature activation of SF6, a potent greenhouse gas, is reported using a monovalent aluminium(i) reagent to form well-defined aluminium(iii) fluoride and aluminium(iii) sulfide products. New reactions have been developed to utilise the aluminium(iii) fluoride and aluminium(iii) sulfide as a nucleophilic source of F− and S2− for a range of electrophiles. The overall reaction sequence results in the net transfer of fluorine or sulfur atoms from an environmentally detrimental gas to useful organic products. The room-temperature activation of SF6, a potent greenhouse gas, is reported using a monovalent aluminium(i) reagent to form well-defined aluminium(iii) fluoride and aluminium(iii) sulfide products.![]()
Collapse
Affiliation(s)
- Daniel J Sheldon
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
23
|
Sheng J, Ni H, Ni S, He Y, Cui R, Liao G, Bian K, Wu B, Wang X. Diversity‐Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp
3
)−C(sp
3
) Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Hui‐Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guang‐Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Bing‐Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
24
|
Sheng J, Ni HQ, Ni SX, He Y, Cui R, Liao GX, Bian KJ, Wu BB, Wang XS. Diversity-Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp 3 )-C(sp 3 ) Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:15020-15027. [PMID: 33847433 DOI: 10.1002/anie.202102481] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 01/14/2023]
Abstract
Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel-catalyzed monofluoromethylation of unactivated alkyl halides using a low-cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross-coupling of two alkyl halides. Results with 1-bromo-1-fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3 )-C(sp3 ) cross-coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional-group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first-order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate-determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.
Collapse
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Hui-Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guang-Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Weitkamp RF, Neumann B, Stammler H, Hoge B. Non-coordinated and Hydrogen Bonded Phenolate Anions as One-Electron Reducing Agents. Chemistry 2021; 27:6465-6478. [PMID: 33368714 PMCID: PMC8247865 DOI: 10.1002/chem.202005123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Indexed: 11/29/2022]
Abstract
In this work, the syntheses of non-coordinated electron-rich phenolate anions via deprotonation of the corresponding alcohols with an extremely powerful perethyl tetraphosphazene base (Schwesinger base) are reported. The application of uncharged phosphazenes renders the selective preparation of anionic phenol-phenolate and phenolate hydrates possible, which allows for the investigation of hydrogen bonding in these species. Hydrogen bonding brings about decreased redox potentials relative to the corresponding non-coordinated phenolate anions. The latter show redox potentials of up to -0.72(1) V vs. SCE, which is comparable to that of zinc metal, thus qualifying their application as organic zinc mimics. We utilized phenolates as reducing agents for the generation of radical anions in addition to the corresponding phenoxyl radicals. A tetracyanoethylene radical anion salt was synthesized and fully characterized as a representative example. We also present the activation of sulfur hexafluoride (SF6 ) with phenolates in a SET reaction, in which the nature of the respective phenolate determines whether simple fluorides or pentafluorosulfanide ([SF5 ]- ) salts are formed.
Collapse
Affiliation(s)
- Robin F. Weitkamp
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Berthold Hoge
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
26
|
Aggarwal T, Sushmita, Verma AK. Achievements in fluorination using variable reagents through a deoxyfluorination reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo00952d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The application of fluorination reagent for the direct conversion of alcohols and phenols to fluorinated analogues.
Collapse
Affiliation(s)
- Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Sushmita
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Akhilesh K. Verma
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
27
|
Kim S, Khomutnyk Y, Bannykh A, Nagorny P. Synthesis of Glycosyl Fluorides by Photochemical Fluorination with Sulfur(VI) Hexafluoride. Org Lett 2020; 23:190-194. [PMID: 33354969 PMCID: PMC7783729 DOI: 10.1021/acs.orglett.0c03915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
This study describes a new convenient
method for the photocatalytic
generation of glycosyl fluorides using sulfur(VI) hexafluoride as
an inexpensive and safe fluorinating agent and 4,4′-dimethoxybenzophenone
as a readily available organic photocatalyst. This mild method was
employed to generate 16 different glycosyl fluorides, including the
substrates with acid and base labile functionalities, in yields of
43%–97%, and it was applied in continuous flow to accomplish
fluorination on an 7.7 g scale and 93% yield.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Anton Bannykh
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Bouvet S, Pégot B, Sengmany S, Le Gall E, Léonel E, Goncalves AM, Magnier E. Controlled decomposition of SF 6 by electrochemical reduction. Beilstein J Org Chem 2020; 16:2948-2953. [PMID: 33335602 PMCID: PMC7722628 DOI: 10.3762/bjoc.16.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
The electroreduction of SF6 is shown at ambient temperature in acetonitrile using an array of platinum microelectrodes to improve the electrical detection. Its half reduction potential occurs at −2.17 V vs Fc+/Fc. The exact number of electrons for the full consumption of sulfur hexafluoride was determined and this gas further quantitatively transformed into environmentally benign fluoride anion and sulfur by electrochemical reduction.
Collapse
Affiliation(s)
- Sébastien Bouvet
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Bruce Pégot
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Stéphane Sengmany
- Electrosynthèse, Catalyse et Chimie Organique, Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Erwan Le Gall
- Electrosynthèse, Catalyse et Chimie Organique, Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Eric Léonel
- Electrosynthèse, Catalyse et Chimie Organique, Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Anne-Marie Goncalves
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
29
|
Yan H, Liu Z, Tan K, Tan K, Ji R, Ye Y, Yan T, Shen Y. Synthesis and evaluation of indole-substituted N-heterocyclic carbene ligands. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Rottschäfer D, Fuhs DE, Neumann B, Stammler H, Ghadwal RS. Saturated NHC Derived Dichalcogen Dications. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Désirée E. Fuhs
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
31
|
Lee E, Pietrasiak E. Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues. Synlett 2020. [DOI: 10.1055/s-0040-1707106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reactions involving C–F, Si–F, and S–F bond cleavage with N-heterocyclic carbenes and isoelectronic species are reviewed. Most examples involve activation of aromatic C–F bond via an SNAr pathway and nucleophilic substitution of fluorine in electron-deficient olefins. The mechanism of the C–F bond activation depends on the reaction partners and the reaction can proceed via addition–elimination, oxidative addition (concerted or stepwise) or metathesis. The adducts formed upon substitution find applications in organic synthesis, as ligands and as stable radical precursors, but in most cases, their full potential remains unexplored.1 Introduction1.1 The C–F Bond1.2 C–F Bond Activation: A Short Summary1.3 C–F Bond Activation: A Special Case of SNAr1.4 N-Heterocyclic Carbenes (NHCs)1.5 The Purpose of this Article2 C–F bond Activation in Acyl Fluorides3 Activation of Vinylic C–F Bonds4 Activation of Aromatic C–F Bonds5 X–F Bond Activation (X = S or Si)6 C–F Bond Activation by Main Group Compounds Isoelectronic with NHCs7 Conclusions and Outlook
Collapse
Affiliation(s)
- Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology
- Division of Advanced Materials Science, Pohang University of Science and Technology
| | - Ewa Pietrasiak
- Department of Chemistry, Pohang University of Science and Technology
| |
Collapse
|
32
|
Morgan PJ, Hanson-Heine MWD, Thomas HP, Saunders GC, Marr AC, Licence P. C–F Bond Activation of a Perfluorinated Ligand Leading to Nucleophilic Fluorination of an Organic Electrophile. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick J. Morgan
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, United Kingdom
| | - Magnus W. D. Hanson-Heine
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, United Kingdom
| | - Hayden P. Thomas
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| | | | - Andrew C. Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Belfast BT9 5AG, United Kingdom
| | - Peter Licence
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, United Kingdom
| |
Collapse
|
33
|
Dirican D, Pfister N, Wozniak M, Braun T. Reactivity of Binary and Ternary Sulfur Halides towards Transition-Metal Compounds. Chemistry 2020; 26:6945-6963. [PMID: 31840851 PMCID: PMC7318666 DOI: 10.1002/chem.201904493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/23/2022]
Abstract
Binary sulfur fluorides exhibit an interesting reactivity towards transition metal complexes. They open up routes for the generation of sulfur‐containing building blocks. Often ligands with particular properties can be constructed. This includes their ability to transfer sulfur atoms or polysulfide units as well as fluorination reactions. This Minireview provides an insight into the reactivity of the binary and ternary sulfur halides S2Cl2, SCl2, SF4, SF6 and SF5Cl towards transition‐metal compounds.
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Nils Pfister
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Martin Wozniak
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
34
|
Tomar P, Braun T, Kemnitz E. Preparation of NHC Stabilized Al(III)fluorides: Fluorination of [(SIMes)AlMe
3
] with SF
4
or Me
3
SnF. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pooja Tomar
- Department of Chemistry Humboldt‐Universität zu Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry Humboldt‐Universität zu Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany
| | - Erhard Kemnitz
- Department of Chemistry Humboldt‐Universität zu Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany
| |
Collapse
|
35
|
Bull JN, Buntine JT, Scholz MS, Carrascosa E, Giacomozzi L, Stockett MH, Bieske EJ. Photodetachment and photoreactions of substituted naphthalene anions in a tandem ion mobility spectrometer. Faraday Discuss 2019; 217:34-46. [DOI: 10.1039/c8fd00217g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tandem IMS-laser-IMS is used to probe the intrinsic electronic absorptions of deprotonated substituted naphthalene anions.
Collapse
|