1
|
Dutta I, Gholap SS, Rahman MM, Tan D, Zhang L, Dighe SU, Huang KW. Homogeneous Catalysis in N-Formylation/N-Methylation Utilizing Carbon Dioxide as the C1 Source. Chem Asian J 2024:e202400497. [PMID: 39152629 DOI: 10.1002/asia.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The growing emphasis on sustainable chemistry has driven research into utilizing carbon dioxide (CO2) as a nontoxic, abundant, and cost-effective C1 building block. CO2 offers a promising avenue for direct conversion into valuable chemicals ranging from fuels to pharmaceuticals. This review focuses on the utilization of CO2 for reductive N-formylation/N-methylation reactions of various amines, providing advantages over conventional methods involving toxic CO and other methylating reagents. The approach employs readily available reductants such as silane, borane reagents, and hydrogen (H2). The discussion encompasses recent developments in transition metal and organocatalyst systems for these reactions, highlighting mechanistic interpretations and factors influencing product selectivity.
Collapse
Affiliation(s)
- Indranil Dutta
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandeep Suryabhan Gholap
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Mohammad Misbahur Rahman
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Davin Tan
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Lili Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Shashikant U Dighe
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| |
Collapse
|
2
|
Biriukov KO, Podyacheva E, Tarabrin I, Afanasyev OI, Chusov D. Simplified Version of the Eschweiler-Clarke Reaction. J Org Chem 2024; 89:3580-3584. [PMID: 38362854 DOI: 10.1021/acs.joc.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The traditional Eschweiler-Clarke reaction is a three-component process involving formaldehyde, amine, and formic acid. In this work, we showed that the reductive potential of formaldehyde was sufficient to provide methylation of secondary amines in the absence of acidic additives. Various acid-sensitive moieties remain intact under developed conditions. The scalability of the elaborated approach was shown for several products. Synthesis of the antifungal agent butenafine demonstrated the preparative utility of the developed approach.
Collapse
Affiliation(s)
- Klim O Biriukov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
| | - Evgeniya Podyacheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russian Federation
| | - Ignatii Tarabrin
- Moscow South-Eastern School named after V. I. Chuikov (Moscow Chemical Lyceum), Tamozhenniy proezd 4, 111033 Moscow, Russian Federation
| | - Oleg I Afanasyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Denis Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, 119334 Moscow, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russian Federation
| |
Collapse
|
3
|
Morton M, Tay BY, Mah JJ, White AJ, Nobbs JD, van Meurs M, Britovsek GJ. Hydrogen Activation with Ru-PN 3P Pincer Complexes for the Conversion of C 1 Feedstocks. Inorg Chem 2024; 63:3393-3401. [PMID: 38330919 PMCID: PMC10880058 DOI: 10.1021/acs.inorgchem.3c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The hydrogenation of C1 feedstocks (CO and CO2) has been investigated using ruthenium complexes [RuHCl(CO)(PN3P)] as the catalyst. PN3P pincer ligands containing amines in the linker between the central pyridine donor and the phosphorus donors with bulky substituents (tert-butyl (1) or TMPhos (2)) are required to obtain mononuclear single-site catalysts that can be activated by the addition of KOtBu to generate stable five-coordinate complexes [RuH(CO)(PN3P-H)], whereby the pincer ligand has been deprotonated. Activation of hydrogen takes place via heterolytic cleavage to generate [RuH2(CO)(PN3P)], but in the presence of CO, coordination of CO occurs preferentially to give [RuH(CO)2(PN3P-H)]. This complex can be protonated to give the cationic complex [RuH(CO)2(PN3P)]+, but it is unable to activate H2 heterolytically. In the case of the less coordinating CO2, both ruthenium complexes 1 and 2 are highly efficient as CO2 hydrogenation catalysts in the presence of a base (DBU), which in the case of the TMPhos ligand results in a TON of 30,000 for the formation of formate.
Collapse
Affiliation(s)
- Matthew
D. Morton
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| | - Boon Ying Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Justin J.Q. Mah
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Andrew J.P. White
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| | - James D. Nobbs
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Martin van Meurs
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - George J.P. Britovsek
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| |
Collapse
|
4
|
Chang J, Ding M, Zhang J, Chen X. Reactions of PNCNP and POCOP Pincer Platinum Hydride Complexes with Phenylacetylene and Carbon Disulfide: The Influence of the Pincer Backbone on the Structures of Unsaturated Auxiliary Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Man Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Fang F, Zhang J. Notable Catalytic Activity of Transition Metal Thiolate Complexes against Hydrosilylation and Hydroboration of Carbon-Heteroatom Bonds. Chem Asian J 2023; 18:e202201181. [PMID: 36545848 DOI: 10.1002/asia.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chemists tend to use transition metal hydride complexes rather than thiolate complexes to catalyse chemical transformations because the hydride complexes possess diverse catalytic reactivity, although most of them are air/moisture-sensitive and difficult to prepare. By comparing the catalytic performances of pincer ligated group 10 metal thiolate and hydride complexes in catalysing the hydroboration and hydrosilylation of C=O and C=N bonds, we demonstrate in this review that transition metal thiolate complexes are much better catalysts than the corresponding hydride complexes in catalysing this type of reactions. Many hydroboration and hydrosilylation reactions catalysed by pincer ligated group 10 metal hydride complexes can also be catalysed by the corresponding thiolate complexes and the thiolate systems are far more active. Therefore, the applications of transition metal thiolate complexes in the catalytic hydroboration and hydrosilylation of unsaturated carbon-heteroatom bonds deserve special attention in future work.
Collapse
Affiliation(s)
- Fei Fang
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang, Henan, 453003, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and, Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
6
|
Song Z, Liu J, Xing S, Shao X, Li J, Peng J, Bai Y. PNP-type ligands enabled copper-catalyzed N-formylation of amines with CO 2 in the presence of silanes. Org Biomol Chem 2023; 21:832-837. [PMID: 36602113 DOI: 10.1039/d2ob01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sustainable catalytic transformation of carbon dioxide into valuable fine chemicals with high efficiency is a global challenge as although CO2 is an abundant, nontoxic, and sustainable carbon feedstock it is also the most important factor behind the Greenhouse Effect. We describe herein a PNP-type ligand-enabled copper-catalyzed N-formylation of amines utilizing CO2 as the building block in the presence of hydrosilane as the reductant. Our current protocol featured newly synthesized PNP-type ligands with broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Zijie Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jun Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Shuya Xing
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
The catalytic activity difference of bis(phosphinite) pincer ligated Pt(II) thiolate and hydride complexes against hydrosilylation of aldimines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Györke G, Dancsó A, Volk B, Bezúr L, Hunyadi D, Szalóki I, Milen M. Direct Use of Copper-Containing Minerals in Goldberg Arylation of Amides. Catal Letters 2022. [DOI: 10.1007/s10562-022-03989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Newar R, Kalita R, Akhtar N, Antil N, Chauhan M, Manna K. N-Formylation of amines utilizing CO 2 by a heterogeneous metal–organic framework supported single-site cobalt catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01231f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-site cobalt-hydride supported on oxo-nodes of a porous aluminium metal–organic framework is a chemoselective and reusable catalyst for N-formylation of amines using CO2.
Collapse
Affiliation(s)
- Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
11
|
Norouziyanlakvan S, Rao GK, Ovens J, Gabidullin B, Richeson D. Electrocatalytic H 2 Generation from Water Relying on Cooperative Ligand Electron Transfer in "PN 3 P" Pincer-Supported Ni II Complexes. Chemistry 2021; 27:13518-13522. [PMID: 34415632 DOI: 10.1002/chem.202102031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/07/2022]
Abstract
Water is the most sustainable source for H2 production, and the efficient electrocatalytic production of H2 from mixed water/acetonitrile solutions by using two new air-stable nickel(II) pincer complexes, [Ni(κ3 -2,6-{Ph2 PNR}2 (NC5 H3 )Br2 ] (R=H I, Me II) is reported. Hydrogen generation from H2 O/CH3 CN solutions is initiated at -2 V against Fc+/0 , and bulk electrocatalysis studies showed that the catalyst functions with an excellent Faradaic efficiency and a turnover frequency of 160 s-1 . A DFT computational investigation of the reduction behavior of I and II revealed a correlation of H2 formation with charge donation from electrons originating in a reduced ligand-localized orbital. As a result, these catalysts are proposed to proceed by a novel mechanism involving electron/proton transfer between a Ni0I species bonded to an anionic PN3 P ligand ("L- /Ni0I ") and a NiI -hydride ("Ni-H"). Furthermore, these catalysts are able to reduce phenol and acetic acid, more active proton sources, at lower potentials that correlate with the substrate pKa .
Collapse
Affiliation(s)
- Somayeh Norouziyanlakvan
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5
| | - Gyandshwar Kumar Rao
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5
| | - Jeffrey Ovens
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5
| |
Collapse
|
12
|
Zhou C, Hu J, Chakraborty P, Huang K. Synthesis and characterization of second‐generation phosphorus‐nitrogen PN
3
P‐rhodium (I) pincer complexes
via
ligand post‐modification. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Zhou
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Jinsong Hu
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Priyanka Chakraborty
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Kuo‐Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
13
|
Kaur M, U Din Reshi N, Patra K, Bhattacherya A, Kunnikuruvan S, Bera JK. A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. Chemistry 2021; 27:10737-10748. [PMID: 33998720 DOI: 10.1002/chem.202101360] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/22/2022]
Abstract
A Cp*Ir(III) complex (1) of a newly designed ligand L1 featuring a proton-responsive pyridyl(benzamide) appended on N-heterocyclic carbene (NHC) has been synthesized. The molecular structure of 1 reveals a dearomatized form of the ligand. The protonation of 1 with HBF4 in tetrahydrofuran gives the corresponding aromatized complex [Cp*Ir(L1 H)Cl]BF4 (2). Both compounds are characterized spectroscopically and by X-ray crystallography. The protonation of 1 with acid is examined by 1 H NMR and UV-vis spectra. The proton-responsive character of 1 is exploited for catalyzing α-alkylation of ketones and β-alkylation of secondary alcohols using primary alcohols as alkylating agents through hydrogen-borrowing methodology. Compound 1 is an effective catalyst for these reactions and exhibits a superior activity in comparison to a structurally similar iridium complex [Cp*Ir(L2 )Cl]PF6 (3) lacking a proton-responsive pendant amide moiety. The catalytic alkylation is characterized by a wide substrate scope, low catalyst and base loadings, and a short reaction time. The catalytic efficacy of 1 is also demonstrated for the syntheses of quinoline and lactone derivatives via acceptorless dehydrogenation, and selective alkylation of two steroids, pregnenolone and testosterone. Detailed mechanistic investigations and DFT calculations substantiate the role of the proton-responsive ligand in the hydrogen-borrowing process.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kamaless Patra
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sooraj Kunnikuruvan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
14
|
Gafurov ZN, Kantyukov AO, Kagilev AA, Kagileva AA, Sakhapov IF, Mikhailov IK, Yakhvarov DG. Recent Advances in Chemistry of Unsymmetrical Phosphorus-Based Pincer Nickel Complexes: From Design to Catalytic Applications. Molecules 2021; 26:4063. [PMID: 34279402 PMCID: PMC8271868 DOI: 10.3390/molecules26134063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Pincer complexes play an important role in organometallic chemistry; in particular, their use as homogeneous catalysts for organic transformations has increased dramatically in recent years. The high catalytic activity of such bis-cyclometallic complexes is associated with the easy tunability of their properties. Moreover, the phosphorus-based unsymmetrical pincers showed higher catalytic activity than the corresponding symmetrical analogues in several catalytic reactions. However, in modern literature, an increasing interest in the development of catalysts based on non-precious metals is observed. For example, nickel, which is an affordable and sustainable analogue of platinum and palladium, known for its low toxicity, has attracted increasing attention in the catalytic chemistry of transition metals in recent years. Thus, this mini-review is devoted to the recent advances in the chemistry of unsymmetrical phosphorus-based pincer nickel complexes, including the ligand design, the synthesis of nickel complexes and their catalytic applications.
Collapse
Affiliation(s)
- Zufar N Gafurov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Artyom O Kantyukov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey A Kagilev
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alina A Kagileva
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Il'yas F Sakhapov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Ilya K Mikhailov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Dmitry G Yakhvarov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
15
|
González T, García JJ. Catalytic CO2 hydrosilylation with [Mn(CO)5Br] under mild reaction conditions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Fu XP, Peres L, Esvan J, Amiens C, Philippot K, Yan N. An air-stable, reusable Ni@Ni(OH) 2 nanocatalyst for CO 2/bicarbonate hydrogenation to formate. NANOSCALE 2021; 13:8931-8939. [PMID: 33956009 DOI: 10.1039/d1nr01054a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Production of formate via CO2/bicarbonate hydrogenation using cheap metal-based heterogeneous catalysts is attractive. Herein, we report the organometallic synthesis of a foam-like Ni@Ni(OH)2 composite nanomaterial which exhibited remarkable air stability and over 2 times higher catalytic activity than commercial RANEY® Ni catalyst in formate synthesis. Formate generation was achieved with an optimal rate of 6.0 mmol gcat-1 h-1 at 100 °C, a significantly lower operation temperature compared to the 200-260 °C reported in the literature. Deep characterization evidenced that this nanomaterial was made of an amorphous Ni(OH)2 phase covering metallic Ni sites; a core-shell structure which is crucial for the stability of the catalyst. The adsorption of bicarbonates onto the Ni@Ni(OH)2 catalyst was found to be a kinetically relevant step in the reaction, and the Ni-Ni(OH)2 interface was found to be beneficial for both CO2 and H2 activation thanks to a cooperative effect. Our findings emphasize the underestimated potential of Ni-based catalysts in CO2 hydrogenation to formate, indicating a viable strategy to develop stable, cheap metal catalysts for greener catalytic applications.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Laurent Peres
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France. and Université de Toulouse, UPS, INPT, F-31077 Toulouse CEDEX 4, France
| | - Jérôme Esvan
- CIRIMAT, CNRS-INP-UPS, INP-ENSIACET, 4 allée Emile Monso, BP 44362, F-31030, Toulouse Cedex 4, France
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France. and Université de Toulouse, UPS, INPT, F-31077 Toulouse CEDEX 4, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France. and Université de Toulouse, UPS, INPT, F-31077 Toulouse CEDEX 4, France
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
17
|
Sahoo RK, Sarkar N, Nembenna S. Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:11991-12000. [PMID: 33638314 DOI: 10.1002/anie.202100375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/15/2022]
Abstract
Herein, a remarkable conjugated bis-guanidinate (CBG) supported zinc hydride, [{LZnH}2 ; L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr); Ar=2,6-Et2 -C6 H3 }] (I) catalyzed partial reduction of heteroallenes via hydroboration is reported. A large number of aryl and alkyl isocyanates, including electron-donating and withdrawing groups, undergo reduction to obtain selectively N-boryl formamide, bis(boryl) hemiaminal and N-boryl methyl amine products. The compound I effectively catalyzes the chemoselective reduction of various isocyanates, in which the construction of the amide bond occurs. Isocyanates undergo a deoxygenation hydroboration reaction, in which the C=O bond cleaves, leading to N-boryl methyl amines. Several functionalities such as nitro, cyano, halide, and alkene groups are well-tolerated. Furthermore, a series of kinetic, control experiments and structurally characterized intermediates suggest that the zinc hydride species are responsible for all reduction steps and breaking the C=O bond.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
18
|
Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Li H, Lupp D, Das PK, Yang L, Gonçalves TP, Huang MH, El Hajoui M, Liang LC, Huang KW. Redox-Neutral Imination of Alcohol with Azide: A Sustainable Alternative to the Staudinger/Aza-Wittig Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Daniel Lupp
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradip K. Das
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Li Yang
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Théo P. Gonçalves
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mei-Hui Huang
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Marwa El Hajoui
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lan-Chang Liang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry and School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kuo-Wei Huang
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Gonçalves TP, Dutta I, Huang KW. Aromaticity in catalysis: metal ligand cooperation via ligand dearomatization and rearomatization. Chem Commun (Camb) 2021; 57:3070-3082. [PMID: 33656025 DOI: 10.1039/d1cc00528f] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Unlike the conventional model of transition metal catalysis, ligands in metal-ligand cooperative (or bifunctional) catalysis are involved in the substrate activations. Such processes have offered unique mechanistic understandings and led to new concepts for the catalyst design. In particular, unprecedented activities were discovered when the ligand could undergo dearomatization-rearomatization reactions during the catalytic cycle. Aromatization can provide an extra driving force to thermodynamics; consequently, it brings a new perspective to ligand platform design for catalysis. While numerous applications were demonstrated, the influences of changing ligand aromatic properties were often overlooked. In this article, representative ligand systems will be highlighted and a comparison between the Milstein and the Huang pincer systems will be discussed to provide theoretical and conceptual insights.
Collapse
Affiliation(s)
- Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | |
Collapse
|
21
|
Caise A, Hicks J, Ángeles Fuentes M, Goicoechea JM, Aldridge S. Partnering a Three-Coordinate Gallium Cation with a Hydroborate Counter-Ion for the Catalytic Hydrosilylation of CO 2. Chemistry 2021; 27:2138-2148. [PMID: 33169886 DOI: 10.1002/chem.202004408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Abstract
A novel β-diketiminate stabilized gallium hydride, (Dipp L)Ga(Ad)H (where (Dipp L)={HC(MeCDippN)2 }, Dipp=2,6-diisopropylphenyl and Ad=1-adamantyl), has been synthesized and shown to undergo insertion of carbon dioxide into the Ga-H bond under mild conditions. In this case, treatment of the resulting κ1 -formate complex with triethylsilane does not lead to regeneration of the hydride precursor. However, when combined with B(C6 F5 )3 , (Dipp L)Ga(Ad)H catalyses the reductive hydrosilylation of CO2 . Under stoichiometric conditions, the addition of one equivalent of B(C6 F5 )3 to (Dipp L)Ga(Ad)H leads to the formation of a 3-coordinate cationic gallane complex, partnered with a hydroborate anion, [(Dipp L)Ga(Ad)][HB(C6 F5 )3 ]. This complex rapidly hydrometallates carbon dioxide and catalyses the selective reduction of CO2 to the formaldehyde oxidation level at 60 °C in the presence of Et3 SiH (yielding H2 C(OSiEt3 )2 ). When catalysis is undertaken in the presence of excess B(C6 F5 )3 , appreciable enhancement of activity is observed, with a corresponding reduction in selectivity: the product distribution includes H2 C(OSiEt3 )2 , CH4 and O(SiEt3 )2 . While this system represents proof-of-concept in CO2 hydrosilylation by a gallium hydride system, the TOF values obtained are relatively modest (max. 10 h-1 ). This is attributed to the strength of binding of the formatoborate anion to the gallium centre in the catalytic intermediate (Dipp L)Ga(Ad){OC(H)OB(C6 F5 )3 }, and the correspondingly slow rate of the turnover-limiting hydrosilylation step. In turn, this strength of binding can be related to the relatively high Lewis acidity measured for the [(Dipp L)Ga(Ad)]+ cation (AN=69.8).
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
22
|
Das PK, Bhunia S, Chakraborty P, Chatterjee S, Rana A, Peramaiah K, Alsabban MM, Dutta I, Dey A, Huang KW. Electrocatalytic Water Oxidation by a Phosphorus-Nitrogen O═PN 3-Pincer Cobalt Complex. Inorg Chem 2021; 60:614-622. [PMID: 33236627 DOI: 10.1021/acs.inorgchem.0c02376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Water oxidation is a primary step in natural as well as artificial photosynthesis to convert renewable solar energy into chemical energy/fuels. Electrocatalytic water oxidation to evolve O2, utilizing suitable low-cost catalysts and renewable electricity, is of fundamental importance considering contemporary energy and environmental issues, yet it is kinetically challenging owing to the complex multiproton/electron transfer processes. Herein, we report the first cobalt-based pincer catalyst for catalytic water oxidation at neutral pH with high efficiency under electrochemical conditions. Most importantly, ligand (pseudo)aromaticity is identified to play an important role during electrocatalysis. A significant potential jump (∼300 mV) was achieved toward a lower positive value when the aromatized cobalt complex was transformed into a (pseudo)dearomatized cobalt species. The dearomatized species catalyzes the water oxidation reaction to evolve oxygen at a much lower overpotential (∼340 mV) on the basis of the onset potential (at a current density of 0.5 mA/cm2) of catalysis at pH 10.5, outperforming other Co-based molecular catalysts reported to date. These observations may provide a new strategy for the judicious design of earth-abundant transition-metal-based water oxidation catalysts.
Collapse
Affiliation(s)
- Pradip K Das
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Priyanka Chakraborty
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sudipta Chatterjee
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Karthik Peramaiah
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Merfat M Alsabban
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Indranil Dutta
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
24
|
Ritter F, Spaniol TP, Douair I, Maron L, Okuda J. Molecular Zinc Hydride Cations [ZnH] + : Synthesis, Structure, and CO 2 Hydrosilylation Catalysis. Angew Chem Int Ed Engl 2020; 59:23335-23342. [PMID: 32931656 PMCID: PMC7756573 DOI: 10.1002/anie.202011480] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 01/12/2023]
Abstract
Protonolysis of [ZnH2 ]n with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N',N'-tetramethylethane-1,2-diamine) and TEEDA (N,N,N',N'-tetraethylethane-1,2-diamine) gave the zinc hydride cation [(L2 )ZnH]+ , isolable either as the mononuclear THF adduct [(L2 )ZnH(thf)]+ [BArF 4 ]- (L2 =TMEDA; BArF 4 - =[B(3,5-(CF3 )2 -C6 H3 )4 ]- ) or as the dimer [{(L2 )Zn)}2 (μ-H)2 ]2+ [BArF 4 ]- 2 (L2 =TEEDA). In contrast to [ZnH2 ]n , the cationic zinc hydrides are thermally stable and soluble in THF. [(L2 )ZnH]+ was also shown to form di- and trinuclear adducts of the elusive neutral [(L2 )ZnH2 ]. All hydride-containing cations readily inserted CO2 to give the corresponding formate complexes. [(TMEDA)ZnH]+ [BArF 4 ]- catalyzed the hydrosilylation of CO2 with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc-catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well.
Collapse
Affiliation(s)
- Florian Ritter
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Iskander Douair
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Laurent Maron
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
25
|
Das PK, Chakraborty P, Gholap SS, Gonçalves TP, Yao C, Li H, Lai Z, Emwas AH, Huang KW. Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Molekulare Zinkhydridkationen [ZnH]
+
: Synthese, Struktur und CO
2
‐Hydrosilylierungskatalyse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Cheng H, Chen C, Zhang R, Zhang JC, Zhang WY, He YQ, Gu YC. A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium tert-Butoxide under Solvent-Free Conditions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA practical sodium tert-butoxide (NaOtBu)-mediated protocol is disclosed for the transamidation of various N,N-dimethyl amides with primary amines to afford the corresponding amides in moderate to good yields at room temperature under solvent-free conditions. This protocol features a facile work-up procedure and good functional group compatibility, especially for N,N-dimethyl amides with long-chain alkyl groups and heteroatom-containing amines. Notably, a few representative gram-scale reactions proceed smoothly to furnish the desired amides in high yields, which demonstrates the potential of this process for further practical applications. Several control experiments are carried out and a plausible mechanism is provided.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Chemical Engineering and Food Science
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Rui Zhang
- Department of Chemical Engineering and Food Science
| | | | - Wei-Yi Zhang
- Department of Chemical Engineering and Food Science
| | - Yu-Qing He
- Department of Chemical Engineering and Food Science
| | | |
Collapse
|
28
|
Cramer HH, Chatterjee B, Weyhermüller T, Werlé C, Leitner W. Controlling the Product Platform of Carbon Dioxide Reduction: Adaptive Catalytic Hydrosilylation of CO 2 Using a Molecular Cobalt(II) Triazine Complex. Angew Chem Int Ed Engl 2020; 59:15674-15681. [PMID: 32343876 PMCID: PMC7496264 DOI: 10.1002/anie.202004463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/23/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO2 preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.
Collapse
Affiliation(s)
- Hanna H. Cramer
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
29
|
Cramer HH, Chatterjee B, Weyhermüller T, Werlé C, Leitner W. Controlling the Product Platform of Carbon Dioxide Reduction: Adaptive Catalytic Hydrosilylation of CO
2
Using a Molecular Cobalt(II) Triazine Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hanna H. Cramer
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
30
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
31
|
Mazaud L, Tricoire M, Bourcier S, Cordier M, Gandon V, Auffrant A. Tridentate NNN Ligand Associating Amidoquinoline and Iminophosphorane: Synthesis and Coordination to Pd and Ni Centers. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Louis Mazaud
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Maxime Tricoire
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
32
|
Microwave-promoted solvent-free synthesis of para-quinone methides (p-QMs) derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Zhou C, Munkerup K, Wang Y, Das PK, Chakraborty P, Hu J, Yao C, Huang MH, Huang KW. Ligand-centered reactivity of a pseudo-dearomatized phosphorus-nitrogen PN 3P* rhodium complex towards molecular oxygen at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01605h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pseudo-dearomatized ligand of PN3P*Rh-CO reacts with O2 to form an α, β-unsaturated carbonyl moiety at room temperature, showcasing an unprecedented ligand-centered reactivity with the oxidation state of Rh(I) remaining untouched.
Collapse
Affiliation(s)
- Chunhui Zhou
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Kristin Munkerup
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Yuan Wang
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Pradip K. Das
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Priyanka Chakraborty
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Jinsong Hu
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Changguang Yao
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Mei-Hui Huang
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center & Division of Physical Science and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23900-6900
- Saudi Arabia
| |
Collapse
|
34
|
Zhang Q, Fukaya N, Fujitani T, Choi JC. Carbon Dioxide Hydrosilylation to Methane Catalyzed by Zinc and Other First-Row Transition Metal Salts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
35
|
Lupp D, Huang KW. The Importance of Metal–Ligand Cooperativity in the Phosphorus–Nitrogen PN3P Platform: A Computational Study on Mn-Catalyzed Pyrrole Synthesis. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Lupp
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Chen J, McGraw M, Chen EYX. Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO 2. CHEMSUSCHEM 2019; 12:4543-4569. [PMID: 31386795 DOI: 10.1002/cssc.201901764] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Catalytic hydrosilylation of carbon dioxide has emerged as a promising approach for carbon dioxide utilization. It allows the reductive transformation of carbon dioxide into value-added products at the levels of formate, formaldehyde, methanol, and methane. Tremendous progress has been made in the area of carbon dioxide hydrosilylation since the first reports in 1981. This focus review describes recent advances in the design and catalytic performance of leading catalyst systems, including transition-metal, main-group, and transition-metal/main-group and main-group/main-group tandem catalysts. Emphasis is placed on discussions of key mechanistic features of these systems and efforts towards the development of more selective, efficient, and sustainable carbon dioxide hydrosilylation processes.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
37
|
Yao C, Zhang T, Zhou C, Huang KW. Interrogating the steric outcome during H 2 heterolysis: in-plane steric effects in the regioselective protonation of the PN 3P-pincer ligand. Dalton Trans 2019; 48:12817-12821. [PMID: 31403641 DOI: 10.1039/c9dt03003d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
H2 heterolysis to generate well-defined nickel hydride-proton complexes was achieved by the 2nd generation PN3P-pincer nickel platform. The regioselective protonation in the ligand framework was demonstrated for the first time to highlight the importance of in-plane hindrance during the H2 splitting process.
Collapse
Affiliation(s)
- Changguang Yao
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Tonghuan Zhang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. and Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunhui Zhou
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
38
|
Li W, Zhu D, Li G, Chen J, Xia J. Iron‐Catalyzed Selective
N
‐Methylation and
N
‐Formylation of Amines with CO
2. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen‐Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Dao‐Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Gang Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
39
|
Kassie AA, Duan P, Gray MB, Schmidt-Rohr K, Woodward PM, Wade CR. Synthesis and Reactivity of Zr MOFs Assembled from PNNNP-Ru Pincer Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abebu A. Kassie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew B. Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Patrick M. Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
Zou XR, Liao SM, Huang KW, Liang LC. Chemistry of Anilido Phosphine Complexes of Nickel. CHEM LETT 2019. [DOI: 10.1246/cl.190216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xue-Ru Zou
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Mei Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lan-Chang Liang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
41
|
Zhang B, Fan Z, Guo Z, Xi C. Reduction of CO2 with NaBH4/I2 for the Conversion of Thiophenols to Aryl Methyl Sulfides. J Org Chem 2019; 84:8661-8667. [DOI: 10.1021/acs.joc.9b01180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengning Fan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Huang M, Gonçalves TP, Huang K. Beyond the PN
3
(P) system: Synthesis of non‐symmetrical PONNP‐pincer ligands and a unique Ni–Ag bimetallic complex containing a short Ag–Ag distance. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mei‐Hui Huang
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Théo P. Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Kuo‐Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
43
|
Li H, Gonçalves TP, Lupp D, Huang KW. PN3(P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04495] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaifeng Li
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Théo P. Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Daniel Lupp
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Bertini F, Glatz M, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Carbon Dioxide Reduction to Methanol Catalyzed by Mn(I) PNP Pincer Complexes under Mild Reaction Conditions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04106] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Federica Bertini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mathias Glatz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Berthold Stöger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Maurizio Peruzzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Chimiche e Tecnologia dei Materiali (CNR-DSCTM), Via dei Taurini 19, 00185 Rome, Italy
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luca Gonsalvi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
45
|
Application of POCOP Pincer Nickel Complexes to the Catalytic Hydroboration of Carbon Dioxide. Catalysts 2018. [DOI: 10.3390/catal8110508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reduction of CO2 is of great importance. In this paper, different types of bis(phosphinite) (POCOP) pincer nickel complexes, [2,6-(R2PO)2C6H3]NiX (R = tBu, iPr, Ph; X = SH, N3, NCS), were applied to the catalytic hydroboration of CO2 with catecholborane (HBcat). It was found that pincer complexes with tBu2P or iPr2P phosphine arms are active catalysts for this reaction in which CO2 was successfully reduced to a methanol derivative (CH3OBcat) with a maximum turnover frequency of 1908 h−1 at room temperature under an atmospheric pressure of CO2. However, complexes with phenyl-substituted phosphine arms failed to catalyze this reaction—the catalysts decomposed under the catalytic conditions. Complexes with iPr2P phosphine arms are more active catalysts compared with the corresponding complexes with tBu2P phosphine arms. For complexes with the same phosphine arms, the catalytic activity follows the series of mercapto complex (X = SH) ≈ azido complex (X = N3) >> isothiocyanato complex (X = NCS). It is believed that all of these catalytic active complexes are catalyst precursors which generate the nickel hydride complex [2,6-(R2PO)2C6H3]NiH in situ, and the nickel hydride complex is the active species to catalyze this reaction.
Collapse
|
46
|
Li H, Gonçalves TP, Hu J, Zhao Q, Gong D, Lai Z, Wang Z, Zheng J, Huang KW. A Pseudodearomatized PN3P*Ni–H Complex as a Ligand and σ-Nucleophilic Catalyst. J Org Chem 2018; 83:14969-14977. [DOI: 10.1021/acs.joc.8b02205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | | | | | - Zhixiang Wang
- College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
47
|
Yao C, Chakraborty P, Aresu E, Li H, Guan C, Zhou C, Liang LC, Huang KW. Monomeric nickel hydroxide stabilized by a sterically demanding phosphorus–nitrogen PN3P-pincer ligand: synthesis, reactivity and catalysis. Dalton Trans 2018; 47:16057-16065. [DOI: 10.1039/c8dt03403f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various new nickel complexes and amides are synthesized using monomeric nickel hydroxide (PN3P)Ni(OH) (3) as the precursor or catalyst.
Collapse
Affiliation(s)
- Changguang Yao
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Priyanka Chakraborty
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Emanuele Aresu
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Huaifeng Li
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Chao Guan
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Chunhui Zhou
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Lan-Chang Liang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
- Department of Medicinal and Applied Chemistry
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|