1
|
Leitner D, Neururer FR, Hohloch S. Synthesis and electrochemical properties of molybdenum nitrido complexes supported by redox-active NHC and MIC ligands. Dalton Trans 2025; 54:582-594. [PMID: 39556080 PMCID: PMC11572837 DOI: 10.1039/d4dt02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
We report the synthesis of a series of molybdenum nitrido complexes supported by bis-phenolate N-heterocyclic and mesoionic carbenes (NHC & MIC). The reaction between MoN(OtBu)3 and the corresponding azolium salts [H3L1]Cl and [H3L2]Cl (with L1 = bis-phenolate triazolylidene and L2 = bis-phenolate benzimidazolylidene) gives clean access to the corresponding NHC/MIC complexes 1-Cl and 2-Cl. Electrochemical investigations of these complexes showed that they can be reversibly reduced at potentials of -1.13 and -1.01 V vs. Fc/[Fc]+ and the reduced complexes [1-Cl]- and [2-Cl]- can be cleanly isolated after chemical reduction with one equivalent of decamethylcobaltocene. Exchange of the halide atoms is furthermore reported to give a series of nitrido complexes supported by tert-butanolate (1-OtBu and 2-OtBu), perfluoro-tert-butanolate (1-OtBuF9 and 2-OtBuF9), tritylate (1-OCPh3 and 2-OCPh3), mesitolate (1-OMes and 2-OMes), thio-tert-butanolate (1-StBu), thiotritylate (1-SCPh3 and 2-SCPh3) and thiomesitolate complexes (1-SMes). The electrochemical properties of all complexes were evaluated and compared. All isolated complexes were characterized by multinuclear and multidimensional NMR spectroscopy and (if applicable) by EPR spectroscopy. Furthermore, the reactivity of 1-Cl and 2-Cl in the presence of protons and decamethylcobaltocene was investigated, which shows facile extrusion of ammonia, yielding diamagnetic bis-molybdenum(III) complexes 3 and 4.
Collapse
Affiliation(s)
- Daniel Leitner
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Florian R Neururer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Okumura A, Ghana P, Spaniol TP, Okuda J. Bridging Titanium Nitrido Complexes Containing A Linear Ti-N-Ti Core with A Two-Coordinate Nitrido Ligand. Chemistry 2024; 30:e202402390. [PMID: 39045887 DOI: 10.1002/chem.202402390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
A series of titanium μ2-nitrido complexes supported by the triamidoamine ligand Xy-N3N (Xy-N3N={(3,5-Me2C6H3)NCH2CH2}3N3-) is reported. The titanium azido complex [(Xy-N3N)TiN3] (1-N3), prepared by salt metathesis of the chloride complex [(Xy-N3N)TiCl] (1-Cl) with NaN3, reacted with lithium metal or with alkali metal naphthalenides (alkali metal M=Na, K, and Rb) in THF to give the corresponding dinuclear μ2-nitrido complexes M[(Xy-N3N)Ti=N-Ti(Xy-N3N)] (2-M; M=Li, Na, K, Rb). Single crystal X-ray diffraction studies of 2-Li, 2-Na, and 2-K revealed alkali metal dependent structures in the solid state. While 2-Li and 2-K contain a μ2-nitrido ligand with a linear Ti-N-Ti core, 2-Na includes a μ3-nitrido ligand as part of a T-shape Ti2NaN fragment with the sodium cation weekly coordinated to the nitrido nitrogen atom. When the synthesis of the nitrido complexes was carried out in the presence of excess alkali metals, decomposition of the nitrido complexes was observed affording some intractable titanium species along with the trialkali metal salts [M3(Xy-N3N)] (3-M) (M=Li, Na, K, and Rb). These salts were also prepared by deprotonation of (Xy-N3N)H3 with the corresponding alkali metal hexamethyldisilazide and characterized by multinuclear NMR spectroscopy as well as single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Akira Okumura
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Priyabrata Ghana
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Department of Chemistry, Indian Institute of Technology Gandhinagar, 382355, Gujarat, Gandhinagar, India
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Wang X, Wang Y, Wu Y, Wang GX, Wei J, Xi Z. Syntheses and Characterizations of Hetero-Bimetallic Chromium-Dinitrogen Transition-Metal Complexes. Inorg Chem 2023; 62:18641-18648. [PMID: 37905954 DOI: 10.1021/acs.inorgchem.3c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the domain of N2 activation, hetero-bimetallic dinitrogen complexes are garnering substantial interest due to their potential to induce polarization in nonpolar N2 gas. Herein, we present the syntheses and characterizations of three novel hetero-multimetallic dinitrogen complexes: Cp*Cr(depe)N2V(depe)Me[O, P, O] 5, Cp*Cr(depe)N2V(depe)Tipp[O, P, O] 6, and [Cp*Cr(depe)N2]2TiTipp[O, P, O] 7. These complexes were synthesized via a transmetalation process involving the treatment of [Cr0-N2]- complex 4 with vanadium and titanium chloride complexes bearing alkyl or aryl substituted bis(o-hydroxyphenyl)-phenyl phosphine R[O, P, O] ligand (alkyl = methyl, aryl = 2,4,6-tri-isopropylbenzene). X-ray analysis shows that complexes 5 and 6 exhibit heterodinuclear structures, while complex 7 exhibits a heterotrinuclear core with two N2 ligands concurrently coordinated to two chromium and one titanium atoms. Raman spectroscopic data show that the N-N stretching vibration of the N2 moiety is clearly downshifted relative to free N2 and to mononuclear [Cr0-N2]- complex 4.
Collapse
Affiliation(s)
- Xueli Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yixi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Kokubo Y, Tsuzuki K, Sugiura H, Yomura S, Wasada-Tsutsui Y, Ozawa T, Yanagisawa S, Kubo M, Takeyama T, Yamaguchi T, Shimazaki Y, Kugimiya S, Masuda H, Kajita Y. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorg Chem 2023; 62:5320-5333. [PMID: 36972224 DOI: 10.1021/acs.inorgchem.2c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A novel dinitrogen-dichromium complex, [{Cr(LBn)}2(μ-N2)] (1), has been prepared from reaction of CrCl3 with a lithiated triamidoamine ligand (Li3LBn) under dinitrogen. The X-ray crystal structure analysis of 1 revealed that it is composed of two independent dimeric Cr complexes bridged by N2 in the unit cell. The bridged N-N bond lengths (1.188(4) and 1.185(7) Å) were longer than the free dinitrogen molecule. The elongations of N-N bonds in 1 were also supported by the fact that the ν(N-N) stretching vibration at 1772 cm-1 observed in toluene is smaller than the free N2. Complex 1 was identified to be a 5-coordinated high spin Cr(IV) complex by Cr K-edge XANES measurement. The 1H NMR spectrum and temperature dependent magnetic susceptibility of 1 indicated that complex 1 is in the S = 1 ground state, in which two Cr(IV) ions and unpaired electron spins of the bridging N22- ligand are strongly antiferromagnetically coupled. Reaction of complex 1 with 2.3 equiv of Na or K gave chromium complexes with N2 between the Cr ion and the respective alkali metal ion, [{CrNa(LBn)(N2)(Et2O)}2] (2) and [{CrK(LBn)(N2)}4(Et2O)2] (3), respectively. Furthermore, the complexes 2 and 3 reacted with 15-crown-5 and 18-crown-6 to form the respective crown-ether adducts, [CrNa(LBn)(N2)(15-crown-5)] (4) and [CrK(LBn)(N2)(18-crown-6)] (5). The XANES measurements of complexes 2, 3, 4, and 5 revealed that they are high spin Cr(IV) complexes like complex 1. All complexes reacted with a reducing agent and a proton source to form NH3 and/or N2H4. The yields of these products in the presence of K+ were higher than those in the presence of Na+. The electronic structures and binding properties of 1, 2, 3, 4, and 5 were evaluated and discussed based on their DFT calculations.
Collapse
|
5
|
Xie SJ, Wu RK, Huang YF, Chen HL, Zhang SQ, Liu F, Zhai DD, Hong X, Shi ZJ. Direct Incorporation of Dinitrogen into an Aliphatic C-H Bond. J Am Chem Soc 2023; 145:6773-6780. [PMID: 36821052 DOI: 10.1021/jacs.2c13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The activation of dinitrogen (N2) and direct incorporation of its N atom into C-H bonds to create aliphatic C-N compounds remains unresolved. Incompatible conditions between dinitrogen reduction and C-H functionalization make this process extremely challenging. Herein, we report the first example of dinitrogen insertion into an aliphatic Csp3-H bond on the ligand scaffold of a 1,3-propane-bridged [N2N]2--type dititanium complex. Mechanistic investigations on the behaviors of dinuclear and mononuclear Ti complexes indicated the intramolecular synergistic effect of two Ti centers at a C-N bond-forming step. Computational studies revealed the critical isomerization between the inactive side-on N2 complex and the active nitridyl complex, which is responsible for the Csp3-H amination. This strategy maps an efficient route toward the future synthesis of aliphatic amines directly from N2.
Collapse
Affiliation(s)
- Si-Jun Xie
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Rong-Kai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yi-Fei Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hao-Lin Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, SIOC, CAS, Shanghai 200032, China
| |
Collapse
|
6
|
Synthesis and structural analysis of titanium-μ-dinitrogen complex supported by di-anionic guanidinate ligands. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Schrader S, Ghana P, Hoffmann A, Spaniol TP, Okuda J. A Terminal Hydride of Hafnium Supported by a Triamidoamine Ligand. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Sebastian Schrader
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Priyabrata Ghana
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Thomas P. Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
8
|
Kokubo Y, Igarashi I, Nakao K, Hachiya W, Kugimiya S, Ozawa T, Masuda H, Kajita Y. The Steric Effect in Preparations of Vanadium(II)/(III) Dinitrogen Complexes of Triamidoamine Ligands Bearing Bulky Substituents. Molecules 2022; 27:5864. [PMID: 36144600 PMCID: PMC9500765 DOI: 10.3390/molecules27185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The reactions of newly designed lithiated triamidoamines Li3LR (R = iPr, Pen, and Cy2) with VCl3(THF)3 under N2 yielded dinitrogen-divanadium complexes with a μ-N2 between vanadium atoms [{V(LR)}2(μ-N2)] (R = iPr (1) and Pen (2)) for the former two, while not dinitrogen-divanadium complexes but a mononuclear vanadium complex with a vacant site, [V(LCy2)] (R = Cy2 (3)), were obtained for the third ligand. The V-NN2 and N-N distances were 1.7655(18) and 1.219(4) Å for 1 and 1.7935(14) and 1.226(3) Å for 2, respectively. The ν(14N-14N) stretching vibrations of 1 and 2, as measured using resonance Raman spectroscopy, were detected at 1436 and 1412 cm-1, respectively. Complex 3 reacted with potassium metal in the presence of 18-crown-6-ether under N2 to give a hetero-dinuclear vanadium complex with μ-N2 between vanadium and potassium, [VK(LCy2)(μ-N2)(18-crown-6)] (4). The N-N distance and ν(14N-14N) stretching for 4 were 1.152(3) Å and 1818 cm-1, respectively, suggesting that 4 is more activated than complexes 1 and 2. The complexes 1, 2, 3, and 4 reacted with HOTf and K[C10H8] to give NH3 and N2H4. The yields of NH3 and N2H4 (per V atom) were 47 and 11% for 1, 38 and 16% for 2, 77 and 7% for 3, and 80 and 5% for 4, respectively, and 3 and 4, which have a ligand LCy2, showed higher reactivity than 1 and 2.
Collapse
Affiliation(s)
- Yoshiaki Kokubo
- Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Itsuki Igarashi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Nakao
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Wataru Hachiya
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shinichi Kugimiya
- Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Tomohiro Ozawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Kajita
- Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
9
|
del Horno E, Jover J, Mena M, Pérez‐Redondo A, Yélamos C. Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angew Chem Int Ed Engl 2022; 61:e202204544. [PMID: 35748604 PMCID: PMC9542190 DOI: 10.1002/anie.202204544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/18/2022]
Abstract
Reaction of [TiCp*Cl3 ] (Cp*=η5 -C5 Me5 ) with one equivalent of magnesium in tetrahydrofuran at room temperature affords the paramagnetic trinuclear complex [{TiCp*(μ-Cl)}3 (μ3 -Cl)], which reacts with dinitrogen under ambient conditions to give the diamagnetic derivative [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] and the titanium(III) dimer [{TiCp*Cl(μ-Cl)}2 ]. The structure of the trinuclear mixed-valence complexes has been studied by experimental and theoretical methods and the latter compound represents the first well-defined example of the μ3 -η1 : η2 : η2 coordination mode of the dinitrogen molecule. The reaction of [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] with excess HCl in tetrahydrofuran results in clean NH4 Cl formation with regeneration of the starting material [TiCp*Cl3 ]. Therefore, a cyclic ammonia synthesis under ambient conditions can be envisioned by alternating N2 /HCl atmospheres in a [TiCp*Cl3 ]/Mg(excess) reaction mixture in tetrahydrofuran.
Collapse
Affiliation(s)
- Estefanía del Horno
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Jesús Jover
- Secció de Química InorgànicaDepartament de Química Inorgànica i OrgànicaInstitut de Química Teòrica i Computacional (IQTC-UB)Universitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
| | - Miguel Mena
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Adrián Pérez‐Redondo
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| |
Collapse
|
10
|
Meng F, Kuriyama S, Egi A, Tanaka H, Yoshizawa K, Nishibayashi Y. Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Nagoya 457-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Haufe LC, Arrowsmith M, Dietz M, Gärtner A, Bertermann R, Braunschweig H. Spontaneous N 2-diboranylation of [W(N 2) 2(dppe) 2] with B 2Br 4(SMe 2) 2. Dalton Trans 2022; 51:12786-12790. [PMID: 35861163 DOI: 10.1039/d2dt02135h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1,3-bromoboration of [W(N2)2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with B2Br4(SMe2)2 in the presence of various Lewis bases L yields diboranyldiazenido complexes, with L coordinating either at the terminal or internal boron atom. The 2 : 1 reaction of [W(N2)2(dppe)2] and B2Br4(SMe2)2 yields a 1,2-bis(diazenido)diborane-bridged ditungsten complex with a fully planar π-conjugated BrWN2B2Br2N2WBr core.
Collapse
Affiliation(s)
- Lisa C Haufe
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Yelamos C, del Horno E, Jover J, Mena M, Perez-Redondo A. Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carlos Yelamos
- Universidad de Alcala Quimica Organica y Quimica Inorganica Campus Universitario, Edificio Farmacia 28805 Alcala de Henares SPAIN
| | - Estefania del Horno
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| | - Jesus Jover
- Universitat de Barcelona Facultat de Quimica Deapartment de Quimica Inorganica i Organica Marti i Franques 1-11 08028 Barcelona SPAIN
| | - Miguel Mena
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| | - Adrian Perez-Redondo
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| |
Collapse
|
13
|
Kuriyama S, Wei S, Kato T, Nishibayashi Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules 2022; 27:2373. [PMID: 35408764 PMCID: PMC9000597 DOI: 10.3390/molecules27072373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (S.K.); (S.W.); (T.K.)
| |
Collapse
|
14
|
Kuriyama S, Wei S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorg Chem 2022; 61:5190-5195. [PMID: 35313105 DOI: 10.1021/acs.inorgchem.2c00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.
Collapse
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shenglan Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Zhang G, Liu T, Song J, Quan Y, Jin L, Si M, Liao Q. N 2 Cleavage on d 4/d 4 Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. J Am Chem Soc 2022; 144:2444-2449. [PMID: 35014788 DOI: 10.1021/jacs.1c11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of N-containing organophosphine compounds using N2 as the nitrogen source under mild conditions has attracted much attention. Herein, the conversion of N2 into iminophosphorane was reported. By visible light irradiation, N2 was split on a MoII complex bearing a PNCNP ligand, directly forming the MoV nitride. After the N-P bond formation on the terminal nitride, the N atom from N2 was ultimately transferred into iminophosphorane. Key intermediates were characterized.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Tanggao Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Yingyu Quan
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Mengyue Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| |
Collapse
|
16
|
Okuda J, Okumura A, Ghana P, Fink F, Schmidt R, Hoffmann A, Spaniol TP, Herres-Pawlis S. Formate Complexes of Tri- and Tetravalent Titanium Supported by a Tris(phenolato)amine Ligand. Dalton Trans 2022; 51:14345-14351. [DOI: 10.1039/d2dt01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium(III) and titanium(IV) formate complexes supported by the sterically encumbering tris(phenolato)amine ligand (H3(O3N) = tris(4,6-di-tert-butyl-2-hydroxybenzyl)amine) are described. Salt metathesis of the chlorido precursor [(O3N)TiCl] (1-Cl) with sodium formate in a...
Collapse
|
17
|
Bae DY, Lee G, Lee E. Reduction of highly bulky triphenolamine molybdenum nitrido and chloride complexes. Dalton Trans 2021; 50:14139-14143. [PMID: 34635894 DOI: 10.1039/d1dt02375f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal nitrides are key intermediates in the catalytic reduction of dinitrogen to ammonia. To date, transition metal nitride complexes with the triphenolamine (TPA) ligand have not been reported and the system with the ligand has been much less studied for ammonia formation compared with other systems. Herein, we report a series of molybdenum complexes supported by a sterically demanding TPA ligand, including a nitrido complex NMo(TPA). We achieved the stoichiometric conversion of the nitride moiety into ammonia under ambient conditions by adding proton and electron sources to NMo(TPA). However, the catalytic turnover for N2 reduction to ammonia was not observed in the triphenolamine ligand system unlike the Schrock system-triamidoamine ligand. Density functional theory calculation revealed that the molybdenum center favors binding NH3 over N2 by 16.9 kcal mol-1 and the structural lability of the trigonal bipyramidal (TBP) molybdenum complex seems to prevent catalytic turnover. Our systematic study showed that the electronegativity and bond length of ancillary ligands determine the preference between N2 and NH3, suggesting a systematic design strategy for improvement.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| |
Collapse
|
18
|
Bae DY, Lee G, Lee E. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorg Chem 2021; 60:12813-12822. [PMID: 34492761 DOI: 10.1021/acs.inorgchem.1c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new type of dititanium dinitrogen complex supported by a triphenolamine (TPA) ligand is reported. Analysis by single-crystal X-ray diffraction and Raman and NMR spectroscopy reveals different coordination geometries for the two titanium centers. Hence, coordination of TPA and a nitrogen ligand results in trigonal-bipyramidal geometry, while an octahedral titanium center is obtained upon additional coordination of an ethoxide generated upon C-O bond cleavage in a diethyl ether solvent molecule. The titanium complex successfully generates ammonia in the presence of an excess amount of PCy3HI and KC8 in 154% yield (per titanium atom). A titanium complex with a bulkier TPA does not form a dinitrogen complex, and mononuclear titanium dinitrogen complexes were not accessible, presumably because of the high tendency of early transition metals to form binuclear dinitrogen complexes.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
19
|
Ghana P, Schrader S, Rajeshkumar T, Spaniol TP, Englert U, Maron L, Okuda J. Reduced Arene Complexes of Hafnium Supported by a Triamidoamine Ligand. Angew Chem Int Ed Engl 2021; 60:14179-14187. [PMID: 33890350 PMCID: PMC8252659 DOI: 10.1002/anie.202103755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/09/2022]
Abstract
A series of hafnium complexes with a reduced arene of the general formula [K(L)][Hf(Xy-N3 N)(arene)] (Xy-N3 N={(3,5-Me2 C6 H3 )NCH2 CH2 }3 N3- , L=THF, 18-crown-6; arene=C10 H8 2- , C14 H10 2- ) mimic the chemistry of hafnium in its formal oxidation state +II. All compounds were obtained upon reduction of the chlorido complex [HfCl(Xy-N3 N)(thf)] with two equivalents of potassium naphthalenide or anthracenide. The reducing nature and the basicity of the reduced anthracene ligand were explored in the reaction of benzonitrile and azobenzene, and by deprotonation of tert-butylacetylene, respectively. The reduction of benzonitrile provides an initial double nitrile insertion product under kinetic control that rearranges after extrusion of one of the inserted nitriles to a hafnium imido complex as the thermodynamic product. The reduction of azobenzene resulted in a diphenylhydrazido(2-) complex. Treatment of terminal alkynes with the anthracene or diphenylhydrazido(2-) complex led to the selective protonation of the corresponding dianionic ligand.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Sebastian Schrader
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thayalan Rajeshkumar
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilF-31077ToulouseFrance
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Ulli Englert
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Laurent Maron
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilF-31077ToulouseFrance
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
20
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen‐Bridged Dirhenium Complex Bearing PNP‐Pincer Ligands under Mild Reaction Conditions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University Minami-ku Nagoya 457-8530 Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
21
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions*. Angew Chem Int Ed Engl 2021; 60:13906-13912. [PMID: 33835664 DOI: 10.1002/anie.202102175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Indexed: 01/07/2023]
Abstract
A series of rhenium complexes bearing a pyridine-based PNP-type pincer ligand are synthesized from rhenium phosphine complexes as precursors. A dinitrogen-bridged dirhenium complex bearing the PNP-type pincer ligands catalytically converts dinitrogen into ammonia during the reaction with KC8 as a reductant and [HPCy3 ]BArF 4 (Cy=cyclohexyl, ArF =3,5-(CF3 )2 C6 H3 ) as a proton source at -78 °C to afford 8.4 equiv of ammonia based on the rhenium atom of the catalyst. The rhenium-dinitrogen complex also catalyzes silylation of dinitrogen in the reaction with KC8 as a reductant and Me3 SiCl as a silylating reagent under ambient reaction conditions to afford 11.7 equiv of tris(trimethylsilyl)amine based on the rhenium atom of the catalyst. These results demonstrate the first successful example of catalytic nitrogen fixation under mild reaction conditions using rhenium-dinitrogen complexes as catalysts.
Collapse
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, 457-8530, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
22
|
Ghana P, Schrader S, Rajeshkumar T, Spaniol TP, Englert U, Maron L, Okuda J. Reduzierte Arenkomplexe von Hafnium mit einem Triamidoaminliganden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priyabrata Ghana
- Institut für anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Sebastian Schrader
- Institut für anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Thayalan Rajeshkumar
- Université de Toulouse et CNRS INSA UPS UMR 5215 LPCNO 135 Avenue de Rangueil F-31077 Toulouse Frankreich
| | - Thomas P. Spaniol
- Institut für anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Ulli Englert
- Institut für anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Laurent Maron
- Université de Toulouse et CNRS INSA UPS UMR 5215 LPCNO 135 Avenue de Rangueil F-31077 Toulouse Frankreich
| | - Jun Okuda
- Institut für anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| |
Collapse
|
23
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross-Metathesis of N 2 -Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021; 60:12242-12247. [PMID: 33608987 DOI: 10.1002/anie.202015183] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/11/2022]
Abstract
The direct synthesis of nitrile from N2 under mild conditions is of great importance and has attracted much interest. Herein, we report a direct conversion of N2 into nitrile via a nitrile-alkyne cross-metathesis (NACM) process involving a N2 -derived Mo nitride. Treatment of the Mo nitride with alkyne in the presence of KOTf afforded an alkyne-coordinated nitride, which was then transformed into MoV carbyne and the corresponding nitrile upon 1 e- oxidation. Both aryl- and alkyl-substituted alkynes underwent this process smoothly. Experiments and DFT calculations have proved that the oxidation state of the Mo center plays a crucial role. This method does not rely on the nucleophilicity of the N2 -derived metal nitride, offering a novel strategy for N2 fixation chemistry.
Collapse
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Xin Hong
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
24
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross‐Metathesis of N
2
‐Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Qian Liao
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Xin Hong
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Li Jin
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|
26
|
Kuriyama S, Nishibayashi Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
28
|
Reinholdt A, Pividori D, Laughlin AL, DiMucci IM, MacMillan SN, Jafari MG, Gau MR, Carroll PJ, Krzystek J, Ozarowski A, Telser J, Lancaster KM, Meyer K, Mindiola DJ. A Mononuclear and High-Spin Tetrahedral Ti II Complex. Inorg Chem 2020; 59:17834-17850. [PMID: 33258366 PMCID: PMC7928263 DOI: 10.1021/acs.inorgchem.0c02586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 12/31/2022]
Abstract
A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;μ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel Pividori
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander L. Laughlin
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ida M. DiMucci
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mehrafshan G. Jafari
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Kyle M. Lancaster
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karsten Meyer
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Daniel J. Mindiola
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
30
|
Kiernicki JJ, Zeller M, Szymczak NK. Examining the Generality of Metal-Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization. Inorg Chem 2020; 59:9279-9286. [PMID: 32551605 PMCID: PMC7340558 DOI: 10.1021/acs.inorgchem.0c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We outline the generality and requirements for cooperative N2H4 capture, N-N bond scission, and amido stabilization across a series of first-row transition metal complexes bearing a pyridine(dipyrazole) ligand. This ligand contains a pair of flexibly tethered trialkylborane Lewis acids that enable hydrazine capture and M-NH2 stabilization. While the Lewis acids are required to bind N2H4, the identity of the metal dictates whether N-N bond scission can occur. The redox properties of the M(II) bis(amidoborane) series of complexes were investigated and reveal that ligand-based events prevail; oxidation results in the generation of a transiently formed aminyl radical, while reduction occurs at the redox-active pyridine(dipyrazole) ligand.
Collapse
Affiliation(s)
- John J. Kiernicki
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Kawakami R, Kuriyama S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Iridium-catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions. CHEM LETT 2020. [DOI: 10.1246/cl.200254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ryosuke Kawakami
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Science, Daido University, Minami-ku, Nagoya, Aichi 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Kim S, Loose F, Chirik PJ. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem Rev 2020; 120:5637-5681. [DOI: 10.1021/acs.chemrev.9b00705] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
33
|
Eaton MC, Knight BJ, Catalano VJ, Murray LJ. Evaluating Metal Ion Identity on Catalytic Silylation of Dinitrogen Using a Series of Trimetallic Complexes. Eur J Inorg Chem 2020; 2020:1519-1524. [PMID: 33071629 DOI: 10.1002/ejic.201901335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report catalytic silylation of dinitrogen to tris(trimethylsilyl)amine by a series of trinuclear first row transition metal complexes (M = Cr, Mn, Fe, Co, Ni) housed in our tris(β-diketiminate) cyclophane (L 3- ). Yields are expectedly dependent on metal ion type ranging from 14 to 199 equiv NH4 +/complex after protonolysis for the Mn to Co congeners, respectively. For the series of complexes, the number of turnovers trend observed is Co > Fe > Cr > Ni > Mn, consistent with prior reports of greater efficacy of Co over Fe in other ligand systems for this reaction.
Collapse
Affiliation(s)
- Mary C Eaton
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | - Brian J Knight
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | | | - Leslie J Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| |
Collapse
|
34
|
Solid-state structure and solution behavior of two titanium oxo-alkoxide complexes with phenylphosphonate ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Chen X, Li JY, Tang ZR, Xu YJ. Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01227k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surface-defect-engineered photocatalyst for nitrogen fixation.
Collapse
Affiliation(s)
- Xue Chen
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Zi-Rong Tang
- College of Chemistry
- New Campus, Fuzhou University
- Fuzhou
- China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
36
|
Kokubo Y, Wasada‐Tsutsui Y, Yomura S, Yanagisawa S, Kubo M, Kugimiya S, Kajita Y, Ozawa T, Masuda H. Syntheses, Characterizations, and Crystal Structures of Dinitrogen‐Divanadium Complexes Bearing Triamidoamine Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yoshiaki Kokubo
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuko Wasada‐Tsutsui
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Shunsuke Yomura
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Minoru Kubo
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Shinichi Kugimiya
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuji Kajita
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Tomohiro Ozawa
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Hideki Masuda
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| |
Collapse
|
37
|
Kawakami R, Kuriyama S, Tanaka H, Arashiba K, Konomi A, Nakajima K, Yoshizawa K, Nishibayashi Y. Catalytic reduction of dinitrogen to tris(trimethylsilyl)amine using rhodium complexes with a pyrrole-based PNP-type pincer ligand. Chem Commun (Camb) 2019; 55:14886-14889. [PMID: 31720597 DOI: 10.1039/c9cc06896a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium complexes bearing an anionic pyrrole-based PNP-type pincer ligand are synthesised and found to work as effective catalysts for the transformation of molecular dinitrogen into tris(trimethylsilyl)amine under mild reaction conditions. This is the first successful example of rhodium-catalysed dinitrogen reduction under mild reaction conditions.
Collapse
Affiliation(s)
- Ryosuke Kawakami
- Department of Systems Innovation, and School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghana P, van Krüchten FD, Spaniol TP, Okuda J. Titanium(IV) Cations with Trigonal Monopyramidal Geometry: Unusual Lewis Acids Supported by a Triaryl Triamidoamine Ligand. Chemistry 2019; 25:10718-10723. [PMID: 31206822 DOI: 10.1002/chem.201901796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 11/08/2022]
Abstract
Protonolysis of the titanium alkyl complex [Ti(CH2 SiMe3 )(Xy-N3 N)] (Xy-N3 N=[{(3,5-Me2 C6 H3 )NCH2 CH2 }3 N]3- ) supported by a triamidoamine ligand, with [NEt3 H][B(3,5-Cl2 C6 H3 )4 ] or [PhNMe2 H][B(C6 F5 )4 ] afforded the cations [Ti(Xy-N3 N)][A] (A- =[B(3,5-Cl2 C6 H3 )4 ]- (1[B(ArCl )4 ]; B(ArCl )4 =tetrakis(3,5-dichlorophenyl)borate); A- =[B(C6 F5 )4 ]- (1[B(ArF )4 ]; B(ArF )4 =tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). These Lewis acidic cations were reacted with coordinating solvents to afford the cations [Ti(L)(Xy-N3 N)][B(C6 F5 )4 ] (2-L; L=Et2 O, pyridine and THF). XRD analysis revealed a trigonal monopyramidal (TMP) geometry for the tetracoordinate cations in 1[B(ArX )4 ] and trigonal bipyramidal (TBP) geometry for the pentacoordinate cations in 2-L. Variable-temperature NMR spectroscopy showed a dynamic equilibrium for 2-Et2 O in solution, involving the dissociation of Et2 O. Coordination to the titanium(IV) center activated the THF molecule, which, in the presence of NEt3 , underwent ring-opening to give the titanium alkoxide [Ti(O(CH2 )4 NEt3 )(Xy-N3 N)][B(3,5-Cl2 C6 H3 )4 ] (3). Hydride abstraction from Cβ,eq of the triamidoamine ligand arm in [Ti(CH2 SiMe3 )(Xy-N3 N)] or [Ti(NMe2 )(Xy-N3 N)] with [Ph3 C][B(3,5-Cl2 C6 H3 )4 ] led to the diamidoamine-imine complex [Ti(R){(Xy-N=CHCH2 )(Xy-NCH2 CH2 )2 N}][B(3,5-Cl2 C6 H3 )4 ] (R=CH2 SiMe3 (4 a); R=NMe2 (4 b)). Hydride addition to 4 b with [Li(THF)][HBPh3 ] gave [Ti(NMe2 )(Xy-N3 N)], whereas KH deprotonated further to give [Ti(NMe2 ){(Xy-NCH=CH)(Xy-NCH2 CH2 )2 N}] (5). XRD on single crystals of 3 and 4 b confirmed the proposed structures.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | | | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
39
|
|