1
|
Park JY, Bae JH, Lee S. Characteristics of Aqueous Chemical Species Generation in Plasma-Facing Liquid Systems Using Helium Jet Plasma. ChemistryOpen 2024; 13:e202300213. [PMID: 38801324 PMCID: PMC11230930 DOI: 10.1002/open.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Plasma-facing liquids (PFLs) facilitate the storage of reactive O and N species (RONS), including H2O2 and NO2 -, which remain in the PFL after plasma treatment, and they can continuously influence the target immersed in the liquid. However, their behaviors and levels of generation and extinction depend strongly on the plasma characteristics and liquid condition. Therefore, understanding the effects of the liquid type on the plasma discharge characteristics and the RONS generated via plasma discharge is necessary. We compared the RONS generation and storage trends of deionized H2O and a high-conductivity PFL, RPMI 1640, which is a well-known cell culture medium commonly used to culture mammalian cells. RPMI 1640 acted as an electrode and enhanced the plasma discharge power by supplying abundant radicals and RONS. The production of gaseous hydroxyl radicals and NO markedly increased, which facilitated H2O2 and NO2 - production in the PFL for the first 200 s, and then the increase in the RONS concentration stagnated. With respect to storage, as the components within RMPI 1640 exhibited high reaction constants for their reactions with H2O2, H2O2 elimination was completed in <30 min. Unlike H2O2, the concentration of NO2 - in the PFL was unchanged.
Collapse
Affiliation(s)
- Joo Young Park
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
| | - Jin Hee Bae
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
- Present address: Department of Nuclear and Quantum EngineeringKorea Advanced Institute of Science and Technology291 Daehak-ro, Yuseong-guDaejeon34141Republic of Korea
| | - Seunghun Lee
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
| |
Collapse
|
2
|
Suijker J, Bagheri B. Unraveling the interaction between singlet state atomic oxygen O( 1D) and water: toward the formation of oxywater and hydrogen peroxide. Phys Chem Chem Phys 2024; 26:15277-15285. [PMID: 38757527 DOI: 10.1039/d4cp00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We performed high-level quantum mechanical calculations to explore the interaction of atomic oxygen in the ground triplet state, O(3P), and the excited singlet state, O(1D), with water. We reported the potential energy curves for a few lowest electronic states when an atomic oxygen approaches the oxygen of a water molecule. Our results predict the formation of a singlet oxywater species as the product of O(1D) and H2O which lies about 149.33 kJ mol-1 below the total energy of a singlet oxygen atom and a water molecule. Our calculations predict that an O(3P) atom interacting with a water molecule forms a triplet oxywater complex with a shallow minimum on the triplet potential energy surfaces. We examined the transition of the singlet state oxywater species to hydrogen peroxide through the unimolecular reaction pathway, a (1,2)-hydrogen shift. We reported the structural properties, vibrational frequencies, and dipole moments of oxywater species, the transition state, and hydrogen peroxide. We also reported the energy barrier for the transition, and we provided an estimate for the respective reaction rate constant. In addition, we investigated the impact of solvents on the reaction pathway using an implicit solvation model of water. We predict that a singlet state oxywater species has a longer lifetime in a water environment than in the gas phase.
Collapse
Affiliation(s)
- Jos Suijker
- Department of Applied Physics and Science Education, Technical University of Eindhoven, PO Box 513, Eindhoven, 5600 MB, The Netherlands.
| | - Behnaz Bagheri
- Department of Applied Physics and Science Education, Technical University of Eindhoven, PO Box 513, Eindhoven, 5600 MB, The Netherlands.
- Institute for Complex Molecular Systems, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
3
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Abduvokhidov D, Yusupov M, Shahzad A, Attri P, Shiratani M, Oliveira MC, Razzokov J. Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes. Biomolecules 2023; 13:1043. [PMID: 37509079 PMCID: PMC10377474 DOI: 10.3390/biom13071043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Davronjon Abduvokhidov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, Tashkent 100207, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
| | - Maksudbek Yusupov
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Aamir Shahzad
- Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- School of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| |
Collapse
|
5
|
Sah AK, Al-Amin M, Talukder MR. DC magnetic field-assisted improvement of textile dye degradation efficiency with multi-capillary air bubble discharge plasma jet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27492-2. [PMID: 37209329 DOI: 10.1007/s11356-023-27492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Axial DC magnetic field-assisted multi-capillary underwater air bubble discharge plasma jet has been used to study the productions of reactive oxygen species. Analyses of optical emission data revealed that the rotational (Tr) and vibrational temperatures (Tv) of plasma species slightly increased with magnetic field strength. The electron temperature (Te) and density (ne) increased almost linearly with magnetic field strength. Te increased from 0.53 to 0.59 eV, whereas ne increased from 1.03 × 1015 cm-3 to 1.33 × 1015 cm-3 for B = 0 to B = 374 mT, respectively. Analytical results from the plasma treated water provided that the electrical conductivity (EC), oxidative reduction potential (ORP), and the concentrations of O3 and H2 O2 enhanced from 155 to 229 µS cm-1, 141 to 17 mV, 1.34 to 1.92 mg L-1, and 5.61 to 10.92 mg L-1 due to the influence of axial DC magnetic field, while [Formula: see text] reduced from 5.10 to 3.93 for 30 min treatment of water with B = 0 and B = 374 mT, respectively. The model wastewater prepared with Remazol brilliant blue textile dye and the plasma treated wastewater studied by optical absorption spectrometer, Fourier transform infrared spectrometer, and gas chromatography mass spectrometer. The results show that the decolorization efficiency increased ~ 20% after 5 min treatment for the maximum B = 374 mT with respect to zero-magnetic field and, power consumption, and electrical energy cost reduced ~ 6.3% and ~ 4.5%, respectively, due to the maximum assisted axial DC magnetic field strength of 374 mT.
Collapse
Affiliation(s)
- Abhishek Kumar Sah
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Al-Amin
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mamunur Rashid Talukder
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Han Z, Omata N, Matsuda T, Hishida S, Takiguchi S, Komori R, Suzuki R, Chen LC. Tuning oxidative modification by a strong electric field using nanoESI of highly conductive solutions near the minimum flow rate. Chem Sci 2023; 14:4506-4515. [PMID: 37152264 PMCID: PMC10155921 DOI: 10.1039/d2sc07113d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Oxidative modification is usually used in mass spectrometry (MS) for labeling and structural analysis. Here we report a highly tunable oxidation that can be performed in line with the nanoESI-MS analysis at the same ESI emitter without the use of oxidative reagents such as ozone and H2O2, and UV activation. The method is based on the high-pressure nanoESI of a highly conductive (conductivity >3.8 S m-1) aqueous solution near the minimum flow rate. The ion source is operated under super-atmospheric pressure (0.5 MPa gauge pressure) to avoid the contribution of electric discharge. The analyte at the tip of the Taylor cone or in the emitter droplet can be locally oxidized in an on-demand manner by varying the nanoflow rate. With an offline nanoESI, the degree of oxidation, i.e., the average number of incorporated oxygen atoms, can be finely tuned by voltage modulation using spray current as the feedback signal. Oxidations of easily oxidized residues present in peptides/proteins and the double bonds of the unsaturated phosphatidylcholine occur at low flow rate operation (<5 nL min-1) when the electric field at the tip of the Taylor cone and the initially produced charged droplet reaches approximately 1.3 V nm-1. The oxidized ion signal responds instantaneously to changes in flow rate, indicating that the oxidation is highly localized. Using isotope labeling, it was found that the incorporated oxygen primarily originates from the gas phase, suggesting a direct oxidation pathway for the analyte enriched on the liquid surface via the reactive oxygen atoms formed by the strong electric field.
Collapse
Affiliation(s)
- Zhongbao Han
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Nozomu Omata
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Takeshi Matsuda
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Shoki Hishida
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Shuuhei Takiguchi
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Ryoki Komori
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Riku Suzuki
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| | - Lee Chuin Chen
- Faculty of Engineering, University of Yamanashi 4-3-11, Takeda Kofu Yamanashi 400-8511 Japan +81-55-220-8072
| |
Collapse
|
7
|
Ahmadi M, Nasri Z, von Woedtke T, Wende K. d-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species. ACS OMEGA 2022; 7:31983-31998. [PMID: 36119990 PMCID: PMC9475618 DOI: 10.1021/acsomega.2c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation. Employing d-glucose and d-glucose-13C6 solutions and high-resolution mass spectrometry and ESI-tandem MS/MS spectrometry techniques, the occurrence of glucose oxidation products, for example, aldonic acids and aldaric acids, glucono- and glucaro-lactones, as well as less abundant sugar acids including ribonic acid, arabinuronic acid, oxoadipic acid, 3-deoxy-ribose, glutaconic acid, and glucic acid were surveyed. The findings provide deep insights into CAP chemistry, reflecting a switch of reactive species generation with the feed gas modulation (Ar or Ar/O2 with N2 curtain gas). Depending on the gas phase composition, a combination of oxygen-derived short-lived hydroxyl (•OH)/atomic oxygen [O(3P)] radicals was found responsible for the glucose oxidation cascade. The results further illustrate that the presence of carbohydrates in cell culture media, gel formulations (agar), or other liquid targets (juices) modulate the availability of CAP-generated species in vitro. In addition, a glycocalyx is attached to many mammalian proteins, which is essential for the respective physiologic role. It might be questioned if its oxidation plays a role in CAP activity.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Zahra Nasri
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Thomas von Woedtke
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- University
Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Walther-Rathenau-Straße 49A, Greifswald 17489, Germany
| | - Kristian Wende
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| |
Collapse
|
8
|
Oldham T, Yatom S, Thimsen E. Plasma parameters and the reduction potential at a plasma-liquid interface. Phys Chem Chem Phys 2022; 24:14257-14268. [PMID: 35662297 DOI: 10.1039/d2cp00203e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonthermal plasmas in contact with liquids have been shown to generate a variety of reactive species capable of initiating reduction-oxidation (redox) reactions at the electrochemically active plasma-liquid interface. In conventional electrochemical cells, selective redox chemistry is achieved by controlling the reduction potential at the solid electrode-electrolyte interface by applying a bias via an external circuit. In the case of plasma-liquid systems, an analogous means of tuning the reduction potential near the interface has not clearly been identified. When treated as a floating surface, the liquid is expected to adopt a net negative charge to balance the flux of hot electrons and relatively cold positive ions. The reduction potential near the plasma-liquid interface is hypothesized to be proportional to the floating potential, which can be approximated using an analytical model provided the plasma parameters are known. Herein, we present a framework for correlating the electron density and electron temperature of a noble gas plasma jet to the reduction potential near the plasma-liquid interface. The plasma parameters were acquired for an argon atmospheric plasma jet in contact with an aqueous solution by means of laser Thomson scattering. The reduction potential was determined using identical reference electrodes to measure the potential difference between the plasma-liquid interface and bulk solution. Interestingly, the measured reduction potentials near the plasma-liquid interface were found to be in good agreement with the model-predicted values determined using the plasma parameters obtained from the Thomson scattering experiments.
Collapse
Affiliation(s)
- Trey Oldham
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Shurik Yatom
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
| | - Elijah Thimsen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA. .,Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
The Fate of Molecular Species in Water Layers in the Light of Power-Law Time-Dependent Diffusion Coefficient. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the present paper, we propose two methods for tracking molecular species in water layers via two approaches of the diffusion equation with a power-law time-dependent diffusion coefficient. The first approach shows the species densities and the growth of different species via numerical simulation. At the same time, the second approach is built on the fractional diffusion equation with a time-dependent diffusion coefficient in the sense of regularised Caputo fractional derivative. As an illustration, we present here the species densities profiles and track the normal and anomalous growth of five molecular species OH, H2O2, HO2, NO3-, and NO2- via the calculation of the mean square displacement using the two methods.
Collapse
|
10
|
Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, Shinde M, Laux P, Luch A, Mathe V, Jahnke T, Chaskar M, Patil R. Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Adv 2022; 12:10467-10488. [PMID: 35425017 PMCID: PMC8982346 DOI: 10.1039/d2ra00809b] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/27/2022] [Indexed: 12/17/2022] Open
Abstract
Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University Pune 411007 India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Paul Dietrich
- SPECS Surface Nano Analysis GmbH Voltastrasse 5 13355 Berlin Germany
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Andreas Thissen
- SPECS Surface Nano Analysis GmbH Voltastrasse 5 13355 Berlin Germany
| | - Pravin N Didwal
- Department of Materials, University of Oxford Parks Road Oxford OX1 3PH UK
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET) Panchawati Pune 411008 India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Vikas Mathe
- Department of Physics, Savitribai Phule Pune University Pune 411007 India
| | - Timotheus Jahnke
- Max Planck Institute for Medical Research 61920 Heidelberg Germany
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University Pune 411007 India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University Pune 411007 India
| |
Collapse
|
11
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
12
|
Xu H, Shaban M, Wang S, Alkayal A, Liu D, Kong MG, Plasser F, Buckley BR, Iza F. Oxygen harvesting from carbon dioxide: simultaneous epoxidation and CO formation. Chem Sci 2021; 12:13373-13378. [PMID: 34777755 PMCID: PMC8528036 DOI: 10.1039/d1sc04209b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO from CO2 has been an area of intense interest, particularly since the CO can be utilized in Fischer–Tropsch synthesis. Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, but also prevents the recombination of O and CO, thus increasing the yield of CO for possible application in the synthesis of higher-order hydrocarbons. Selective formation of atomic oxygen to form epoxides in a waste free process is reported. Simultaneously generating carbon monoxide from carbon dioxide for further use.![]()
Collapse
Affiliation(s)
- Han Xu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University Loughborough Leicestershire LE11 3TU UK .,School of Aerospace Science and Technology, Xidian University Xi'an 710071 China
| | - Muhammad Shaban
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Sui Wang
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University Loughborough Leicestershire LE11 3TU UK .,State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University Xi'an 710049 China
| | - Anas Alkayal
- Department of Chemistry, Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University Xi'an 710049 China
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University Xi'an 710049 China
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Benjamin R Buckley
- Department of Chemistry, Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Felipe Iza
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University Loughborough Leicestershire LE11 3TU UK .,Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 790-784 South Korea
| |
Collapse
|
13
|
|
14
|
Subdiffusive Reaction Model of Molecular Species in Liquid Layers: Fractional Reaction-Telegraph Approach. FRACTAL AND FRACTIONAL 2021. [DOI: 10.3390/fractalfract5020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, different experimental works with molecular simulation techniques have been developed to study the transport of plasma-generated reactive species in liquid layers. Here, we improve the classical transport model that describes the molecular species movement in liquid layers via considering the fractional reaction–telegraph equation. We have considered the fractional equation to describe a non-Brownian motion of molecular species in a liquid layer, which have different diffusivities. The analytical solution of the fractional reaction–telegraph equation, which is defined in terms of the Caputo fractional derivative, is obtained by using the Laplace–Fourier technique. The profiles of species density with the mean square displacement are discussed in each case for different values of the time-fractional order and relaxation time.
Collapse
|
15
|
El‐Kalliny AS, Abd‐Elmaksoud S, El‐Liethy MA, Abu Hashish HM, Abdel‐Wahed MS, Hefny MM, Hamza IA. Efficacy of Cold Atmospheric Plasma Treatment on Chemical and Microbial Pollutants in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202004716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amer S. El‐Kalliny
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Sherif Abd‐Elmaksoud
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mohamed A. El‐Liethy
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Hassan M. Abu Hashish
- Mechanical Engineering Department Engineering Research Division National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mahmoud S. Abdel‐Wahed
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mohamed M. Hefny
- Engineering Mathematics and Physics Department Faculty of Engineering and Technology Future University in Egypt Cairo Egypt
| | - Ibrahim A. Hamza
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| |
Collapse
|
16
|
Tampieri F, Ginebra MP, Canal C. Quantification of Plasma-Produced Hydroxyl Radicals in Solution and their Dependence on the pH. Anal Chem 2021; 93:3666-3670. [PMID: 33596048 PMCID: PMC7931173 DOI: 10.1021/acs.analchem.0c04906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HO radicals are the most important reactive species generated during water treatment by non-thermal plasma devices. In this letter, we report the first quantification of the steady-state concentration and lifetime of plasma-produced hydroxyl radicals in water solutions at pH 3 and 7, and we discuss the differences based on their reactivity with other plasma-generated species. Finally, we show to what extent the use of chemical probes to quantify short-lived reactive species has an influence on the results and that it should be taken into account.
Collapse
Affiliation(s)
- Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
17
|
Bruno G, Wenske S, Lackmann JW, Lalk M, von Woedtke T, Wende K. On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas. Biomolecules 2020; 10:E1687. [PMID: 33339444 PMCID: PMC7766045 DOI: 10.3390/biom10121687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident. To investigate the type and reactivity of plasma-derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high-resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS. The presence of water molecules in the active plasma favored the generation of peroxynitrite. A pilot study, identifying RNS driven post-translational modifications of proteins in healing human wounds after the treatment with cold plasma (kINPen), demonstrated the presence of in vitro determined chemical pathways. The plasma-driven nitration and nitrosylation of tyrosine allows the conclusion that covalent modification of biomolecules by RNS contributes to the clinically observed impact of cold plasmas.
Collapse
Affiliation(s)
- Giuliana Bruno
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| | - Sebastian Wenske
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| | - Jan-Wilm Lackmann
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany;
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany;
| | - Kristian Wende
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| |
Collapse
|
18
|
Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases 2020; 15:061008. [PMID: 33238712 DOI: 10.1116/6.0000529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored. While the peptide backbone was kept intact, a significant introduction of oxidative PTMs was observed. The modifications cluster at aromatic (tyrosine, histidine, and phenylalanine) and neutral amino acids (isoleucine and proline) with the introduction of one, two, or three oxygen atoms, ring cleavages of histidine and tryptophan, and nitration/nitrosylation predominantly observed. Alkaline and acidic amino acid (arginine and aspartic acid) residues showed a high resilience, indicating that local charges and the chemical environment at large modulate the attack of the electron-rich ROS/RNS. Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.
Collapse
|
19
|
Ravandeh M, Kahlert H, Jablonowski H, Lackmann JW, Striesow J, Agmo Hernández V, Wende K. A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers. Sci Rep 2020; 10:18683. [PMID: 33122650 PMCID: PMC7596530 DOI: 10.1038/s41598-020-75514-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS), e.g. generated by cold physical plasma (CPP) or photodynamic therapy, interfere with redox signaling pathways of mammalian cells, inducing downstream consequences spanning from migratory impairment to apoptotic cell death. However, the more austere impact of RONS on cancer cells remains yet to be clarified. In the present study, a combination of electrochemistry and high-resolution mass spectrometry was developed to investigate the resilience of solid-supported lipid bilayers towards plasma-derived reactive species in dependence of their composition. A 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was undisturbed by 200 µM H2O2 (control) but showed full permeability after CPP treatment and space-occupying oxidation products such as PoxnoPC, PAzePC, and POPC hydroperoxide were found. Electron paramagnetic resonance spectroscopy demonstrated the presence of hydroxyl radicals and superoxide anion/hydroperoxyl radicals during the treatment. In contrast, small amounts of the intramembrane antioxidant coenzyme Q10 protected the bilayer to 50% and LysoPC was the only POPC derivative found, confirming the membrane protective effect of Q10. Such, the lipid membrane composition including the presence of antioxidants determines the impact of pro-oxidant signals. Given the differences in membrane composition of cancer and healthy cells, this supports the application of cold physical plasma for cancer treatment. In addition, the developed model using the combination of electrochemistry and mass spectrometry could be a promising method to study the effect of reactive species or mixes thereof generated by chemical or physical sources.
Collapse
Affiliation(s)
- M Ravandeh
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - H Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - H Jablonowski
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J-W Lackmann
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J Striesow
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - V Agmo Hernández
- Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
- Department of Pharmacy, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
| | - K Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
20
|
Wende K, Bruno G, Lalk M, Weltmann KD, von Woedtke T, Bekeschus S, Lackmann JW. On a heavy path - determining cold plasma-derived short-lived species chemistry using isotopic labelling. RSC Adv 2020; 10:11598-11607. [PMID: 35496584 PMCID: PMC9051657 DOI: 10.1039/c9ra08745a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these via admixing heavy oxygen 18O2 to the feed gas or by using heavy water H2 18O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine-S-sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma-liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Giuliana Bruno
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Michael Lalk
- Cellular Biochemistry & Metabolomics, University of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Walther-Rathenau-Str. 48 Greifswald 17489 Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Jan-Wilm Lackmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| |
Collapse
|
21
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
22
|
Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 2019; 400:19-38. [PMID: 30403650 DOI: 10.1515/hsz-2018-0242] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 02/01/2023]
Abstract
Reactive oxygen and nitrogen species deposited by cold physical plasma are proposed as predominant effectors in the interaction between discharge and biomedical application. Most reactive species found in plasma sources are known in biology for inter- and intracellular communication (redox signaling) and mammalian cells are equipped to interpret the plasma derived redox signal. As such, considerable effort has been put into the investigation of potential clinical applications and the underlying mechanism, with a special emphasis on conditions orchestrated significantly via redox signaling. Among these, immune system control in wound healing and cancer control stands out with promising in vitro and in vivo effects. From the fundamental point of view, further insight in the interaction of the plasma-derived species with biological systems is desired to (a) optimize treatment conditions, (b) identify new fields of application, (c) to improve plasma source design, and (d) to identify the trajectories of reactive species. Knowledge on the biochemical reactivity of non-thermal plasmas is compiled and discussed. While there is considerable knowledge on proteins, lipids and carbohydrates have not received the attention deserved. Nucleic acids have been profoundly investigated yet focusing on molecule functionality rather than chemistry. The data collected underline the efforts taken to understand the fundamentals of plasma medicine but also indicate 'no man's lands' waiting to be discovered.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Greifswald University Medicine, Fleischmannstr. 8, D-17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| |
Collapse
|
23
|
Abstract
The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
Collapse
|
24
|
Krewing M, Stepanek JJ, Cremers C, Lackmann JW, Schubert B, Müller A, Awakowicz P, Leichert LIO, Jakob U, Bandow JE. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. J R Soc Interface 2019; 16:20180966. [PMID: 31213177 PMCID: PMC6597770 DOI: 10.1098/rsif.2018.0966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Janina Stepanek
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Claudia Cremers
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Müller
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Peter Awakowicz
- Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Lars I. O. Leichert
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ursula Jakob
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Lackmann JW, Bruno G, Jablonowski H, Kogelheide F, Offerhaus B, Held J, Schulz-von der Gathen V, Stapelmann K, von Woedtke T, Wende K. Nitrosylation vs. oxidation - How to modulate cold physical plasmas for biological applications. PLoS One 2019; 14:e0216606. [PMID: 31067274 PMCID: PMC6505927 DOI: 10.1371/journal.pone.0216606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.
Collapse
Affiliation(s)
- Jan-Wilm Lackmann
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| | - Giuliana Bruno
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Helena Jablonowski
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Björn Offerhaus
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Julian Held
- Experimental Physics II, Ruhr University Bochum, Bochum, Germany
| | | | - Katharina Stapelmann
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
- Plasma for Life Sciences, Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas von Woedtke
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| |
Collapse
|
26
|
Krewing M, Jarzina F, Dirks T, Schubert B, Benedikt J, Lackmann JW, Bandow JE. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms. J R Soc Interface 2019; 16:20180846. [PMID: 30913981 PMCID: PMC6451402 DOI: 10.1098/rsif.2018.0846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Non-thermal atmospheric pressure plasmas are investigated as augmenting therapy to combat bacterial infections. The strong antibacterial effects of plasmas are attributed to the complex mixture of reactive species, (V)UV radiation and electric fields. The experience with antibiotics is that upon their introduction as medicines, resistance occurs in pathogens and spreads. To assess the possibility of bacterial resistance developing against plasma, we investigated intrinsic protective mechanisms that allow Escherichia coli to survive plasma stress. We performed a genome-wide screening of single-gene knockout mutants of E. coli and identified 87 mutants that are hypersensitive to the effluent of a microscale atmospheric pressure plasma jet. For selected genes ( cysB, mntH, rep and iscS) we showed in complementation studies that plasma resistance can be restored and increased above wild-type levels upon over-expression. To identify plasma-derived components that the 87 genes confer resistance against, mutants were tested for hypersensitivity against individual stressors (hydrogen peroxide, superoxide, hydroxyl radicals, ozone, HOCl, peroxynitrite, NO•, nitrite, nitrate, HNO3, acid stress, diamide, heat stress and detergents). k-means++ clustering revealed that most genes protect from hydrogen peroxide, superoxide and/or nitric oxide. In conclusion, individual bacterial genes confer resistance against plasma providing insights into the antibacterial mechanisms of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Fabian Jarzina
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Jan Benedikt
- Experimental Plasma Physics, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
27
|
Gorbanev Y, Van der Paal J, Van Boxem W, Dewilde S, Bogaerts A. Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Phys Chem Chem Phys 2019; 21:4117-4121. [PMID: 30724274 DOI: 10.1039/c8cp07550f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.
Collapse
Affiliation(s)
- Yury Gorbanev
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerpen, BE-2610, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Gorbanev Y, Privat-Maldonado A, Bogaerts A. Analysis of Short-Lived Reactive Species in Plasma-Air-Water Systems: The Dos and the Do Nots. Anal Chem 2018; 90:13151-13158. [PMID: 30289686 DOI: 10.1021/acs.analchem.8b03336] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric pressure plasmas, which are widely employed in industrial and biomedical research, as well as first clinical applications. We summarize the progress in detection of plasma-generated short-lived reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of various analytical methods in plasma-liquid systems, and provide an outlook on the possible future research goals in development of short-lived reactive species analysis methods for a general nonspecialist audience.
Collapse
Affiliation(s)
- Yury Gorbanev
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610.,Center for Oncological Research (CORE) , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| |
Collapse
|
29
|
Kondeti VSSK, Phan CQ, Wende K, Jablonowski H, Gangal U, Granick JL, Hunter RC, Bruggeman PJ. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radic Biol Med 2018; 124:275-287. [PMID: 29864482 DOI: 10.1016/j.freeradbiomed.2018.05.083] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022]
Abstract
Different chemical pathways leading to the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus by a cold atmospheric pressure plasma jet (APPJ) in buffered and non-buffered solutions are reported. As APPJs produce a complex mixture of reactive species in solution, a comprehensive set of diagnostics were used to assess the liquid phase chemistry. This includes absorption and electron paramagnetic resonance spectroscopy in addition to a scavenger study to assess the relative importance of the various plasma produced species involved in the inactivation of bacteria. Different modes of inactivation of bacteria were found for the same plasma source depending on the solution and the plasma feed gas. The inactivation of bacteria in saline is due to the production of short-lived species in the case of argon plasma when the plasma touches the liquid. Long-lived species (ClO-) formed by the abundant amount of O. radicals produced by the plasmas played a dominant role in the case of Ar + 1% O2 and Ar + 1% air plasmas when the plasma is not in direct contact with the liquid. Inactivation of bacteria in distilled water was found to be due to the generation of short-lived species: O. &O2.- for Ar + 1% O2 plasma and O2.- (and .OH in absence of saline) for Ar plasma.
Collapse
Affiliation(s)
- V S Santosh K Kondeti
- Department of Mechanical Engineering, University of Minnesota, 111, Church Street, SE, Minneapolis, MN 55455, USA.
| | - Chi Q Phan
- Department of Microbiology and Immunology, University of Minnesota, Microbiology Research Facility, 689, SE, 23rd Ave, Minneapolis, MN 55455, USA.
| | - Kristian Wende
- ZIK Plasmatis at Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Helena Jablonowski
- ZIK Plasmatis at Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Urvashi Gangal
- Department of Mechanical Engineering, University of Minnesota, 111, Church Street, SE, Minneapolis, MN 55455, USA.
| | - Jennifer L Granick
- Department of Veterinary Clinical Sciences, University of Minnesota, 339 Veterinary Medical Center, 1352 Boyd Ave, Saint Paul, MN 55108, USA.
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota, Microbiology Research Facility, 689, SE, 23rd Ave, Minneapolis, MN 55455, USA.
| | - Peter J Bruggeman
- Department of Mechanical Engineering, University of Minnesota, 111, Church Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Abstract
Dielectric barrier discharge (DBD) plasma has been found to uniquely polymerize ribose that is not usually subject to polymerization since molecules that tend to polymerize almost always possess at least a π-bond. The polymer was analyzed via nuclear magnetic resonance (NMR) spectra, matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectroscopy and Fourier-Transform inferred spectroscopy (FTIR), and it was found that dehydration occurs during polymerization.
Collapse
|
31
|
Jirásek V, Stehlík Š, Štenclová P, Artemenko A, Rezek B, Kromka A. Hydroxylation and self-assembly of colloidal hydrogenated nanodiamonds by aqueous oxygen radicals from atmospheric pressure plasma jet. RSC Adv 2018; 8:37681-37692. [PMID: 35558630 PMCID: PMC9089410 DOI: 10.1039/c8ra07873d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022] Open
Abstract
Plasma chemical surface modification of nanoparticles in gas–liquid type reactors enables a controllable, specific, low-cost, and environmentally friendly alternative to wet chemistry methods or thermal and dry plasma treatments. Here the atmospheric pressure radio-frequency microplasma jet (µ-APPJ) operating with 0.6% O2 in He is used to deliver aqueous oxygen radicals (AOR) to the surface of ∼3 nm hydrogenated detonation nanodiamonds (H-DNDs) suspended in water. The AOR-treated H-DND samples are characterized by FTIR and XPS spectroscopies and by AFM and SEM imaging. The main chemical reaction mechanism is identified as the abstraction of surface hydrogen atoms by O or OH radicals and a consequent attachment of the OH group, thereby increasing concentration of alcohols, carboxyls, and aldehydes on the DND's surface. FTIR spectra reveal also a structural re-arrangement of the surface water on the AOR-treated H-DNDs. Yet zeta-potential of AOR-treated H-DNDs still remains positive (decreases from +45 mV to +30 mV). The chemical modification gives rise to formation of nanoscale chain-like aggregates when AOR-treated H-DNDs are deposited on Si substrate. Colloidal nanodiamonds are hydroxylated by action of plasma-supplied O atoms and undergo self-assembly to chains.![]()
Collapse
Affiliation(s)
- Vít Jirásek
- Institute of Physics
- Czech Academy of Sciences
- Czech Republic
- Institute of Plasma Physics
- Czech Academy of Sciences
| | - Štěpán Stehlík
- Institute of Physics
- Czech Academy of Sciences
- Czech Republic
| | | | - Anna Artemenko
- Institute of Physics
- Czech Academy of Sciences
- Czech Republic
| | - Bohuslav Rezek
- Institute of Physics
- Czech Academy of Sciences
- Czech Republic
- Faculty of Electrical Engineering
- Czech Technical University
| | | |
Collapse
|