1
|
Hoang Huy VP, Bark CW. A self-powered photodetector through facile processing using polyethyleneimine/carbon quantum dots for highly sensitive UVC detection. RSC Adv 2024; 14:12360-12371. [PMID: 38633486 PMCID: PMC11022040 DOI: 10.1039/d3ra08538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024] Open
Abstract
Ultraviolet C (UVC) photodetectors have garnered considerable attention recently because the detection of UVC is critical for preventing skin damage in humans, monitoring environmental conditions, detecting power aging in facilities, and military applications. As UVC detectors are "solar-blind", they encounter less interference than other environmental signals, resulting in low disturbance levels. This study employed a natural precursor (glucose) and a one-step ultrasonic reaction procedure to prepare carbon quantum dots (CQDs), which served as a convenient and environmentally friendly material to combine with polyethyleneimine (PEI). The prepared materials were used to develop a self-powered, high-performance UVC photodetector. The thickness of the constitutive film was investigated in detail based on the conditions of the electron transport pathway and trap positions to further improve the performance of the PEI/CQD photodetectors. Under the optimized conditions, the photodetector could generate a strong signal (1.5 mA W-1 at 254 nm) and exhibit high detectability (1.8 × 1010 Jones at 254 nm), an ultrafast response, and long-term stability during the power supply sequence. The developed solar-blind UVC photodetector can be applied in various ways to monitor UVC in an affordable, straightforward, and precise manner.
Collapse
Affiliation(s)
- Vo Pham Hoang Huy
- Department of Electrical Engineering, Gachon University Seongnam Gyeonggi 13120 Republic of Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University Seongnam Gyeonggi 13120 Republic of Korea
| |
Collapse
|
2
|
Liu C, Liu J, Duan X, Sun Y. Green-Processed Non-Fullerene Organic Solar Cells Based on Y-Series Acceptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303842. [PMID: 37526335 PMCID: PMC10558702 DOI: 10.1002/advs.202303842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Indexed: 08/02/2023]
Abstract
The development of environmentally friendly and sustainable processes for the production of high-performance organic solar cells (OSCs) has become a critical research area. Currently, Y-series electron acceptors are widely used in high-performance OSCs, achieving power conversion efficiencies above 19%. However, these acceptors have large fused conjugated backbones that are well-soluble in halogenated solvents, such as chloroform and chlorobenzene, but have poor solubility in non-halogenated green solvents. To overcome this challenge, recent studies have focused on developing green-processed OSCs that use non-chlorinated and non-aromatic solvents to dissolve bulk-heterojunction photoactive layers based on Y-series electron acceptors, enabling environmentally friendly fabrication. In this comprehensive review, an overview of recent progress in green-processed OSCs based on Y-series acceptors is provided, covering the determination of Hansen solubility parameters, the use of non-chlorinated solvents, and the dispersion of conjugated nanoparticles in water/alcohol. It is hoped that the timely review will inspire researchers to develop new ideas and approaches in this important field, ultimately leading to the practical application of OSCs.
Collapse
Affiliation(s)
- Chunhui Liu
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Jinfeng Liu
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xiaopeng Duan
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Yanming Sun
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
3
|
Xie C, Liang S, Zhang G, Li S. Water-Processed Organic Solar Cell with Efficiency Exceeding 11. Polymers (Basel) 2022; 14:polym14194229. [PMID: 36236177 PMCID: PMC9573733 DOI: 10.3390/polym14194229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Water processing is an ideal strategy for the ecofriendly fabrication of organic photovoltaics (OPVs) and exhibits a strong market-driven demand. Here, we report a state-of-the-art active material, namely PM6:BTP-eC9, for the synthesis of water-borne nanoparticle (NP) dispersion towards ecofriendly OPV fabrication. The surfactant-stripping technique, combined with a poloxamer, facilitates purification and eliminates excess surfactant in water-dispersed organic semiconducting NPs. The introduction of 1,8-diiodooctane (DIO) for the synthesis of surfactant-stripped NP (ssNP) further promotes a percolated microstructure of the polymer and NFA in each ssNP, yielding water-processed OPVs with a record efficiency of over 11%. The use of an additive during water-borne ssNP synthesis is a promising strategy for morphology optimization in NP OPVs. It is believed that the findings in this work will engender more research interest and effort relating to water-processing in preparation of the industrial production of OPVs.
Collapse
|
4
|
Chowdhury R, Holmes NP, Cooling N, Belcher WJ, Dastoor PC, Zhou X. Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices. ACS OMEGA 2022; 7:9212-9220. [PMID: 35350329 PMCID: PMC8945175 DOI: 10.1021/acsomega.1c05711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The fabrication of organic photovoltaics (OPVs) from non-hazardous nanoparticulate (NP) inks offers considerable promise for the development of eco-friendly large-scale printed solar modules. However, the typical NP core-shell morphology (driven by the different donor/acceptor affinities for the surfactant used in NP synthesis) currently hinders the photovoltaic performance. As such, surfactant engineering offers an elegant approach to synthesizing a more optimal intermixed NP morphology and hence an improved photovoltaic performance. In this work, the morphology of conventional sodium dodecyl sulfate (SDS) and 2-(3-thienyl) ethyloxybutylsulfonate (TEBS)-stabilized poly(3-hexylthiophene) (P3HT) donor:phenyl-C61-butyric acid methyl ester (PC61BM) acceptor NPs is probed using scanning transmission X-ray microscopy, UV-vis spectroscopy, grazing-incidence X-ray diffraction, and scanning electron microscopy. While the SDS-stabilized NPs exhibit a size-independent core-shell morphology, this work reveals that TEBS-stabilized NPs deliver an intermixed morphology, the extent of which depends on the particle size. Consequently, by optimizing the TEBS-stabilized NP size and distribution, NP-OPV devices with a power conversion efficiency that is ∼50% higher on average than that of the corresponding SDS-based NP-OPV devices are produced.
Collapse
Affiliation(s)
- Riku Chowdhury
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Natalie P. Holmes
- Australian
Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan Cooling
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Warwick J. Belcher
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Paul C. Dastoor
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Xiaojing Zhou
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
5
|
Large MJ, Posar JA, Mozer AJ, Nattestad A, Alnaghy S, Carolan M, Sellin PJ, Davies J, Pastuovic Z, Lerch MLF, Guatelli S, Rosenfeld A, Griffith MJ, Petasecca M. Flexible Polymer X-ray Detectors with Non-fullerene Acceptors for Enhanced Stability: Toward Printable Tissue Equivalent Devices for Medical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57703-57712. [PMID: 34806354 DOI: 10.1021/acsami.1c16914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is growing interest in the development of novel materials and devices capable of ionizing radiation detection for medical applications. Organic semiconductors are promising candidates to meet the demands of modern detectors, such as low manufacturing costs, mechanical flexibility, and a response to radiation equivalent to human tissue. However, organic semiconductors have typically been employed in applications that convert low energy photons into high current densities, for example, solar cells and LEDs, and thus existing design rules must be re-explored for ionizing radiation detection where high energy photons are converted into typically much lower current densities. In this work, we report the optoelectronic and X-ray dosimetric response of a tissue equivalent organic photodetector fabricated with solution-based inks prepared from polymer donor poly(3-hexylthiophene) (P3HT) blended with either a non-fullerene acceptor (5Z,5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (o-IDTBR) or a fullerene acceptor, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Indirect detection of X-rays was achieved via coupling of organic photodiodes with a plastic scintillator. Both detectors displayed an excellent response linearity with dose, with sensitivities to 6 MV photons of 263.4 ± 0.6 and 114.2 ± 0.7 pC/cGy recorded for P3HT:PCBM and P3HT:o-IDTBR detectors, respectively. Both detectors also exhibited a fast temporal response, able to resolve individual 3.6 μs pulses from the linear accelerator. Energy dependence measurements highlighted that the photodetectors were highly tissue equivalent, though an under-response in devices compared to water by up to a factor of 2.3 was found for photon energies of 30-200 keV due to the response of the plastic scintillator. The P3HT:o-IDTBR device exhibited a higher stability to radiation, showing just an 18.4% reduction in performance when exposed to radiation doses of up to 10 kGy. The reported devices provide a successful demonstration of stable, printable, flexible, and tissue-equivalent radiation detectors with energy dependence similar to other scintillator-based detectors used in radiotherapy.
Collapse
Affiliation(s)
- Matthew J Large
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Jessie A Posar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Attila J Mozer
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Andrew Nattestad
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Saree Alnaghy
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Martin Carolan
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Paul J Sellin
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, New South Wales 2234, Australia
| | - Zeljko Pastuovic
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, New South Wales 2234, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Matthew J Griffith
- School of Aeronautical, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500, Australia
| |
Collapse
|
6
|
Crovador R, Heim H, Cottam S, Feron K, Bhatia V, Louie F, Sherwood CP, Dastoor PC, Brichta AM, Lim R, Griffith MJ. Advanced Control of Drug Delivery for In Vivo Health Applications via Highly Biocompatible Self-Assembled Organic Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:6338-6350. [PMID: 35006893 DOI: 10.1021/acsabm.1c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of nanostructured materials for targeted and controlled delivery of bioactive molecules is an attractive alternative to conventional drug administration protocols, enabling selective targeting of diseased cells, lower administered dosages, and reduced systemic side effects. Although a variety of nanocarriers have been investigated in recent years, electroactive organic polymer nanoparticles present several exciting advantages. Here we demonstrate that thin films created from nanoparticles synthesized from violanthrone-79, an n-type semiconducting organic material, can incorporate and release dexamethasone in vitro in a highly controlled manner. By systematically altering the nanoparticle formation chemistry, we successfully tailored the size of the nanoparticles between 30 and 145 nm to control the initial amount of drug loaded into the organic particles. The biocompatibility of the different particles was tested using live/dead assays of dorsal root ganglion neurons isolated and cultured from mice, revealing that elevated levels of the sodium dodecyl sulfate surfactant used to create the smaller nanoparticles are cytotoxic; however, cell survival rates in nanoparticles larger than 45 nm exceed 86% and promote neurite growth and elongation. By manipulating the electrical stimulus applied to the electroactive nanoparticle films, we show an accelerated rate of drug release in comparison to passive release in aqueous media. Furthermore, pulsing the electrical stimulus was successfully used to selectively switch the accelerated release rate on and off. By combining the tuning of drug loading (through tailored nanoparticle synthesis) and drug release rate (through electrical stimulus protocols), we demonstrate a highly advanced control of drug delivery dosage in a biocompatible delivery vehicle. This work highlights the significant potential of electroactive organic nanoparticles for implantable devices that can deliver corticosteroids directly to the nervous system for the treatment of inflammation associated with neurological disorders, presenting a translatable pathway toward precision nanomedicine approaches for other drugs and diseases.
Collapse
Affiliation(s)
- Rafael Crovador
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Heidianne Heim
- Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Sophie Cottam
- Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Krishna Feron
- Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vijay Bhatia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Fiona Louie
- John Hunter Hospital, New Lambton Heights, New South Wales 2305, Australia
| | - Connor P Sherwood
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Paul C Dastoor
- Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Alan M Brichta
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Rebecca Lim
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Matthew J Griffith
- Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308, Australia.,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
7
|
Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications. NANOMATERIALS 2021; 11:nano11051185. [PMID: 33946256 PMCID: PMC8145629 DOI: 10.3390/nano11051185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
This work reports the development of a highly sensitive pressure detector prepared by inkjet printing of electroactive organic semiconducting materials. The pressure sensing is achieved by incorporating a quantum tunnelling composite material composed of graphite nanoparticles in a rubber matrix into the multilayer nanostructure of a printed organic thin film transistor. This printed device was able to convert shock wave inputs rapidly and reproducibly into an inherently amplified electronic output signal. Variation of the organic ink material, solvents, and printing speeds were shown to modulate the multilayer nanostructure of the organic semiconducting and dielectric layers, enabling tuneable optimisation of the transistor response. The optimised printed device exhibits rapid switching from a non-conductive to a conductive state upon application of low pressures whilst operating at very low source-drain voltages (0–5 V), a feature that is often required in applications sensitive to stray electromagnetic signals but is not provided by conventional inorganic transistors and switches. The printed sensor also operates without the need for any gate voltage bias, further reducing the electronics required for operation. The printable low-voltage sensing and signalling system offers a route to simple low-cost assemblies for secure detection of stimuli in highly energetic systems including combustible or chemically sensitive materials.
Collapse
|
8
|
Holmes A, Deniau E, Lartigau-Dagron C, Bousquet A, Chambon S, Holmes NP. Review of Waterborne Organic Semiconductor Colloids for Photovoltaics. ACS NANO 2021; 15:3927-3959. [PMID: 33620200 DOI: 10.1021/acsnano.0c10161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, this review has been prepared to provide a timely roadmap of the formation and application of aqueous nanoparticle dispersions of active layer components for OPV. We provide a thorough synopsis of recent developments in both nanoprecipitation and miniemulsion for preparing photovoltaic inks, facilitating readers in acquiring a deep understanding of the crucial synthesis parameters affecting particle size, colloidal concentration, ink stability, and more. This review also showcases the experimental levers for identifying and optimizing the internal donor-acceptor morphology of the nanoparticles, featuring cutting-edge X-ray spectromicroscopy measurements reported over the past decade. The different strategies to improve the incorporation of these inks into OPV devices and to increase their efficiency (to the current record of 7.5%) are reported, in addition to critical design choices of surfactant type and the advantages of single-component vs binary nanoparticle populations. The review naturally culminates by presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.
Collapse
Affiliation(s)
- Alexandre Holmes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | - Elise Deniau
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | | | - Antoine Bousquet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | - Sylvain Chambon
- LIMMS/CNRS-IIS (UMI2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Natalie P Holmes
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Chowdhury R, Tegg L, Keast VJ, Holmes NP, Cooling NA, Vaughan B, Nicolaidis NC, Belcher WJ, Dastoor PC, Zhou X. Plasmonic enhancement of aqueous processed organic photovoltaics. RSC Adv 2021; 11:19000-19011. [PMID: 35478661 PMCID: PMC9033506 DOI: 10.1039/d1ra02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Sodium tungsten bronze (NaxWO3) is a promising alternative plasmonic material to nanoparticulate gold due to its strong plasmonic resonances in both the visible and near-infrared (NIR) regions. Additional benefits include its simple production either as a bulk or a nanoparticle material at a relatively low cost. In this work, plasmonic NaxWO3 nanoparticles were introduced and mixed into the nanoparticulate zinc oxide electron transport layer of a water processed poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) nanoparticle (NP) based organic photovoltaic device (NP-OPV). The power conversion efficiency of NP-OPV devices with NaxWO3 NPs added was found to improve by around 35% compared to the control devices, attributed to improved light absorption, resulting in an enhanced short circuit current and fill factor. Plasmonic NaxWO3 nanoparticles were introduced to aqueous processed organic photovoltaics with 35% device enhancement.![]()
Collapse
|
10
|
Lee S, Jeong D, Kim C, Lee C, Kang H, Woo HY, Kim BJ. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS NANO 2020; 14:14493-14527. [PMID: 33103903 DOI: 10.1021/acsnano.0c07488] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changkyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
11
|
Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK. Biodegradable Materials and Green Processing for Green Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001591. [PMID: 32584502 DOI: 10.1002/adma.202001591] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 06/11/2023]
Abstract
There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods. In response to these issues, the construction of electronic devices from renewable or biodegradable materials that decompose to harmless by-products is becoming a topic of great interest. Such "green" electronic devices need to be fabricated on industrial scale through low-energy and low-cost methods that involve low/non-toxic functional materials or solvents. This review highlights recent advances in the development of biodegradable materials and processing strategies for electronics with an emphasis on areas where green electronic devices show the greatest promise, including solar cells, organic field-effect transistors, light-emitting diodes, and other electronic devices.
Collapse
Affiliation(s)
- Wenhui Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuniu Zhang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang'an Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfei He
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Griffith MJ, Holmes NP, Elkington DC, Cottam S, Stamenkovic J, Kilcoyne ALD, Andersen TR. Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. NANOTECHNOLOGY 2020; 31:092002. [PMID: 31726444 DOI: 10.1088/1361-6528/ab57d0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Printed electronics is simultaneously one of the most intensely studied emerging research areas in science and technology and one of the fastest growing commercial markets in the world today. For the past decade the potential for organic electronic (OE) materials to revolutionize this printed electronics space has been widely promoted. Such conviction in the potential of these carbon-based semiconducting materials arises from their ability to be dissolved in solution, and thus the exciting possibility of simply printing a range of multifunctional devices onto flexible substrates at high speeds for very low cost using standard roll-to-roll printing techniques. However, the transition from promising laboratory innovations to large scale prototypes requires precise control of nanoscale material and device structure across large areas during printing fabrication. Maintaining this nanoscale material control during printing presents a significant new challenge that demands the coupling of OE materials and devices with clever nanoscience fabrication approaches that are adapted to the limited thermodynamic levers available. In this review we present an update on the strategies and capabilities that are required in order to manipulate the nanoscale structure of large area printed organic photovoltaic (OPV), transistor and bioelectronics devices in order to control their device functionality. This discussion covers a range of efforts to manipulate the electroactive ink materials and their nanostructured assembly into devices, and also device processing strategies to tune the nanoscale material properties and assembly routes through printing fabrication. The review finishes by highlighting progress in printed OE devices that provide a feedback loop between laboratory nanoscience innovations and their feasibility in adapting to large scale printing fabrication. The ability to control material properties on the nanoscale whilst simultaneously printing functional devices on the square metre scale is prompting innovative developments in the targeted nanoscience required for OPV, transistor and biofunctional devices.
Collapse
Affiliation(s)
- Matthew J Griffith
- School of Mathematical and Physical Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia. Centre for Organic Electronics, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | | | | | | | |
Collapse
|