1
|
Chatterjee S, Scott FJ, Sigurdsson ST, Venkatesh A, Mentink-Vigier F. Indirect Detection of the Protons in and around Biradicals and their Mechanistic Role in MAS-DNP. J Phys Chem Lett 2025; 16:635-641. [PMID: 39782529 PMCID: PMC11837165 DOI: 10.1021/acs.jpclett.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire 1H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Faith J. Scott
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
| | - Snorri Th. Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Rosenboom J, Taube F, Teichmeier L, Villinger A, Reinhard M, Demeshko S, Bennati M, Bresien J, Corzilius B, Schulz A. Rational Design of a Phosphorus-Centered Disbiradical. Angew Chem Int Ed Engl 2024; 63:e202318210. [PMID: 38117661 DOI: 10.1002/anie.202318210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Phosphorus-centered disbiradicals, in which the radical sites exist as individual spin doublets with weak spin-spin interaction have not been known so far. Starting from monoradicals of the type [⋅P(μ-NTer)2 P-R], we have now succeeded in linking two such monoradical phosphorus centers by appropriate choice of a linker. To this end, biradical [⋅P(μ-NTer)2 P⋅] (1) was treated with 1,6-dibromohexane, affording the brominated species {Br[P(μ-NTer)]2 }2 C6 H12 (3). Subsequent reduction with KC8 led to the formation of the disbiradical {⋅[P(μ-NTer)]2 }2 C6 H12 (4) featuring a large distance between the radical phosphorus sites in the solid state and formally the highest biradical character observed in a P-centered biradical so far, approaching 100 %. EPR spectroscopy revealed a three-line signal in solution with a considerably larger exchange interaction than would be expected from the molecular structure of the single crystal. Quantum chemical calculations revealed a highly dynamic conformational space; thus, the two radical sites can approach each other with a much smaller distance in solution. Further reduction of 4 resulted in the formation of a potassium salt featuring the first structurally characterized P-centered distonic radical anion (5- ). Moreover, 4 could be used in small molecule activation.
Collapse
Affiliation(s)
- Jan Rosenboom
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Florian Taube
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Leon Teichmeier
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Maik Reinhard
- Georg-August-Universität Göttingen, Tammannstr. 4/6, 37077, Göttingen, Germany
- MPINAT, Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen, Tammannstr. 4/6, 37077, Göttingen, Germany
| | - Marina Bennati
- Georg-August-Universität Göttingen, Tammannstr. 4/6, 37077, Göttingen, Germany
- MPINAT, Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Björn Corzilius
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
3
|
Chatterjee S, Venkatesh A, Sigurdsson ST, Mentink-Vigier F. Role of Protons in and around Strongly Coupled Nitroxide Biradicals for Cross-Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:2160-2168. [PMID: 38364262 PMCID: PMC11562033 DOI: 10.1021/acs.jpclett.3c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In magic angle spinning dynamic nuclear polarization (DNP), biradicals such as bis-nitroxides are used to hyperpolarize protons under microwave irradiation through the cross-effect mechanism. This mechanism relies on electron-electron spin interactions (dipolar coupling and exchange interaction) and electron-nuclear spin interactions (hyperfine coupling) to hyperpolarize the protons surrounding the biradical. This hyperpolarization is then transferred to the bulk sample via nuclear spin diffusion. However, the involvement of the protons in the biradical in the cross-effect DNP process has been under debate. In this work, we address this question by exploring the hyperpolarization pathways in and around bis-nitroxides. We demonstrate that for biradicals with strong electron-electron interactions, as in the case of the AsymPols, the protons on the biradical may not be necessary to quickly generate hyperpolarization. Instead, such biradicals can efficiently, and directly, polarize the surrounding protons of the solvent. The findings should impact the design of the next generation of biradicals.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| | - Snorri Th. Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| |
Collapse
|
4
|
Harrabi R, Halbritter T, Alarab S, Chatterjee S, Wolska-Pietkiewicz M, Damodaran KK, van Tol J, Lee D, Paul S, Hediger S, Sigurdsson ST, Mentink-Vigier F, De Paëpe G. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Phys Chem Chem Phys 2024; 26:5669-5682. [PMID: 38288878 PMCID: PMC10849081 DOI: 10.1039/d3cp04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Shadi Alarab
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Krishna K Damodaran
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
5
|
Tobar C, Albanese K, Chaklashiya R, Equbal A, Hawker C, Han S. Multi Electron Spin Cluster Enabled Dynamic Nuclear Polarization with Sulfonated BDPA. J Phys Chem Lett 2023; 14:11640-11650. [PMID: 38108283 DOI: 10.1021/acs.jpclett.3c02428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ-bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of sulfonated BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multielectron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic-angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave-power-efficient DNP effect observed with BDPA variants.
Collapse
Affiliation(s)
- Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, California, United States
| | - Kaitlin Albanese
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Asif Equbal
- Department of Chemistry, NYU Abu Dhabi, Saadiyat Campus, PO Box 129188, Abu Dhabi 00000, United Arab Emirates
| | - Craig Hawker
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States
| |
Collapse
|
6
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
7
|
Wili N, Nielsen AB, Völker LA, Schreder L, Nielsen NC, Jeschke G, Tan KO. Designing broadband pulsed dynamic nuclear polarization sequences in static solids. SCIENCE ADVANCES 2022; 8:eabq0536. [PMID: 35857520 PMCID: PMC9286509 DOI: 10.1126/sciadv.abq0536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 05/28/2023]
Abstract
Dynamic nuclear polarization (DNP) is a nuclear magnetic resonance (NMR) hyperpolarization technique that mediates polarization transfer from unpaired electrons with large thermal polarization to NMR-active nuclei via microwave (mw) irradiation. The ability to generate arbitrarily shaped mw pulses using arbitrary waveform generators allows for remarkable improvement of the robustness and versatility of DNP. We present here novel design principles based on single-spin vector effective Hamiltonian theory to develop new broadband DNP pulse sequences, namely, an adiabatic version of XiX (X-inverse X)-DNP and a broadband excitation by amplitude modulation (BEAM)-DNP experiment. We demonstrate that the adiabatic BEAM-DNP pulse sequence may achieve a 1H enhancement factor of ∼360, which is better than ramped-amplitude NOVEL (nuclear spin orientation via electron spin locking) at ∼0.35 T and 80 K in static solids doped with trityl radicals. In addition, the bandwidth of the BEAM-DNP experiments (~50 MHz) is about three times the 1H Larmor frequency. The generality of our theoretical approach will be helpful in the development of new pulsed DNP sequences.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anders Bodholt Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Laura Alicia Völker
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Lukas Schreder
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
8
|
Yang C, Ooi Tan K, Griffin RG. DNPSOUP: A simulation software package for dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107107. [PMID: 34894420 PMCID: PMC8819672 DOI: 10.1016/j.jmr.2021.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
Dynamic Nuclear Polarization Simulation Optimized with a Unified Propagator (DNPSOUP) is an open-source numerical software program that models spin dynamics for dynamic nuclear polarization (DNP). The software package utilizes a direct numerical approach using the inhomogeneous master equation to treat the time evolution of the spin density operator under coherent Hamiltonians and stochastic relaxation effects. Here we present the details of the theory behind the software, starting from the master equation, and arriving at characteristic operators for any section of density operator time-evolution. We then provide an overview of the DNPSOUP software architecture. The efficacy of the program is demonstrated by simulating DNP field profiles on small spin systems exploiting both continuous wave and time-domain DNP mechanisms. Examples include Zeeman field profiles for the solid effect, Overhauser effect, and cross effect, and microwave field profiles for NOVEL, off-resonance NOVEL, the integrated solid effect, the stretched solid effect, and TOP-DNP. The software should facilitate a better understanding of the DNP process, aid in the design of optimized DNP polarizing agents, and allow us to examine new pulsed DNP methods at conditions that are not currently experimentally accessible, especially at high magnetic fields with high-power microwave pulses.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Aspen Technology, Inc., 20 Crosby Drive, Bedford, MA 01730, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
9
|
Moore W, Yao R, Liu Y, Eaton SS, Eaton GR. Spin-spin interaction and relaxation in two trityl-nitroxide diradicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107078. [PMID: 34649176 PMCID: PMC8592039 DOI: 10.1016/j.jmr.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Trityl-nitroxides show substantial promise as polarizing agents in solid state dynamic nuclear polarization. To optimize performance it is important to understand the impact of spin-spin interactions on relaxation times of the diradicals. CW spectra and electron spin relaxation were measured for two trityl-nitroxides that differ in the substituents on the amide linker and have different strengths of the exchange interaction J. Analysis of the EPR spectra in terms of overlapping AB spin-spin splitting patterns explains the impact of J on various regions of the spectra. Even modest values of J are large relative to the separation between trityl and nitroxide resonances for some nitrogen nuclear spin state. Two conformations for each diradical were observed in CW spectra in fluid solution at X-band and Q-band. For one diradical J = 15 G (83%) and 5 G (17%) at 293 K, and J = 27 G (67%) and 3 G (33%) with interspin distances of 16 Å and 12 Å, respectively, at 80 K. For the second diradical the exchange interaction is stronger: the two conformations in fluid solution at 293 K had J = 113 G (67%) and 59 G (33%) and at 80 K the value of J was 43 G and there were two conformations with interspin distances of 13 and 11.5 Å. The observation of two conformations for each diradical, with different values of J, demonstrates the dependence of their exchange interactions on through-bond orbital interactions. X-band values of spin relaxation rates 1/T1 and 1/Tm at 80 to 120 K for the trityl-nitroxides are similar to values for nitroxide mono-radicals, and faster than for trityl radicals. These observations show that even for a relatively small value of J, the nitroxide is very effective in enhancing the relaxation of the more slowly relaxing trityl.
Collapse
Affiliation(s)
- Whylder Moore
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
10
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
11
|
Witwicki M, Lewińska A, Ozarowski A. o-Semiquinone radical anion isolated as an amorphous porous solid. Phys Chem Chem Phys 2021; 23:17408-17419. [PMID: 34351330 DOI: 10.1039/d1cp01596f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of metal cations is a commonly applied strategy to create S > 1/2 stable molecular systems containing semiquinone radicals. Persistent mono-semiquinonato complexes of diamagnetic metal ions (S = 1/2) have been hitherto less common and mostly limited to the complexes of heavy metal ions. In this work, a mono-semiquinonato complex of aluminum, derived from 1,2-dihydroxybenzene, is obtained using a surprisingly short and uncomplicated procedure. The isolated product is an amorphous and porous solid that exhibits very good stability under ambient conditions. To characterise its molecular and electronic structure, 9.7, 34 and 406 GHz EPR spectroscopy was used in concert with computational techniques (DFT and DLPNO-CCSD). It was revealed that the radical complex is composed of two chemically equivalent aluminum cations and two catechol-like ligands with the unpaired electron uniformly distributed between the two organic molecules. The good stability and porous structure make this complex applicable in heterogeneous aerobic reactions.
Collapse
Affiliation(s)
- Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | | |
Collapse
|
12
|
Mentink-Vigier F, Dubroca T, Van Tol J, Sigurdsson ST. The distance between g-tensors of nitroxide biradicals governs MAS-DNP performance: The case of the bTurea family. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107026. [PMID: 34246883 PMCID: PMC8316413 DOI: 10.1016/j.jmr.2021.107026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/20/2023]
Abstract
Bis-nitroxide radicals are common polarizing agents (PA), used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals can increase the proton spin polarization through the Cross-Effect (CE) mechanism, which requires PAs with at least two unpaired electrons. The relative orientation of the bis-nitroxide moieties is critical to ensure efficient polarization transfer. Recently, we have defined a new quantity, the distance between g-tensors, that correlates the relative orientation of the nitroxides with the ability to polarize the surrounding nuclei. Here we analyse experimentally and theoretically a series of biradicals belonging to the bTurea family, namely bcTol, AMUPol and bcTol-M. They differ by the degree of substitution on the urea bridge that connects the two nitroxides. Using quantitative simulations developed for moderate MAS frequencies, we show that these modifications mostly affect the relative orientations of the nitroxide, i.e. the length and distribution of the distance between the g-tensors, that in turn impacts both the steady state nuclear polarization/depolarization as well as the build-up times. The doubly substituted urea bridge favours a large distance between the g-tensors, which enables bcTol-M to provide ∊on/off>200 at 14.1 T/600 MHz/395 GHz with build-up times of 3.8 s using a standard homogenous solution. The methodology described herein was used to show how the conformation of the spirocyclic rings flanking the nitroxide function in the recently described c- and o-HydrOPol affects the distance between the g-tensors and thereby polarization performance.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States.
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | | |
Collapse
|
13
|
Can TV, Tan KO, Yang C, Weber RT, Griffin RG. Time domain DNP at 1.2 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107012. [PMID: 34186299 PMCID: PMC9148420 DOI: 10.1016/j.jmr.2021.107012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/28/2023]
Abstract
We present the results of an experimental pulsed DNP study at 1.2 T (33.5 GHz/51 MHz electron and 1H Larmor frequencies, respectively). The results include a comparison of constant-amplitude NOVEL (CA-NOVEL), ramped-amplitude NOVEL (RA-NOVEL) and the frequency-swept integrated solid effect (FS-ISE) experiments all of which were performed at the NOVEL matching condition, ω1S=ω0I, where ω1S is the electron Rabi frequency andω0I the proton Larmor frequency. To the best of our knowledge, this is the first pulsed DNP study carried out at field higher than X-band (0.35 T) using the NOVEL condition. A combination of high microwave power (∼150 W) and a microwave cavity with a high Q (∼500) allowed us to satisfy the NOVEL matching condition. We also observed stretched solid effect (S2E) contributions in the Zeeman field profiles when chirped pulses are applied. Furthermore, the high quality factor of the cavity limits the concentration of the radical to ∼5 mM and generates a hysteresis in the FS-ISE experiments. Nevertheless, we observe very high DNP enhancements that are comparable to the results at X-band. These promising outcomes suggest the importance of further studies at even higher fields that delineate the instrumentation and methods required for time domain DNP.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - K O Tan
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - C Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - R T Weber
- Bruker BioSpin Corporation, Billerica, MA 01821, United States
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
14
|
Jin Z, Shen L, Zhao H, Zheng Y, Shen J. Application of Multi-Slice Spiral CT in the Evaluation of Diffuse Lung Diseases. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article analyzes the manifestations, characteristics, and significance of multi-slice spiral CT for diffuse lung disease, and evaluates the diagnostic value of multi-slice CT multi-directional reconstruction for diffuse lung disease. After performing multi-slice spiral CT examination
on the patient and collecting relevant data, the characteristic multi-slice CT imaging findings of diffuse lung disease were determined by statistical analysis. Diffuse lung disease is representative in multi-slice spiral CT image imaging manifestations of the disease include multiple disseminated
small nodules, multiple voids, ground glass shadows, and lung consolidation. And analyze the correlation of image performance, and then use statistical methods to analyze and evaluate the value of multi-slice spiral CT characteristic images in the diagnosis of diffuse lung disease, and analyze
the characteristics of these characteristic multi-slice CT image appearances. The use of high-resolution CT to screen the characteristic CT imaging findings of the same research object, and then to perform a statistical analysis of the diagnostic differences with multi-slice spiral CT, further
confirmed the importance of multi-slice CT for diffuse lung disease Diagnostic value. Studies have shown that multi-slice CT imaging technology is of great significance in the evaluation of diffuse lung diseases.
Collapse
Affiliation(s)
- ZanHui Jin
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - LiYing Shen
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - HongXing Zhao
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - YinYuan Zheng
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - Jian Shen
- Department of Radiology, Huzhou Central Hospital & Affiliated Cent Hosp HuZhou University, Zhejiang, 313000, China
| |
Collapse
|
15
|
Demay-Drouhard P, Ching HYV, Decroos C, Guillot R, Li Y, Tabares LC, Policar C, Bertrand HC, Un S. Understanding the g-tensors of perchlorotriphenylmethyl and Finland-type trityl radicals. Phys Chem Chem Phys 2020; 22:20792-20800. [PMID: 32909565 DOI: 10.1039/d0cp03626a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 285 GHz EPR spectra of perchlorotriphenylmethyl and tetrathiatriarylmethyl radicals in frozen solution have been accurately measured. The relationship between their molecular structures and their g-tensors has been investigated with the aid of DFT calculations, revealing that the degree of spin density delocalization away from the central methylene carbon is an important determining factor of the g-anisotropy. In particular, the small amount of spin densities on the Cl or S heteroatoms at the 2 and 6 positions with respect to the central carbon have the strongest influence. Furthermore, the amount of spin densities on these heteroatoms and thus the anisotropy can be modulated by the protonation (esterification) state of the carboxylate groups at the 4 position. These results provide unique insights into the g-anisotropy of persistent trityl radicals and how it can be tuned.
Collapse
Affiliation(s)
- Paul Demay-Drouhard
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - H Y Vincent Ching
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Christophe Decroos
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Leandro C Tabares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Helene C Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Sun Un
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
17
|
Mentink-Vigier F. Optimizing nitroxide biradicals for cross-effect MAS-DNP: the role of g-tensors' distance. Phys Chem Chem Phys 2020; 22:3643-3652. [PMID: 31998899 DOI: 10.1039/c9cp06201g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitroxide biradicals are common polarizing agents used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals are used to increase the polarization of protons through the cross-effect mechanism, which requires two unpaired electrons with a Larmor frequency difference greater than that of the protons. From their early conception, the relative orientation of the nitroxide rings has been identified as a critical factor determining their MAS-DNP performance. However, the MAS leads to a complex DNP mechanism with time dependent energy level anti-crossings making it difficult to pinpoint the role of relative g-tensor orientation. In this article, a single parameter called "g-tensors' distance" is introduced to characterize the relative orientation's impact on the MAS-DNP field profiles. It is demonstrated for the first time how the g-tensors' distance determines the nuclear hyperpolarization and depolarization properties of a given biradical. This provides a new critical parameter that paves the way for more efficient bis-nitroxides for MAS-DNP.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, USA.
| |
Collapse
|
18
|
Equbal A, Tagami K, Han S. Balancing dipolar and exchange coupling in biradicals to maximize cross effect dynamic nuclear polarization. Phys Chem Chem Phys 2020; 22:13569-13579. [DOI: 10.1039/d0cp02051f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Balancing dipolar and exchange coupling is essential for efficient Cross Effect DNP. This explains the complex performance of standard radicals (AMUPOL and HyTek) at high magnetic field and fast spinning.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Kan Tagami
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Songi Han
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
- Department of Chemical Engineering
| |
Collapse
|
19
|
Equbal A, Tagami K, Han S. Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning. J Phys Chem Lett 2019; 10:7781-7788. [PMID: 31790265 DOI: 10.1021/acs.jpclett.9b03070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic nuclear polarization (DNP) under magic-angle spinning (MAS) is transforming the scope of solid-state NMR by enormous signal amplification through transfer of polarization from electron spins to nuclear spins. Contemporary MAS-DNP exclusively relies on monochromatic continuous-wave (CW) irradiation of the electron spin resonance. This limits control on electron spin dynamics, which renders the DNP process inefficient, especially at higher magnetic fields and non cryogenic temperatures. Pulse-shaped microwave irradiation of the electron spins is predicted to overcome these challenges but hitherto has never been implemented under MAS. Here, we debut pulse-shaped microwave irradiation using arbitrary-waveform generation (AWG) which allows controlled recruitment of a greater number of electron spins per unit time, favorable for MAS-DNP. Experiments and quantum mechanical simulations demonstrate that pulse-shaped DNP is superior to CW-DNP for mixed radical system, especially when the electron spin resonance is heterogeneously broadened and/or when its spin-lattice relaxation is fast compared to the MAS rotor period, opening new prospects for MAS-DNP.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Songi Han
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
20
|
Jeschke G. Quo vadis EPR? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:36-41. [PMID: 31345773 DOI: 10.1016/j.jmr.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Complexity of paramagnetic catalysts and materials increases, and the same applies to systems targeted by integrative structural biology. Hence, EPR spectroscopists must find ways to enhance information content of their data. I argue that a third major wave of method development in EPR spectroscopy, which is triggered by recent advances in digital electronics and computing, can achieve this. Transfer of NMR methods to EPR will go on, but part of the new EPR methodology will depend on completely new concepts.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zurich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
21
|
Tagami K, Equbal A, Kaminker I, Kirtman B, Han S. Biradical rotamer states tune electron J coupling and MAS dynamic nuclear polarization enhancement. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:12-20. [PMID: 31075525 DOI: 10.1016/j.ssnmr.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 05/13/2023]
Abstract
Cross Effect (CE) Dynamic Nuclear Polarization (DNP) relies on the dipolar (D) and exchange (J) coupling interaction between two electron spins. Until recently only the electron spin D coupling was explicitly included in quantifying the DNP mechanism. Recent literature discusses the potential role of J coupling in DNP, but does not provide an account of the distribution and source of electron spin J coupling of commonly used biradicals in DNP. In this study, we quantified the distribution of electron spin J coupling in AMUPol and TOTAPol biradicals using a combination of continuous wave (CW) X-band electron paramagnetic resonance (EPR) lineshape analysis in a series of solvents and at variable temperatures in solution - a state to be vitrified for DNP. We found that both radicals show a temperature dependent distribution of J couplings, and the source of this distribution to be conformational dynamics. To qualify this conformational dependence of J coupling in both molecules we carry out Broken Symmetry DFT calculations which show that the biradical rotamer distribution can account for a large distribution of J couplings, with the magnitude of J coupling directly depending on the relative orientation of the electron spin pair. We demonstrate that the electron spin J couplings in both AMUPol and TOTAPol span a much wider distribution than suggested in the literature. We affirm the importance of electron spin J coupling for DNP with density matrix simulations of DNP in Liouville space and under magic angle spinning, showcasing that a rotamer with high J coupling and optimum relative g-tensor orientation can significantly boost the DNP performance compared to random orientations of the electron spin pair. We conclude that moderate electron spin J coupling above a threshold value can facilitate DNP enhancements.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, United States
| | - Ilia Kaminker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, United States
| | - Bernard Kirtman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, United States.
| |
Collapse
|
22
|
Purea A, Reiter C, Dimitriadis AI, de Rijk E, Aussenac F, Sergeyev I, Rosay M, Engelke F. Improved waveguide coupling for 1.3 mm MAS DNP probes at 263 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:43-49. [PMID: 30953925 DOI: 10.1016/j.jmr.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
We consider the geometry of a radially irradiated microwave beam in MAS DNP NMR probes and its impact on DNP enhancement. Two related characteristic features are found to be relevant: (i) the focus of the microwave beam on the DNP MAS sample and (ii) the microwave magnetic field magnitude in the sample. We present a waveguide coupler setup that enables us to significantly improve beam focus and field magnitude in 1.3 mm MAS DNP probes at a microwave frequency of 263 GHz, which results in an increase of the DNP enhancement by a factor of 2 compared to previous standard hardware setups. We discuss the implications of improved coupling and its potential to enable cutting-edge applications, such as pulsed high-field DNP and the use of low-power solid-state microwave sources.
Collapse
|
23
|
Mentink-Vigier F, Barra AL, van Tol J, Hediger S, Lee D, De Paëpe G. De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization. Phys Chem Chem Phys 2019; 21:2166-2176. [PMID: 30644474 DOI: 10.1039/c8cp06819d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magic angle spinning dynamic nuclear polarization (MAS-DNP) has become a key approach to boost the intrinsic low sensitivity of NMR in solids. This method relies on the use of both stable radicals as polarizing agents (PAs) and suitable high frequency microwave irradiation to hyperpolarize nuclei of interest. Relating PA chemical structure to DNP efficiency has been, and is still, a long-standing problem. The complexity of the polarization transfer mechanism has so far limited the impact of analytical derivation. However, recent numerical approaches have profoundly improved the basic understanding of the phenomenon and have now evolved to a point where they can be used to help design new PAs. In this work, the potential of advanced MAS-DNP simulations combined with DFT calculations and high-field EPR to qualitatively and quantitatively predict hyperpolarization efficiency of particular PAs is analyzed. This approach is demonstrated on AMUPol and TEKPol, two widely-used bis-nitroxide PAs. The results notably highlight how the PA structure and EPR characteristics affect the detailed shape of the DNP field profile. We also show that refined simulations of this profile using the orientation dependency of the electron spin-lattice relaxation times can be used to estimate the microwave B1 field experienced by the sample. Finally, we show how modelling the nuclear spin-lattice relaxation times of close and bulk nuclei while accounting for PA concentration allows for a prediction of DNP enhancement factors and hyperpolarization build-up times.
Collapse
|
24
|
Wili N, Richert S, Limburg B, Clarke SJ, Anderson HL, Timmel CR, Jeschke G. ELDOR-detected NMR beyond hyperfine couplings: a case study with Cu(ii)-porphyrin dimers. Phys Chem Chem Phys 2019; 21:11676-11688. [DOI: 10.1039/c9cp01760g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pulse EPR method ELDOR-detected NMR gives information about electron–electron couplings in Cu(ii) porphyrin dimers.
Collapse
Affiliation(s)
- Nino Wili
- Laboratorium für Physikalische Chemie
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR)
- University of Oxford
- Oxford
- UK
| | - Bart Limburg
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | | | | | | | - Gunnar Jeschke
- Laboratorium für Physikalische Chemie
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|