1
|
Teng Y, Wang D, Yang Z, Wang R, Ning S, Zhang R, Yang H, Feng X, Liu J, Yang L, Tian Y. Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy. Biomaterials 2025; 317:123092. [PMID: 39793168 DOI: 10.1016/j.biomaterials.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation. With the aid of integrin- or mitochondria-pretargeting, TzPS5 is successfully applied for highly effective PDT ablation of cancer cells both in vitro and in vivo. On this basis, tumor-targeting TzPS5 (TzPS5-cRGD) is constructed and used jointly with a bioorthogonal prodrug, DOX-TCO, and the two are mutually activated to induce cooperative and tumor-specific PDT and chemotherapy, resulting in amplified therapeutic outcomes and improved biosafeties. Moreover, this combination modality elicits robust immunogenic cell death, stimulates systemic antitumor immunity, thereby suppressing both primary and distant tumors, and blocking the pulmonary tumor metastasis. This work is expected to provide a useful guidance for the rational design of activatable phototheranostic agents, and offer a new strategy for co-activation of prodrugs/pro-photosensitizers to boost synergistic antitumor chemo-photodynamic-immunotherapy.
Collapse
Affiliation(s)
- Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Ziyu Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Ruxuan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100007, PR China
| | - Shuyi Ning
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Rongrong Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China.
| | - Lijun Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China.
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
2
|
Zeng T, Wu Q, Liu Y, Qi Q, Shen W, Gu W, Zhang Y, Xiong W, Xie Z, Qi X, Tian T, Zhou X. Unraveling the Cleavage Reaction of Hydroxylamines with Cyclopropenones Considering Biocompatibility. J Am Chem Soc 2024; 146:35077-35089. [PMID: 39660762 DOI: 10.1021/jacs.4c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
We develop a latent biocompatible cleavage reaction involving the hitherto unexplored interaction between hydroxylamines and cyclopropenones. Our study addresses the regioselectivity challenges commonly observed in asymmetric cyclopropenone transformations, substantiated by variations in substrate, Density Functional Theory calculations, and in situ NMR analysis. This reaction is characterized by high efficiency, broad substrate scope, stability, latent biocompatibility, and mild reaction conditions. Significantly, it facilitates fluorescence activation and functions as a controlled release mechanism for prodrugs, showing great promise in biological assays. Our success in achieving the controlled release of nitrogen mustard in HeLa cells underscores its potential application in cellular contexts. Additionally, we introduce a simple and highly efficient method for synthesizing α, β-substituted pentenolides, applicable to a variety of substrates. Moreover, we extend this cleavage reaction to the CRISPR-Cas9 system, achieving precise, on-demand regulation of guide RNA activity. The introduction of this cleavage reaction offers a promising tool for biochemical research and biotechnological applications.
Collapse
Affiliation(s)
- Tianying Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Quan Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongjie Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Gu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhongpao Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
3
|
Baró EL, Catti F, Estarellas C, Ghashghaei O, Lavilla R. Drugs from drugs: New chemical insights into a mature concept. Drug Discov Today 2024; 29:104212. [PMID: 39442750 DOI: 10.1016/j.drudis.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the original drugs (late-stage modifications, molecular editing), (b) prodrug strategies, and (c) repurposing as a tool to develop new hits/leads. Special focus is placed on the molecular structure of the drugs and their synthetic feasibility. The combination of experimental advances and new computational approaches, including artificial intelligence methods, paves the way for the evolution of the drugs from drugs concept.
Collapse
Affiliation(s)
- Eloy Lozano Baró
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Federica Catti
- Faculty of Science and Mathematics, Arkansas State University Campus Querétaro, Carretera Estatal 100, km 17.5. C.P. 76270, Municipio de Colón, Estado de Querétaro, Mexico
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Ghosh D, Khan A, Bag S, Mallick AI, De P. Dual stimuli-responsive biotinylated polymer-drug conjugate for dual drug delivery. J Mater Chem B 2024; 12:11826-11840. [PMID: 39439369 DOI: 10.1039/d4tb01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stimuli-responsive nanoscale polymer-drug conjugates are one of the most promising alternatives in the realm of advanced therapeutics, rendering several characteristics such as spatio-temporal control over drug release, reduced off-target toxicity, enhanced bioavailability, and longer blood circulation time of the drug. Fostered by the aforementioned conceptualization, our quest to develop an ideal polymer-drug conjugate has originated the present investigation of developing a reactive oxygen species (ROS) and esterase-responsive self-assembled polymer-drug (chlorambucil, CBL) conjugate with biotin pendants (DP2) for cancer cell targeting, surrogating another antineoplastic drug, doxorubicin (DOX) via physical encapsulation (DP2@DOX). The ROS and esterase trigger not only released the covalently stitched CBL but also resulted in DOX release by dismantling the amphiphilic balance of the nanoaggregates. Biotinylation-mediated enhancement of cellular uptake of DP2@DOX was reflected in the synergistic anticancer activity of both the drugs (CBL and DOX) in HeLa cells (biotin receptor-positive cells) compared to HEK 293T cells (biotin receptor-negative cells). Furthermore, the selective internalization of the fluorophore-tagged DOX-loaded polymer (DP4@DOX) in HeLa cells compared to HEK 293T cells was confirmed by confocal microscopy and flow cytometry. In summary, the present investigation demonstrates a state-of-the-art self-assembled polymer-drug conjugate as a next-generation dual stimuli-responsive drug delivery vehicle.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
5
|
Chang M, Dong Y, Cruickshank-Taylor AB, Gnawali G, Bi F, Wang W. Senolytic Prodrugs: A Promising Approach to Enhancing Senescence-Targeting Intervention. Chembiochem 2024; 25:e202400355. [PMID: 39058554 PMCID: PMC11576250 DOI: 10.1002/cbic.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Cellular senescence has emerged as a potential therapeutic target for aging and a wide range of age-related disorders. Despite the encouraging therapeutic impact of senolytic agents on improving lifespan and the outcomes of pharmacological intervention, the senolytic induced side effects pose barriers to clinical application. There is a pressing need for selective ablation of senescent cells (SnCs). The design of senolytic prodrugs has been demonstrated as a promising approach to addressing these issues. These prodrugs are generally designed via modification of senolytics with a cleavable galactose moiety to respond to the senescent biomarker - senescence-associated β-galactosidase (SA-β-gal) to restore their therapeutic effects. In this Concept, we summarize the developments by categorizing these prodrugs into two classes: 1) galactose-modified senolytic prodrugs, in which sensing unit galactose is either directly conjugated to the drug or via a self-immolative linker and 2) bioorthogonal activation of senolytic prodrugs. In the bioorthogonal prodrug design, galactose is incorporated into dihydrotetrazine to sense SA-β-gal for click activation. Notably, in addition to repurposed chemotherapeutics and small molecule inhibitors, PROTACs and photodynamic therapy have been introduced as new senolytics in the prodrug design. It is expected that the senolytic prodrugs would facilitate translating small-molecule senolytics into clinical use.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | | | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
6
|
Charoenpattarapreeda J, Tegge W, Xu C, Harmrolfs K, Hinkelmann B, Wullenkord H, Hotop SK, Beutling U, Rox K, Brönstrup M. A Targeted Click-to-Release Activation of the Last-Resort Antibiotic Colistin Reduces its Renal Cell Toxicity. Angew Chem Int Ed Engl 2024; 63:e202408360. [PMID: 39113573 DOI: 10.1002/anie.202408360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 10/17/2024]
Abstract
The use of highly potent but very toxic antibiotics such as colistin has become inevitable due to the rise of antimicrobial resistance. We aimed for a chemically-triggered, controlled release of colistin at the infection site to lower its systemic toxicity by harnessing the power of click-to-release reactions. Kinetic experiments with nine tetrazines and three dienophiles demonstrated a fast release via an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene (TCO) and the amine-functionalised tetrazine Tz7. The antibiotic activity of colistin against Escherichia coli was masked by TCO units, but restored upon reaction with d-Ubi-Tz, a tetrazine functionalised with the bacterial binding peptide d-Ubi29-41. While standard TCO did not improve toxicity against human proximal tubular kidney HK-2 cells, the installation of an aspartic acid-modified TCO masking group reduced the overall charge of the peptide and entry to the kidney cells, thereby dramatically lowering its toxicity. The analog Col-(TCO-Asp)1 had favourable pharmacokinetic properties in mice and was successfully activated locally in the lung by d-Ubi-Tz in an in vivo infection model, whereas it remained inactive and non-harmful without the chemical trigger. This study constitutes the first example of a systemically acting two-component antibiotic with improved drug tolerability.
Collapse
Affiliation(s)
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Chunfa Xu
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Hannah Wullenkord
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Site Hannover-Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Site Hannover-Braunschweig, Germany
- Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, 30167, Hannover, Germany
| |
Collapse
|
7
|
Kao WS, Huang W, Zhang Y, Wen K, Meyer A, Escorihuela J, Laughlin ST. Redox-Activated Substrates for Enhancing Activatable Cyclopropene Bioorthogonal Reactions. Chembiochem 2024; 25:e202400304. [PMID: 39183177 DOI: 10.1002/cbic.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Bioorthogonal chemistry has become a mainstay in chemical biology and is making inroads in the clinic with recent advances in protein targeting and drug release. Since the field's beginning, a major focus has been on designing bioorthogonal reagents with good selectivity, reactivity, and stability in complex biological environments. More recently, chemists have imbued reagents with new functionalities like click-and-release or light/enzyme-controllable reactivity. We have previously developed a controllable cyclopropene-based bioorthogonal ligation, which has excellent stability in physiological conditions and can be triggered to react with tetrazines by exposure to enzymes, biologically significant small molecules, or light spanning the visual spectrum. Here, to improve reactivity and gain a better understanding of this system, we screened diene reaction partners for the cyclopropene. We found that a cyclopropene-quinone pair is 26 times faster than reactions with 1,2,4,5-tetrazines. Additionally, we showed that the reaction of the cyclopropene-quinone pair can be activated by two orthogonal mechanisms: caging group removal on the cyclopropene and oxidation/reduction of the quinone. Finally, we demonstrated that this caged cyclopropene-quinone can be used as an imaging tool to label the membranes of fixed, cultured cells.
Collapse
Affiliation(s)
- Wei-Siang Kao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Yunlei Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Andrea Meyer
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| |
Collapse
|
8
|
Liang T, Dong Y, Cheng I, Wen P, Li F, Liu F, Wu Q, Ren E, Liu P, Li H, Gu Z. In situ formation of biomolecular condensates as intracellular drug reservoirs for augmenting chemotherapy. Nat Biomed Eng 2024; 8:1469-1482. [PMID: 39271933 DOI: 10.1038/s41551-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/10/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates, which arise from liquid-liquid phase separation within cells, may provide a means of enriching and prolonging the retention of small-molecule drugs within cells. Here we report a method for the controlled in situ formation of biomolecular condensates as reservoirs for the enrichment and retention of chemotherapeutics in cancer cells, and show that the approach can be leveraged to enhance antitumour efficacies in mice with drug-resistant tumours. The method involves histones as positively charged proteins and doxorubicin-intercalated DNA strands bioorthogonally linked via a click-to-release reaction between trans-cyclooctene and tetrazine groups. The reaction temporarily impaired the phase separation of histones in vitro, favoured the initiation of liquid-liquid phase separation within cells and led to the formation of biomolecular condensates that were sufficiently large to be retained within tumour cells. The controlled formation of biomolecular condensates as drug reservoirs within cells may offer new options for boosting the efficacies of cancer therapies.
Collapse
Affiliation(s)
- Tingxizi Liang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Irina Cheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Wen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengqin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - En Ren
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Yao Y, Chen Y, Zhou C, Zhang Q, He X, Dong K, Yang C, Chu B, Qian Z. Bioorthogonal chemistry-based prodrug strategies for enhanced biosafety in tumor treatments: current progress and challenges. J Mater Chem B 2024; 12:10818-10834. [PMID: 39352785 DOI: 10.1039/d4tb01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting. However, subtle differences in the microenvironments between tumors and normal tissue may still result in unintended cytotoxicity. Bioorthogonal reactions, known for their selectivity and precision without interfering with natural biochemical processes, are gaining attention. When combined with prodrug strategies, these reactions offer the potential to create highly effective chemotherapy drugs. This review examines the safety and efficacy of prodrug strategies utilizing various bioorthogonal reactions in cancer treatment.
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Quanzhi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xun He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Huang Y, Zhao H, Zhang Y, Zhao C, Ren J, Qu X. Bioorthogonal Regulated Metabolic Balance for Promotion of Ferroptosis and Mild Photothermal Therapy. ACS NANO 2024; 18:28104-28114. [PMID: 39373015 DOI: 10.1021/acsnano.4c07558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The nanozyme with NADPH oxidase (NOX)-like activity can promote the consumption of NADPH and the generation of free radicals. In consideration of that the upregulation of glucose-6-phosphate dehydrogenase (G6PD) would accelerate the compensation production of NADPH, for inhibition of G6PD activity, our designed bioorthogonal nanozyme can in situ catalyze pro-DHEA to produce G6PD inhibitor and dehydroepiandrosterone (DHEA) drugs to inhibit G6PD activity. Therefore, the well-defined platform can disrupt NADPH homeostasis, leading to the collapse of the antioxidant defense system in the tumor cells. The enzyme-like activity of PdCuFe is further enhanced when irradiated by NIR-II light. The destruction of NADPH homeostasis can promote ferroptosis and, in turn, facilitate mild photothermal therapy. Our design can realize NADPH depletion and greatly improve the therapeutic effect through metabolic regulation, which may provide inspiration for the design of bioorthogonal catalysis.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Zhao M, Cao L, Bai Q, Lu Y, Li B, Wu W, Ye J, Chen X, Wang Z, Liu B, Mao D. Light-Activated Nanocatalyst for Precise In-Situ Antimicrobial Synthesis via Photoredox-Catalytic Click Reaction. Angew Chem Int Ed Engl 2024; 63:e202408918. [PMID: 39013139 DOI: 10.1002/anie.202408918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/18/2024]
Abstract
The excessive and prolonged use of antibiotics contributes to the emergence of drug-resistant S. aureus strains and potential dysbacteriosis-related diseases, necessitating the exploration of alternative therapeutic approaches. Herein, we present a light-activated nanocatalyst for synthesizing in situ antimicrobials through photoredox-catalytic click reaction, achieving precise, site-directed elimination of S. aureus skin infections. Methylene blue (MB), a commercially available photosensitizer, was encapsulated within the CuII-based metal-organic framework, MOF-199, and further enveloped with Pluronic F-127 to create the light-responsive nanocatalyst MB@PMOF. Upon exposure to red light, MB participates in a photoredox-catalytic cycle, driven by the 1,3,5-benzenetricarboxylic carboxylate salts (BTC-) ligand presented in the structure of MOF-199. This light-activated MB then catalyzes the reduction of CuII to CuI through a single-electron transfer (SET) process, efficiently initiating the click reaction to form active antimicrobial agents under physiological conditions. Both in vitro and in vivo results demonstrated the effectiveness of MB@PMOF-catalyzed drug synthesis in inhibiting S. aureus, including their methicillin-resistant strains, thereby accelerating skin healing in severe bacterial infections. This study introduces a novel design paradigm for controlled, on-site drug synthesis, offering a promising alternative to realize precise treatment of bacterial infections without undesirable side effects.
Collapse
Affiliation(s)
- Minyang Zhao
- Department of Laboratory Medicine, Institute of Precision Medicine The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 1510080, Guangzhou, China
| | - Lei Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Fuzhou, China
| | - Qingqing Bai
- Department of Laboratory Medicine, Institute of Precision Medicine The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 1510080, Guangzhou, China
| | - Yaru Lu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Bowen Li
- Institute of Transplant Medicine School of Medicine, Nankai University, 300071, Tianjin, China
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Jinzhou Ye
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, 518132, Shenzhen, Guangdong, China
| | - Xinhan Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, 518132, Shenzhen, Guangdong, China
| | - Zhihong Wang
- Institute of Transplant Medicine School of Medicine, Nankai University, 300071, Tianjin, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Fuzhou, China
| | - Duo Mao
- Department of Laboratory Medicine, Institute of Precision Medicine The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 1510080, Guangzhou, China
| |
Collapse
|
12
|
Wang Q, Song Y, Yuan S, Zhu Y, Wang W, Chu L. Prodrug activation by 4,4'-bipyridine-mediated aromatic nitro reduction. Nat Commun 2024; 15:8643. [PMID: 39368987 PMCID: PMC11455939 DOI: 10.1038/s41467-024-52604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/16/2024] [Indexed: 10/07/2024] Open
Abstract
Unleashing prodrugs through nitro-reduction is a promising strategy in cancer treatment. In this study, we present a unique bioorthogonal reaction for aromatic nitro reduction, mediated by 4,4'-bipyridine. The reaction is a rare example of organocatalyst-mediated bioorthogonal reaction. This bioorthogonal reaction demonstrates broad substrate scope and proceeds at low micromolar concentrations under biocompatible conditions. Our mechanistic study reveals that water is essential for the reaction to proceed at biorelevant substrate concentrations. We illustrate the utility of our reaction for controlled prodrug activation in mammalian cells, bacteria, and mouse models. Furthermore, a nitro-reduction-annulation cascade is developed for the synthesis of indole derivatives in living cells.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yikang Song
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuowei Yuan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaoji Zhu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Ling Chu
- School of Pharmaceutical Sciences MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Yamada K, Mukaimine A, Nakamura A, Kusakari Y, Pradipta AR, Chang TC, Tanaka K. Chemistry-driven translocation of glycosylated proteins in mice. Nat Commun 2024; 15:7409. [PMID: 39358337 PMCID: PMC11446924 DOI: 10.1038/s41467-024-51342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Cell surface glycans form various "glycan patterns" consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such "in vivo glycan pattern remodeling" strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Collapse
Affiliation(s)
- Kenshiro Yamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Tong X, Chen J, Wang M, Liu J, Li J, Wang X, Zuo Y, Xu X, Wang Y, Wang B, Guo W, Zheng Y. Development of a Bioorthogonal Click-to-Release Reaction for Hydrogen Polysulfide (H 2S n) Detection. Anal Chem 2024; 96:15631-15639. [PMID: 39287125 DOI: 10.1021/acs.analchem.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 μM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, β-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.
Collapse
Affiliation(s)
- Xidan Tong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Maolin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yifei Zuo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
15
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Rahm M, Keppel P, Šlachtová V, Dzijak R, Dračínský M, Bellová S, Reyes-Gutiérrez PE, Štěpánová S, Raffler J, Tloušťová E, Mertlíková-Kaiserová H, Mikula H, Vrabel M. Sulfonated Hydroxyaryl-Tetrazines with Increased pK a for Accelerated Bioorthogonal Click-to-Release Reactions in Cells. Angew Chem Int Ed Engl 2024:e202411713. [PMID: 39298292 DOI: 10.1002/anie.202411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pKa). This unique property leads to accelerated elimination and complete release of the caged molecules within minutes. Moreover, the inclusion of sulfonate groups provides a valuable synthetic handle, enabling further derivatization into sulfonamides, modified with diverse substituents. Significantly, we demonstrate the utility of sulfo-tetrazines in efficiently activating fluorogenic compounds and prodrugs in living cells, offering exciting prospects for their application in bioorthogonal chemistry.
Collapse
Affiliation(s)
- Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, 166 28, Prague 6, Czech Republic
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jakob Raffler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| |
Collapse
|
17
|
Wang C, Xu M, Zhang Z, Zeng S, Shen S, Ding Z, Chen J, Cui XY, Liu Z. Locally unlocks prodrugs by radiopharmaceutical in tumor for cancer therapy. Sci Bull (Beijing) 2024; 69:2745-2755. [PMID: 39095273 DOI: 10.1016/j.scib.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 08/04/2024]
Abstract
Chemotherapy is the first-line treatment for cancer, but its systemic toxicity can be severe. Tumor-selective prodrug activation offers promising opportunities to reduce systemic toxicity. Here, we present a strategy for activating prodrugs using radiopharmaceuticals. This strategy enables the targeted release of chemotherapeutic agents due to the high tumor-targeting capability of radiopharmaceuticals. [18F]FDG (2-[18F]-fluoro-2-deoxy-D-glucose), one of the most widely used radiopharmaceuticals in clinics, can trigger Pt(IV) complex for controlled release of axial ligands in tumors, it might be mediated by hydrated electrons generated by water radiolysis resulting from the decay of radionuclide 18F. Its application offers the controlled release of fluorogenic probes and prodrugs in living cells and tumor-bearing mice. Of note, an OxaliPt(IV) linker is designed to construct an [18F]FDG-activated antibody-drug conjugate (Pt-ADC). Sequential injection of Pt-ADC and [18F]FDG efficiently releases the toxin in the tumor and remarkably suppresses the tumor growth. Radiotherapy is booming as a perturbing tool for prodrug activation, and we find that [18F]FDG is capable of deprotecting various radiotherapy-removable protecting groups (RPGs). Our results suggest that tumor-selective radiopharmaceutical may function as a trigger, for developing innovative prodrug activation strategies with enhanced tumor selectivity.
Collapse
Affiliation(s)
- Changlun Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Zihang Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Senhai Zeng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China; Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Key Laboratory for Research and Evaluation of Radiopharmaceuticals of National Medical Products Administration, Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing 100142, China.
| |
Collapse
|
18
|
Li Z, Jiang T, Yuan X, Li B, Wu C, Li Y, Huang Y, Xie X, Pan W, Ping Y. Controlled bioorthogonal activation of Bromodomain-containing protein 4 degrader by co-delivery of PROTAC and Pd-catalyst for tumor-specific therapy. J Control Release 2024; 374:441-453. [PMID: 39179113 DOI: 10.1016/j.jconrel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The precise and safe treatment of bioorthogonal prodrug system is hindered by separate administration of prodrug and its activator, which often results in poor therapeutic effects and severe side effects. To address above issues, we herein construct a single bioorthogonal-activated co-delivery system for simultaneous PROTAC prodrug (proPROTAC) delivery and controlled, site-specific activation for tumor-specific treatment. In this co-delivery system (termed AuPLs), prodrug (proPROTAC) and water-soluble Pd-catalyst are first encapsulated by gold nanocubes (AuNCs), which are further coated with a layer of phase-change material (lauric acid/stearic acid, LA/SA). Below 39 °C, the solid state of LA/SA prevents the activation of Pd-mediated bioorthogonal reaction due to the solidification of Pd-catalyst and proPROTAC. Nevertheless, once over 42 °C, the phase change of LA/SA into liquid state, enabled by the photothermal effect of AuNCs, triggers the simultaneous release of proPROTAC and Pd-catalyst and initiates the in situ bioorthogonal reaction for proPROTAC activation. In the tumor-bearing mouse models, the systemic administration of AuPLs results in the accumulation in tumor region, where the photothermal effect activates and controls the tumor-specific bioorthogonal reaction to degrade BRD4 protein, leading to anti-tumor effects with minimized side effects. Overall, the co-delivery proPROTAC and Pd-catalyst and controlled activation by photothermal effects provide a precise way for biorthogonal-based anticancer prodrugs.
Collapse
Affiliation(s)
- Zhiyao Li
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Taibai Jiang
- Guiyang Healthcare Vocational University, Guiyang 550081, PR China
| | - Xu Yuan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yecheng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Weidong Pan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Yang H, Sun H, Chen Y, Wang Y, Yang C, Yuan F, Wu X, Chen W, Yin P, Liang Y, Wu H. Enabling Universal Access to Rapid and Stable Tetrazine Bioorthogonal Probes through Triazolyl-Tetrazine Formation. JACS AU 2024; 4:2853-2861. [PMID: 39211625 PMCID: PMC11350731 DOI: 10.1021/jacsau.3c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
Despite the immense potential of tetrazine bioorthogonal chemistry in biomedical research, the in vivo performance of tetrazine probes is challenged by the inverse correlation between the physiological stability and reactivity of tetrazines. Additionally, the synthesis of functionalized tetrazines is often complex and requires specialized reagents. To overcome these issues, we present a novel tetrazine scaffold-triazolyl-tetrazine-that can be readily synthesized from shelf-stable ethynyl-tetrazines and azides. Triazolyl-tetrazines exhibit improved physiological stability along with high reactivity. We showcase the effectiveness of this approach by creating cell-permeable probes for protein labeling and live cell imaging, as well as efficiently producing 18F-labeled molecular probes for positron emission tomography imaging. By utilizing the readily available pool of functionalized azides, we envisage that this modular approach will provide universal accessibility to tetrazine bioorthogonal tools, facilitating applications in biomedicine and materials science.
Collapse
Affiliation(s)
- Haojie Yang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbao Sun
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinghan Chen
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yayue Wang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Fang Yuan
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Yin
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Liang
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Haoxing Wu
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Gu B, Zhao Q, Ao Y. Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies. Biomolecules 2024; 14:1057. [PMID: 39334825 PMCID: PMC11430029 DOI: 10.3390/biom14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, immunotherapy has been considered a promising treatment approach. The modulatable enhancement or attenuation of the body's immune response can effectively suppress tumors. However, challenges persist in clinical applications due to the lack of precision in antigen presentation to immune cells, immune escape mechanisms, and immunotherapy-mediated side effects. As a potential delivery system for drugs and immunomodulators, mesoporous silica has attracted extensive attention recently. Mesoporous silica nanoparticles (MSNs) possess high porosity, a large specific surface area, excellent biocompatibility, and facile surface modifiability, making them suitable as multifunctional carriers in immunotherapy. This article summarizes the latest advancements in the application of MSNs as carriers in cancer immunotherapy, aiming to stimulate further exploration of the immunomodulatory mechanisms and the development of immunotherapeutics based on MSNs.
Collapse
Affiliation(s)
| | | | - Yiran Ao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Bio-Medicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (B.G.); (Q.Z.)
| |
Collapse
|
21
|
Unnikrishnan VB, Sabatino V, Amorim F, Estrada MF, Navo CD, Jimenez-Oses G, Fior R, Bernardes GJL. Gold(III)-Induced Amide Bond Cleavage In Vivo: A Dual Release Strategy via π-Acid Mediated Allyl Substitution. J Am Chem Soc 2024; 146:23240-23251. [PMID: 39113488 PMCID: PMC11345771 DOI: 10.1021/jacs.4c05582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl4] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields. Notably, the reaction exhibits remarkable site-specificity to cleave peptide bonds at the C-terminus of allyl-glycine. The strategic introduction of a leaving group at the allyl position facilitated a dual-release approach through π-acid catalyzed substitution. This reaction was employed for the targeted release of the cytotoxic drug monomethyl auristatin E in combination with an antibody-drug conjugate in cancer cells. Finally, Au-mediated prodrug activation was shown in a colorectal zebrafish xenograft model, leading to a significant increase in apoptosis and tumor shrinkage. Our findings reveal a novel metal-based cleavable reaction expanding the utility of Au complexes beyond catalysis to encompass bond-cleavage reactions for cancer therapy.
Collapse
Affiliation(s)
- V. B. Unnikrishnan
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Valerio Sabatino
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Filipa Amorim
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Marta F. Estrada
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
| | - Gonzalo Jimenez-Oses
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
- Ikerbasque,
Basque Foundation for Sciencep, Bilbao 48013, Spain
| | - Rita Fior
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| |
Collapse
|
22
|
Zhao R, Chen Y, Liang Y. Bioorthogonal Delivery of Carbon Disulfide in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202400020. [PMID: 38752888 DOI: 10.1002/anie.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 06/27/2024]
Abstract
Carbon disulfide (CS2) is an environmental contaminant, which is deadly hazardous to the workers under chronic or acute exposure. However, the toxicity mechanisms of CS2 are still unclear due to the scarcity of biocompatible donors, which can release CS2 in cells. Here we developed the first bioorthogonal CS2 delivery system based on the "click-and-release" reactions between mesoionic 1,3-thiazolium-5-thiolates (TATs) and strained cyclooctyne exo-BCN-OH. We successfully realized intracellular CS2 release and investigated the causes of CS2-induced hepatotoxicity, including oxidative stress, proteotoxic stress and copper-dependent cell death. It is found that CS2 can be copper vehicles bypassing copper transporters after reacting with nucleophiles in cytoplasm, and extra copper supplementation will exacerbate the loss of homeostasis of cells and ultimately cell death. These findings inspired us to explore the anticancer activity of CS2 in combination with copper by introducing a copper chelating group in our CS2 delivery system.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
23
|
Gandra UR, Liu J, Axthelm J, Mohamed S, Görls H, Mohideen MIH, Schiller A. Quantifying CO-release from a photo-CORM using 19F NMR: An investigation into light-induced CO delivery. Anal Chim Acta 2024; 1312:342749. [PMID: 38834263 DOI: 10.1016/j.aca.2024.342749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Carbon monoxide (CO) is an innate signaling molecule that can regulate immune responses and interact with crucial elements of the circadian clock. Moreover, pharmacologically, CO has been substantiated for its therapeutic advantages in animal models of diverse pathological conditions. Given that an excessive level of CO can be toxic, it is imperative to quantify the necessary amount for therapeutic use accurately. However, estimating gaseous CO is notably challenging. Therefore, novel techniques are essential to quantify CO in therapeutic applications and overcome this obstacle precisely. The classical Myoglobin (Mb) assay technique has been extensively used to determine the amount of CO-release from CO-releasing molecules (CORMs) within therapeutic contexts. Nevertheless, specific challenges arise when applying the Mb assay to evaluate CORMs featuring innovative molecular architectures. Here, we report a fluorinated photo-CORM (CORM-FBS) for the photo-induced CO-release. We employed the 19F NMR spectroscopy approach to monitor the release of CO as well as quantitative evaluation of CO release. This new 19F NMR approach opens immense opportunities for researchers to develop reliable techniques for identifying molecular structures, quantitative studies of drug metabolism, and monitoring the reaction process.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743, Jena, Germany; Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Jingjing Liu
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743, Jena, Germany
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743, Jena, Germany
| | - Sharmarke Mohamed
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743, Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743, Jena, Germany.
| |
Collapse
|
24
|
Yao SY, Ying AK, Jiang ZT, Cheng YQ, Geng WC, Hu XY, Cai K, Guo DS. Single Molecular Nanomedicines Based on Macrocyclic Carrier-Drug Conjugates for Concentration-Independent Encapsulation and Precise Activation of Drugs. J Am Chem Soc 2024; 146:14203-14212. [PMID: 38733560 DOI: 10.1021/jacs.4c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - An-Kang Ying
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuan-Qiu Cheng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
25
|
He X, Li J, Liang X, Mao W, Deng X, Qin M, Su H, Wu H. An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction. Nat Commun 2024; 15:2831. [PMID: 38565562 PMCID: PMC10987521 DOI: 10.1038/s41467-024-47188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.
Collapse
Affiliation(s)
- Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinxin Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wuyu Mao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglong Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China
| | - Meng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Yang C, Tripathi R, Wang B. Click chemistry in the development of PROTACs. RSC Chem Biol 2024; 5:189-197. [PMID: 38456041 PMCID: PMC10915971 DOI: 10.1039/d3cb00199g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/16/2023] [Indexed: 03/09/2024] Open
Abstract
Proteolysis-targeting chimeras or PROTACs are hetero-bifunctional molecules designed to mediate the disposal of a target protein via recruitment of the ubiquitination-proteasome degradation machinery. Because of the chimeric nature of such molecules, their synthesis requires a key step of "assembling" whether in the lab or in situ. Furthermore, targeted PROTACs often are hetero-trifunctional and require a second "assembling" step. Click chemistry has the unique advantages of tethering two or more molecular entities of choice under near physiological conditions and therefore has been applied to the development of PROTACs in various ways. This review provides a succinct summary of this field with a critical analysis of various factors that need to be considered for optimal results. Specifically, we examine issues including applications of click chemistry in in situ assembly for improved delivery, conjugation with a targeting group for selectivity, rapid synthesis for linker optimization, and lysosomal degradation of extracellular and membrane-associated proteins. We also examine reaction kinetics issues whenever possible or warranted.
Collapse
Affiliation(s)
- Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| |
Collapse
|
27
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
28
|
Chang M, Dong Y, Xu H, Cruickshank-Taylor AB, Kozora JS, Behpour B, Wang W. Senolysis Enabled by Senescent Cell-Sensitive Bioorthogonal Tetrazine Ligation. Angew Chem Int Ed Engl 2024; 63:e202315425. [PMID: 38233359 PMCID: PMC11226389 DOI: 10.1002/anie.202315425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Although the clearance of senescent cells has been proven to slow down the aging process and promote anti-cancer chemotherapy, the development of senolytics remains challenging. Herein, we report a senolytic strategy enabled by senescent cell-sensitive bioorthogonal tetrazine ligation. Our design is based on linking dihydrotetrazine (Tz) to a galactose (Gal) moiety that serves both as a recognition moiety for senescence-associated β-galactosidase and a caging group for the control of tetrazine activity. Gal-Tz enables efficient click-release of a fluorescent hemicyanine and doxorubicin from a trans-cyclooctene-caged prodrug to detect and eliminate senescent HeLa and A549 cells over non-senescent counterparts with a 16.44 senolytic index. Furthermore, we leverage the strategy for the selective activation and delivery of proteolysis-targeting chimeras (PROTACs) as senolytics. PROTAC prodrug TCO-ARV-771 can be selectively activated by Gal-Tz and delivered into senescent HeLa and A549 cells to induce the degradation of bromodomain-containing protein 4. Senolytic PROTACs may offer an efficient way for intervention on cell senescence thanks to their unique capacity to degrade target proteins in a sub-stoichiometric and catalytic fashion. The results of this study establish the bioorthogonal tetrazine ligation approach as a viable strategy for selective removal of senescent cells.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | | | - Jacob S Kozora
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Baran Behpour
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
29
|
Gandra UR, Jana B, Hammer P, Mohideen MIH, Neugebauer U, Schiller A. Lysosome targeted visible light-induced photo-CORM for simultaneous CO-release and singlet oxygen generation. Chem Commun (Camb) 2024; 60:2098-2101. [PMID: 38295368 DOI: 10.1039/d4cc00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report a specific lysosome targeted light-responsive CO-releasing molecule (Lyso-CORM). Lyso-CORM is very stable under dark conditions. CO and singlet oxygen (1O2) generation was effectively triggered under one photon and two photon excitation (800 nm) conditions. The cytotoxicity results demonstrated that Lyso-CORM showed good phototoxicity due to the synergistic effect of CO and 1O2 release, and its good biocompatibility, negligible dark toxicity and specific lysosome targeting make Lyso-CORM a potent candidate for phototherapeutic applications.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany.
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Batakrishna Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Patrick Hammer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Centre (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Alexander Schiller
- Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany.
| |
Collapse
|
30
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
31
|
Huang W, Gunawardhana N, Zhang Y, Escorihuela J, Laughlin ST. Pyranthiones/Pyrones: "Click and Release" Donors for Subcellular Hydrogen Sulfide Delivery and Labeling. Chemistry 2024; 30:e202303465. [PMID: 37985373 DOI: 10.1002/chem.202303465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Hydrogen sulfide (H2 S), one of the most important gasotransmitters, plays a critical role in endogenous signaling pathways of many diseases. However, developing H2 S donors with both tunable release kinetics and high release efficiency for subcellular delivery has been challenging. Here, we describe a click and release reaction between pyrone/pyranthiones and bicyclononyne (BCN). This reaction features a release of CO2 /COS with second-order rate constants comparable to Strain-Promoted Azide-Alkyne Cycloaddition reactions (SPAACs). Interestingly, pyranthiones showed enhanced reaction rates compared to their pyrone counterparts. We investigated pyrone biorthogonality and demonstrated their utility in protein labeling applications. Moreover, we synthesized substituted pyranthiones with H2 S release kinetics that can address the range of physiologically relevant H2 S dynamics in cells and achieved quantitative H2 S release efficiency in vitro. Finally, we explored the potential of pyranthiones as H2 S/COS donors for mitochondrial-targeted H2 S delivery in living cells.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Nipuni Gunawardhana
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Yunlei Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| |
Collapse
|
32
|
Xiao ZY, Tu BL, Hua SH, Wang F, Tang LJ, Dong WR, Jiang JH. Near-infrared fluorogenic imaging of carbon monoxide in live cells using palladium-mediated carbonylation. Chem Commun (Camb) 2024; 60:1420-1423. [PMID: 38204408 DOI: 10.1039/d3cc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Here we develop a near infrared (NIR) fluorogenic probe for carbon monoxide (CO) detection and imaging based on palladium-mediated carbonylation using a NIR boron-dipyrromethene difluoride as a fluorophore and tetraethylene glycols as aqueous moieties. The probe is utilized to image exogenous and endogenous CO under different stimulated conditions in live cells.
Collapse
Affiliation(s)
- Zhi-Yi Xiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Bing-Lun Tu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Shan-Hong Hua
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Wan-Rong Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
33
|
Su M, Ji X, Liu F, Li Z, Yan D. Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters. Mini Rev Med Chem 2024; 24:300-329. [PMID: 37102481 DOI: 10.2174/1389557523666230427152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 04/28/2023]
Abstract
Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.
Collapse
Affiliation(s)
- Ma Su
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Xingyue Ji
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Feng Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Zhang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Duanyang Yan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| |
Collapse
|
34
|
Li D, Qiu S, Wei Y, Zhao Y, Wu L. Ligand Control of Copper-Mediated Cycloadditions of Acetylene to Azides: Chemo- and Regio-Selective Formation of Deutero- and Iodo-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38152860 DOI: 10.1021/acs.joc.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The participation of σ-monocopper and σ-bis-copper acetylide in mechanistic pathways for copper-catalyzed cycloaddition (CuAAC) reactions of acetylene with azides was probed by analysis of deuterium distributions in the 1,2,3-triazole product formed by deuterolysis of initially formed mono- and bis-copper triazoles. The results show that, when Cu(Phen)(PPh3)2NO3 is used as the catalyst for reactions of acetylene with azides in DMF/D2O, 1-substituted-5-deutero-1,2,3-triazoles are generated selectively. This finding demonstrates that the Cu(Phen)(PPh3)2NO3-catalyzed cycloadditions utilize monocopper acetylide as the substrate and produce 5-copper-1,2,3-triazoles initially. Conversely, when DBU or Et3N is the copper ligand, the process takes place through initial formation and cycloaddition of bis-copper acetylide to produce 4,5-bis-copper-triazole, which reacts with D2O to form the corresponding 4,5-bis-deutero-triazole. Moreover, when C2D2 is used as the substrate, Cu(Phen)(PPh3)2NO3 as the Cu ligand, and H2O/DMF as the solvent, mono-C4-deutreo 1,2,3-triazoles are generated in high yields and excellent levels of regioselectivity. Lastly, CuAAC reactions of acetylene with azides, promoted by CuCl2·2H2O and NaI, yield 4,5-diiodo-1,2,3-triazoles with moderate to high efficiencies.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Shanguang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Yunlong Wei
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Yanmei Zhao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| |
Collapse
|
35
|
Min Q, Ji X. Bioorthogonal Bond Cleavage Chemistry for On-demand Prodrug Activation: Opportunities and Challenges. J Med Chem 2023; 66:16546-16567. [PMID: 38085596 DOI: 10.1021/acs.jmedchem.3c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Time- and space-resolved drug delivery is highly demanded for cancer treatment, which, however, can barely be achieved with a traditional prodrug strategy. In recent years, the prodrug strategy based on a bioorthogonal bond cleavage chemistry has emerged with the advantages of high temporospatial resolution over drug activation and homogeneous activation irrespective of individual heterogeneity. In the past five years, tremendous progress has been witnessed in this field with one such bioorthogonal prodrug entering Phase II clinical trials. This Perspective aims to highlight these new advances (2019-2023) and critically discuss their pros and cons. In addition, the remaining challenges and potential strategic directions for future progress will also be included.
Collapse
Affiliation(s)
- Qingqiang Min
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Li Y, Zhang J, Ni X, Wang X, Zhang J, Xie X, Dou X, Jiao X, Tang B. Bio-orthogonally Activatable Fluorescent Probe for Specific Imaging of Myeloid Cell Leukemia 1 Protein. Anal Chem 2023; 95:18836-18843. [PMID: 38079286 DOI: 10.1021/acs.analchem.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) has been increasingly identified as a promising potential therapeutic target attributed to its critical regulation effect in diverse cellar physiopathological events. Current fluorescence imaging strategies tend to be susceptible to the cellular microenvironment, and straightforward mapping of Mcl-1's level variation remains challenging. In this paper, an activatable "off-on" fluorescence strategy for Mcl-1 specific labeling was presented based on bio-orthogonal chemistry by introducing tetrazine-functionalized borondipyrromethene (TB) as a fluorescent reporter and trans-cyclooctyne-derived indole-2-carboxylic acid (TI) as an Mcl-1 targeting moiety. With the click pair of TB and TI, the Mcl-1 expression level in vitro and in vivo was successfully mapped straightforward. Also, the level changes of Mcl-1 upon drug challenge were demonstrated. This work provides a robust fluorescence strategy for Mcl-1 in situ imaging, and the results would further facilitate the comprehensive revelation of the Mcl-1 biological effect.
Collapse
Affiliation(s)
- Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jiangong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaolong Ni
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xueyu Dou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
37
|
Yao Q, Lin F, Lu C, Zhang R, Xu H, Hu X, Wu Z, Gao Y, Chen PR. A Dual-Mechanism Targeted Bioorthogonal Prodrug Therapy. Bioconjug Chem 2023; 34:2255-2262. [PMID: 37955377 DOI: 10.1021/acs.bioconjchem.3c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Bioorthogonal prodrug therapies offer an intriguing two-component system that features enhanced circulating stability and controlled activation on demand. Current strategies often deliver either the prodrug or its complementary activator to the tumor with a monomechanism targeted mechanism, which cannot achieve the desired antitumor efficacy and safety profile. The orchestration of two distinct and orthogonal mechanisms should overcome the hierarchical heterogeneity of solid tumors to improve the delivery efficiency of both components simultaneously for bio-orthogonal prodrug therapies. We herein developed a dual-mechanism targeted bioorthogonal prodrug therapy by integrating two orthogonal, receptor-independent tumor-targeting strategies. We first employed the endogenous albumin transport system to generate the in situ albumin-bound, bioorthogonal-caged doxorubicin prodrug with extended plasma circulation and selective accumulation at the tumor site. We then employed enzyme-instructed self-assembly (EISA) to specifically enrich the bioorthogonal activators within tumor cells. As each targeted delivery mode induced an intrinsic pharmacokinetic profile, further optimization of the administration sequence according to their pharmacokinetics allowed the spatiotemporally controlled prodrug activation on-target and on-demand. Taken together, by orchestrating two discrete and receptor-independent targeting strategies, we developed an all-small-molecule based bioorthogonal prodrug system for dual-mechanism targeted anticancer therapies to maximize therapeutic efficacy and minimize adverse drug reactions for chemotherapeutic agents.
Collapse
Affiliation(s)
- Qingxin Yao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ruijia Zhang
- Chinese Academy of Sciences Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hanlin Xu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqian Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Wu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Gao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Feng S, Zhang Y, Gao Y, Liu Y, Wang Y, Han X, Zhang T, Song Y. A Gene-Editable Palladium-Based Bioorthogonal Nanoplatform Facilitates Macrophage Phagocytosis for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202313968. [PMID: 37884479 DOI: 10.1002/anie.202313968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
39
|
Liu Z, Sun M, Zhang W, Ren J, Qu X. Target-Specific Bioorthogonal Reactions for Precise Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202308396. [PMID: 37548083 DOI: 10.1002/anie.202308396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
40
|
Xu GX, Lee LCC, Leung PKK, Mak ECL, Shum J, Zhang KY, Zhao Q, Lo KKW. Bioorthogonal dissociative rhenium(i) photosensitisers for controlled immunogenic cell death induction. Chem Sci 2023; 14:13508-13517. [PMID: 38033895 PMCID: PMC10686031 DOI: 10.1039/d3sc04903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
Photosensitisers for photoimmunotherapy with high spatiotemporal controllability are rare. In this work, we designed rhenium(i) polypyridine complexes modified with a tetrazine unit via a bioorthogonally activatable carbamate linker as bioorthogonally dissociative photosensitisers for the controlled induction of immunogenic cell death (ICD). The complexes displayed increased emission intensities and singlet oxygen (1O2) generation efficiencies upon reaction with trans-cyclooct-4-enol (TCO-OH) due to the separation of the quenching tetrazine unit from the rhenium(i) polypyridine core. One of the complexes containing a poly(ethylene glycol) (PEG) group exhibited negligible dark cytotoxicity but showed greatly enhanced (photo)cytotoxic activity towards TCO-OH-pretreated cells upon light irradiation. The reason is that TCO-OH allowed the synergistic release of the more cytotoxic rhenium(i) aminomethylpyridine complex and increased 1O2 generation. Importantly, the treatment induced a cascade of events, including lysosomal dysfunction, autophagy suppression and ICD. To the best of our knowledge, this is the very first example of using bioorthogonal dissociation reactions as a trigger to realise photoinduced ICD, opening up new avenues for the development of innovative photoimmunotherapeutic agents.
Collapse
Affiliation(s)
- Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park New Territories Hong Kong P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| |
Collapse
|
41
|
Liang X, Qian S, Lou Z, Hu R, Hou Y, Chen PR, Fan X. Near Infrared Light-Triggered Photocatalytic Decaging for Remote-Controlled Spatiotemporal Activation in Living Mice. Angew Chem Int Ed Engl 2023; 62:e202310920. [PMID: 37842955 DOI: 10.1002/anie.202310920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Spatiotemporal manipulation of biological processes in living animals using noninvasive, remote-controlled stimuli is a captivating but challenging endeavor. Herein, we present the development of a biocompatible photocatalytic technology termed CAT-NIR, which uses external near infrared light (NIR, 740 nm) to trigger decaging reactions in living mice. The Os(II) terpyridine complex was identified as an efficient NIR photocatalyst for promoting deboronative hydroxylation reactions via superoxide generation in the presence of NIR light, resulting in the deprotection of phenol groups and the release of bioactive molecules under living conditions. The validation of the CAT-NIR system was demonstrated through the NIR-triggered rescue of fluorophores, prodrugs as well as biomolecules ranging from amino acids, peptides to proteins. Furthermore, by combining genetic code expansion and computer-aided screening, CAT-NIR could regulate affibody binding to the cell surface receptor HER2, providing a selective cell tagging technology through external NIR light. In particular, the tissue-penetrating ability of NIR light allowed for facile prodrug activation in living mice, enabling noninvasive, remote-controlled rescue of drug molecules. Given its broad adaptability, this CAT-NIR system may open new opportunities for manipulating the functions of bioactive molecules in living animals using external NIR light with spatiotemporal resolution.
Collapse
Grants
- 22222701, 22077004, 92253301, 21937001, 22137001 National Natural Science Foundation of China
- 22222701, 22077004, 92253301, 22321005, 21937001, 22137001 National Natural Science Foundation of China
- 2019YFA0904201, 2022YFA1304700, 2022YFE0114900 Ministry of Science and Technology
- Z200010, Z221100007422046 Beijing Municipal Science and Technology Commission
- YGLX202338 Beijing Hospitals Authority Clinical Medicine Development Funding
- Li Ge-Zhao Ning Life Science Junior Research Fellowship
Collapse
Affiliation(s)
- Xuan Liang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Renming Hu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
42
|
Zeng X, Ma X, Dong J, Li B, Hua Liu S, Yin J, Yang GF. A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4-Hydroxyphenylpyruvate Dioxygenase in Plants. Angew Chem Int Ed Engl 2023; 62:e202312618. [PMID: 37795547 DOI: 10.1002/anie.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene-linked dibenzyl-cyclooctyne undergoes strain-promoted azide-alkyne cycloaddition with an azide-containing HPPD ligand. The activation-based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD-related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Xiaoxie Ma
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Biao Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
43
|
Yan Z, Pan Y, Jiao G, Xu M, Fan D, Hu Z, Wu J, Chen T, Liu M, Bao X, Ke H, Ji X. A Bioorthogonal Decaging Chemistry of N-Oxide and Silylborane for Prodrug Activation both In Vitro and In Vivo. J Am Chem Soc 2023; 145:24698-24706. [PMID: 37933858 DOI: 10.1021/jacs.3c08012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Bioorthogonal decaging chemistry with both fast kinetics and high efficiency is highly demanded for in vivo applications but remains very sporadic. Herein, we describe a new bioorthogonal decaging chemistry between N-oxide and silylborane. A simple replacement of "C" in boronic acid with "Si" was able to substantially accelerate the N-oxide decaging kinetics by 106 fold (k2: up to 103 M-1 s-1). Moreover, a new N-oxide-masked self-immolative spacer was developed for the traceless release of various payloads upon clicking with silylborane with fast kinetics and high efficiency (>90%). Impressively, one such N-oxide-based self-assembled bioorthogonal nano-prodrug in combination with silylborane led to significantly enhanced tumor suppression effects as compared to the parent drug in a 4T1 mouse breast tumor model. In aggregate, this new bioorthogonal click-and-release chemistry is featured with fast kinetics and high efficiency and is perceived to find widespread applications in chemical biology and drug delivery.
Collapse
Affiliation(s)
- Zhicheng Yan
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yiyao Pan
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Guofeng Jiao
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Mengyu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongguang Fan
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Ziwei Hu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jiarui Wu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Tao Chen
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
44
|
Fu Q, Shen S, Sun P, Gu Z, Bai Y, Wang X, Liu Z. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev 2023; 52:7737-7772. [PMID: 37905601 DOI: 10.1039/d2cs00889k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prodrugs have emerged as a major strategy for addressing clinical challenges by improving drug pharmacokinetics, reducing toxicity, and enhancing treatment efficacy. The emergence of new bioorthogonal chemistry has greatly facilitated the development of prodrug strategies, enabling their activation through chemical and physical stimuli. This "on-demand" activation using bioorthogonal chemistry has revolutionized the research and development of prodrugs. Consequently, prodrug activation has garnered significant attention and emerged as an exciting field of translational research. This review summarizes the latest advancements in prodrug activation by utilizing bioorthogonal chemistry and mainly focuses on the activation of small-molecule prodrugs and antibody-drug conjugates. In addition, this review also discusses the opportunities and challenges of translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
45
|
Bi T, Liang P, Zhou Y, Wang H, Huang R, Sun Q, Shen H, Yang S, Ren W, Liu Z. Rational Design of Bioorthogonally Activatable PROTAC for Tumor-Targeted Protein Degradation. J Med Chem 2023; 66:14843-14852. [PMID: 37871321 DOI: 10.1021/acs.jmedchem.3c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein degradation mediated by the proteolysis-targeting chimera (PROTAC) has emerged as an efficient strategy to accurately control intracellular protein levels. However, the development of PROTACs is limited by their systemic toxicity. Herein, we report a bioorthogonally activatable prodrug (BT-PROTAC) strategy to accurately control the activity of PROTACs. As a proof of concept, we introduced the highly reactive trans-cyclooctene into PROTAC molecule MZ1, the structure-acitivity relationships of which were well characterized previously, to construct the bioorthogonally activatable prodrug BT-PROTAC. Compared with MZ1, BT-PROTAC is incapable of degradation of BRD4 protein. However, BT-PROTAC can be activated by highly active tetrazine compound BODIPY-TZ in vitro. Furthermore, we could selectively degrade BRD4 protein in tumor tissue enabled by tumor-targeted tetrazine compound IR808-TZ. This strategy may represent an alternative to existing strategies and may be widely applied in the design of BT-PROTAC targeting other proteins.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| |
Collapse
|
46
|
Nasibullin I, Yoshioka H, Mukaimine A, Nakamura A, Kusakari Y, Chang TC, Tanaka K. Catalytic olefin metathesis in blood. Chem Sci 2023; 14:11033-11039. [PMID: 37860663 PMCID: PMC10583672 DOI: 10.1039/d3sc03785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
The direct synthesis of drugs in vivo enables drugs to treat diseases without causing side effects in healthy tissues. Transition-metal reactions have been widely explored for uncaging and synthesizing bioactive drugs in biological environments because of their remarkable reactivity. Nonetheless, it is difficult to develop a promising method to achieve in vivo drug synthesis because blood cells and metabolites deactivate transition-metal catalysts. We report that a robust albumin-based artificial metalloenzyme (ArM) with a low loading (1-5 mol%) can promote Ru-based olefin metathesis to synthesize molecular scaffolds and an antitumor drug in blood. The ArM retained its activity after soaking in blood for 24 h and provided the first example of catalytic olefin cross metathesis in blood. Furthermore, the cyclic-Arg-Gly-Asp (cRGD) peptide-functionalized ArM at lower dosages could still efficiently perform in vivo drug synthesis to inhibit the growth of implanted tumors in mice. Such a system can potentially construct therapeutic drugs in vivo for therapies without side effects.
Collapse
Affiliation(s)
- Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Hiromasa Yoshioka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
47
|
An K, Deng X, Chi H, Zhang Y, Li Y, Cheng M, Ni Z, Yang Z, Wang C, Chen J, Bai J, Ran C, Wei Y, Li J, Zhang P, Xu F, Tan W. Stimuli-Responsive PROTACs for Controlled Protein Degradation. Angew Chem Int Ed Engl 2023; 62:e202306824. [PMID: 37470380 DOI: 10.1002/anie.202306824] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a promising therapeutic modality to address undruggable and resistant issues in drug discovery. However, potential on-target toxicity remains clinically challenging. We developed a generalized caging strategy to synthesize a series of stimuli-responsive PROTACs (sr-PROTACs) with diverse molecular blocks bearing robust and cleavable linkers, presenting "turn on" features in manipulating protein degradation. By leveraging pathological cues, such as elevated ROS, phosphatase, H2 S, or hypoxia, and external triggers, such as ultraviolet light, X-Ray, or bioorthogonal reagents, we achieved site-specific activation and traceless release of original PROTACs through de-caging and subsequent self-immolative cleavage, realizing selective uptake and controlled protein degradation in vitro. An in vivo study revealed that two sr-PROTACs with phosphate- and fluorine-containing cages exhibited high solubility and long plasma exposure, which were specifically activated by tumor overexpressing phosphatase or low dosage of X-Ray irradiation in situ, leading to efficient protein degradation and potent tumor remission. With more reactive biomarkers to be screened from clinical practice, our caging library could provide a general tool to design activatable PROTACs, prodrugs, antibody-drug conjugates, and smart biomaterials for personalized treatment, tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Keli An
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuqian Deng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hongli Chi
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchao Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhi Yang
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Wang
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jinling Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jianbo Bai
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Chunyan Ran
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yong Wei
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Penghui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
48
|
Kozma E, Bojtár M, Kele P. Bioorthogonally Assisted Phototherapy: Recent Advances and Prospects. Angew Chem Int Ed Engl 2023; 62:e202303198. [PMID: 37161824 DOI: 10.1002/anie.202303198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
Photoresponsive materials offer excellent spatiotemporal control over biological processes and the emerging phototherapeutic methods are expected to have significant effects on targeted cancer therapies. Recent examples show that combination of photoactivatable approaches with bioorthogonal chemistry enhances the precision of targeted phototherapies and profound implications are foreseen particularly in the treatment of disperse/diffuse tumors. The extra level of on-target selectivity and improved spatial/temporal control considerably intensified related bioorthogonally assisted phototherapy research. The anticipated growth of further developments in the field justifies the timeliness of a brief summary of the state of the art.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| |
Collapse
|
49
|
Chowdhury A, Chatterjee S, Kushwaha A, Nanda S, Dhilip Kumar TJ, Bandyopadhyay A. Sulfonyl Diazaborine 'Click' Chemistry Enables Rapid and Efficient Bioorthogonal Labeling. Chemistry 2023; 29:e202300393. [PMID: 37155600 DOI: 10.1002/chem.202300393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Finding an ideal bioorthogonal reaction that responds to a wide range of biological queries and applications is of great interest in biomedical applications. Rapid diazaborine (DAB) formation in water by the reactions of ortho-carbonyl phenylboronic acid with α-nucleophiles is an attractive conjugation module. Nevertheless, these conjugation reactions demand to satisfy stringent criteria for bioorthogonal applications. Here we show that widely used sulfonyl hydrazide (SHz) offers a stable DAB conjugate by combining with ortho-carbonyl phenylboronic acid at physiological pH, competent for an optimal biorthogonal reaction. Remarkably, the reaction conversion is quantitative and rapid (k2 >103 M-1 s-1 ) at low micromolar concentrations, and it preserves comparable efficacy in a complex biological milieu. DFT calculations support that SHz facilitates DAB formation via the most stable hydrazone intermediate and the lowest energy transition state compared to other biocompatible α-nucleophiles. This conjugation is extremely efficient on living cell surfaces, enabling compelling pretargeted imaging and peptide delivery. We anticipate this work will permit addressing a wide range of cell biology queries and drug discovery platforms exploiting commercially available sulfonyl hydrazide fluorophores and derivatives.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Apoorv Kushwaha
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sidhanta Nanda
- Immunology Lab, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - T J Dhilip Kumar
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
50
|
Zhao H, Yu J, Zhang R, Chen P, Jiang H, Yu W. Doxorubicin prodrug-based nanomedicines for the treatment of cancer. Eur J Med Chem 2023; 258:115612. [PMID: 37441851 DOI: 10.1016/j.ejmech.2023.115612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The chemotherapeutic drug of doxorubicin (DOX) has witnessed widespread applications for treating various cancers. DOX-treated dying cells bear cellular modifications which allow enhanced presentation of tumor antigen and neighboring dendritic cell activation. Furthermore, DOX also facilitate the immune-mediated clearance of tumor cells. However, disadvantages such as severe off-target toxicity, and prominent hydrophobicity have resulted in unsatisfactory clinical therapeutic outcomes. The effective delivery of DOX drug molecules is still challenging despite the rapid advances in nanotechnology and biomaterials. Huge progress has been witnessed in DOX nanoprodrugs owing to their brilliant benefits such as tumor stimuli-responsive drug release capacity, high drug loading efficiency and so on. This review summarized recent progresses of DOX prodrug-based nanomedicines to provide deep insights into future development and inspire researchers to explore DOX nanoprodrugs with real clinical applications.
Collapse
Affiliation(s)
- Haibo Zhao
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Renshuai Zhang
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hongfei Jiang
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|