1
|
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, Chen X, Mu J. X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials 2025; 316:123031. [PMID: 39709848 DOI: 10.1016/j.biomaterials.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO-)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy. Our design employs X-ray-activated lanthanide-doped scintillators (LNS) in tandem with photosensitive NO precursor to achieve in-situ ONOO- generation. Concurrently, the co-loaded TGF-β inhibitor SB525334, released from the LNS-RS nanoplatform in response to the overexpressed GSH in tumor site, promotes the reprogramming of TANs from N2 phenotype toward N1 phenotype, effectively transforming the tumor-promoting microenvironment into a tumor-inhibiting state. This 'one-two punch' therapy efficiently trigger a robust anti-tumor immune response and exert potent therapeutic effects in orthotopic colorectal cancer and melanoma mouse model. Meanwhile, it also significantly prevents liver metastasis and recurrence in metastatic colorectal cancer. The development of X-ray-controlled platforms capable of activating multiple therapeutic modalities may accelerate the clinical application of radiotherapy-based collaborative therapy.
Collapse
Affiliation(s)
- Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Junyi Zeng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Xiaodong Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yu Wang
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China.
| |
Collapse
|
2
|
Tan M, Gao Z, Wang X, Wang X, Lin C, Huang Y, Chen W, Zhang Y, Hou Z. MnO 2@CeO x-GAMP radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities for radiosensitization-mediated STING pathway activation. Biomaterials 2025; 314:122797. [PMID: 39255531 DOI: 10.1016/j.biomaterials.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by radiotherapy (RT) has a significant effect on eliciting antitumor immune responses. The generation of hydroxyl radical (·OH) storm and the sensitization of STING-relative catalytic reactions could improve radiosensitization-mediated STING activation. Herein, multi-functional radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities was fabricated to produce more dsDNA which benefits intracellular 2', 3'-cyclic GMP-AMP (cGAMP) generation, together with introducing exogenous cGAMP to activate immune response. MnO2@CeOx nanozymes present enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities due to induced oxygen vacancies accelerate the redox cycles from Ce4+ to Ce3+ via intermetallic charge transfer. CeOx shells not only serve as radiosensitizer, but also provide the conjugation site for AMP/GMP to form MnO2@CeOx-GAMP (MCG). Upon X-ray irradiation, MCG with SOD-like activity facilitates the conversion of superoxide anions generated by Ce-sensitization into H2O2 within tumor microenvironment (TME). The downstream POD-like activity catalyzes the elevated H2O2 into a profusion of ·OH for producing more damage DNA fragments. TME-responsive decomposed MCG could supply exogenous cGAMP, meanwhile the releasing Mn2+ improve the sensitivity of cyclic GMP-AMP synthase to dsDNA for producing more cGAMP, resulting in the promotion of STING pathway activation.
Collapse
Affiliation(s)
- Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinyi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongxin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
3
|
Huang X, Ge W, Li S, Huang R, Wang F. Transferrin-Based Bismuth Nanoparticles for Radiotherapy with Immunomodulation Against Orthotopic Glioma. Adv Healthc Mater 2025:e2404144. [PMID: 39797464 DOI: 10.1002/adhm.202404144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy. The proposed protein-based strategy provides TBNPs with BBB-crossing ability and prevents off-target toxicity. Cellular experiments following 4 Gy of X-ray irradiation reveal that TBNPs increase DNA damage in glioma cells and trigger immunomodulation, thereby inducing immunogenic cell death. Furthermore, TBNPs effectively inhibit tumor growth through synergistic radiotherapy and immunotherapy in an orthotopic glioma mouse model. The findings highlight TBNPs as promising radiosensitizers for effective and biosafe radiotherapy with immunomodulation.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ge
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuxian Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruofan Huang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200240, P. R. China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Ding G, Liu S, Yang X, Lv H, Jia M, Li J, Zhang R. Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint. J Nanobiotechnology 2024; 22:774. [PMID: 39696327 DOI: 10.1186/s12951-024-03057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor. RESULTS Therefore, to overcome these obstacles multifunctional core-shell BMS@Pt2Au4 nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. Pt2Au4 clusters are released from BMS@Pt2Au4 NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous H2O2 to generate O2 as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@Pt2Au4 NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo. CONCLUSION In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@Pt2Au4 NPs in hypoxic tumors expressing PD-L1.
Collapse
Affiliation(s)
- Guanwen Ding
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Shengnan Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Hongying Lv
- Chinese Academy of Medical Sciences Institute of Radiation Medicine, Tianjin, 300192, China
| | - Mengchao Jia
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Juan Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
| | - Rui Zhang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
| |
Collapse
|
5
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
6
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
7
|
Hou B, Ye J, Huang L, Cheng W, Chen F, Zhou H, Pan J, Gao J, Lai Y, Zhao Y, Huang W, Yu H, Xu Z. Tumor-specific delivery of clickable inhibitor for PD-L1 degradation and mitigating resistance of radioimmunotherapy. SCIENCE ADVANCES 2024; 10:eadq3940. [PMID: 39546592 PMCID: PMC11567003 DOI: 10.1126/sciadv.adq3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups. This enables covalently binding of the clickable inhibitor with PD-L1 and subsequent PD-L1 degradation. A pH-activatable nanoparticle responding to extracellular acidic pH of tumor was subsequently used to deliver the clickable PD-L1 inhibitor into extracellular tumor microenvironment for depleting PD-L1 on the surface of tumor cell and macrophage membranes in vivo. We further demonstrated that a combination of the clickable PD-L1 inhibitor with radiotherapy (RT) eradicated the established tumor by inhibiting RT-up-regulated PD-L1 in the tumor tissue. Therefore, selective PD-L1 blockade in tumors via the clickable PD-L1 inhibitor offers a versatile approach to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Hou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Jiayi Ye
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Cheng
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Demyashkin G, Koryakin S, Parshenkov M, Skovorodko P, Vadyukhin M, Uruskhanova Z, Stepanova Y, Shchekin V, Mirontsev A, Rostovskaya V, Ivanov S, Shegay P, Kaprin A. Morphofunctional Features of Glomeruli and Nephrons After Exposure to Electrons at Different Doses: Oxidative Stress, Inflammation, Apoptosis. Curr Issues Mol Biol 2024; 46:12608-12632. [PMID: 39590342 PMCID: PMC11593091 DOI: 10.3390/cimb46110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney disease has emerged as a significant global health issue, projected to become the fifth-leading cause of years of life lost by 2040. The kidneys, being highly radiosensitive, are vulnerable to damage from various forms of radiation, including gamma (γ) and X-rays. However, the effects of electron radiation on renal tissues remain poorly understood. Given the localized energy deposition of electron beams, this study seeks to investigate the dose-dependent morphological and molecular changes in the kidneys following electron irradiation, aiming to address the gap in knowledge regarding its impact on renal structures. The primary aim of this study is to conduct a detailed morphological and molecular analysis of the kidneys following localized electron irradiation at different doses, to better understand the dose-dependent effects on renal tissue structure and function in an experimental model. Male Wistar rats (n = 75) were divided into five groups, including a control group and four experimental groups receiving 2, 4, 6, or 8 Gray (Gy) of localized electron irradiation to the kidneys. Biochemical markers of inflammation (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], interleukin-10 [IL-10], tumor necrosis factor-alpha [TNF-α]) and oxidative stress (malondialdehyde [MDA], superoxide dismutase [SOD], glutathione [GSH]) were measured, and morphological changes were assessed using histological and immunohistochemical techniques (TUNEL assay, caspase-3). The study revealed a significant dose-dependent increase in oxidative stress, inflammation, and renal tissue damage. Higher doses of irradiation resulted in increased apoptosis, early stages of fibrosis (at high doses), and morphological changes in renal tissue. This study highlights the dose-dependent effects of electrons on renal structures, emphasizing the need for careful consideration of the dosage in clinical use to minimize adverse effects on renal function.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Polina Skovorodko
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Yulia Stepanova
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Artem Mirontsev
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Vera Rostovskaya
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| |
Collapse
|
10
|
Chuang AEY, Tao YK, Dong SW, Nguyen HT, Liu CH. Polypyrrole/iron-glycol chitosan nanozymes mediate M1 macrophages to enhance the X-ray-triggered photodynamic therapy for bladder cancer by promoting antitumor immunity. Int J Biol Macromol 2024; 280:135608. [PMID: 39276877 DOI: 10.1016/j.ijbiomac.2024.135608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Shao-Wei Dong
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| |
Collapse
|
11
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Mushtaq A, Iqbal MZ, Tang J, Sun W. The wonders of X-PDT: an advance route to cancer theranostics. J Nanobiotechnology 2024; 22:655. [PMID: 39456085 PMCID: PMC11520131 DOI: 10.1186/s12951-024-02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Global mortality data indicates cancer as the second-leading cause of death worldwide. Therefore, there's a pressing need to innovate effective treatments to address this significant medical and societal challenge. In recent years, X-ray-induced photodynamic therapy (X-PDT) has emerged as a promising advancement, revolutionizing traditional photodynamic therapy (PDT) for deeply entrenched malignancies by harnessing penetrating X-rays as external stimuli. Recent developments in X-ray photodynamic therapy have shown a trend toward minimizing radiation doses to remarkably low levels after the proof-of-concept demonstration. Early detection and real-time monitoring are crucial aspects of effective cancer treatment. Sophisticated X-ray imaging techniques have been enhanced by the introduction of X-ray luminescence nano-agents, alongside contrast nanomaterials based on X-ray attenuation. X-ray luminescence-based in vivo imaging offers excellent detection sensitivity and superior image quality in deep tissues at a reasonable cost, due to unhindered penetration and unimpeded auto-fluorescence of X-rays. This review emphasizes the significance of X-ray responsive theranostics, exploring their mechanism of action, feasibility, biocompatibility, and promising prospects in imaging-guided therapy for deep-seated tumors. Additionally, it discusses promising applications of X-PDT in treating breast cancer, liver cancer, lung cancer, skin cancer, and colorectal cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianbin Tang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Wenjing Sun
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
13
|
Wei Y, Wang J. X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56519-56544. [PMID: 39401275 DOI: 10.1021/acsami.4c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
Collapse
Affiliation(s)
- Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Bhaumik A, Pandey A. Theoretical analysis of electron transport in perovskite thin films. Phys Chem Chem Phys 2024; 26:25670-25677. [PMID: 39350762 DOI: 10.1039/d4cp03281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Inherent disorder in perovskite films has been suggested as a factor that improves exciton separation. At the same time, the disorder can potentially disrupt electron flow, deteriorating device performance. In this paper, we study the role of disorder in electron transport in perovskite films using kinetic Monte Carlo simulations. The effect of temperature on the conductivity of the system is studied. We find that at room temperature, where most solar cells operate, the effect of disorder on the conductivity is minimal. At lower temperatures, current flows along specific paths in the film. In contrast, the ability of carriers to sample all sites in the film at room temperature allows realisation of higher device efficiencies. We find that conductivity obeys Mott's expression for variable range hopping σ(T) ∝ T-1e-(To/T)1/3. The value of the universal proportionality constant α2 associated with the characteristic temperature has been computed. The effect of electric field on transport has also been studied. The average hopping distance is found to increase with the increase in the electric field at low temperatures, although this dependence is not observed at room temperature. Likewise, the conductivity is also a function of applied field F, and is found to be obey σ(F) ∝ F-1/3e-(Fo/F)1/3 at low temperatures while being field-independent at room temperature.
Collapse
Affiliation(s)
- Ankur Bhaumik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Anshu Pandey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
15
|
Pastukhov AI, Savinov MS, Zelepukin IV, Babkova JS, Tikhonowski GV, Popov AA, Klimentov SM, Devi A, Patra A, Zavestovskaya IN, Deyev SM, Kabashin AV. Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy. NANOSCALE 2024; 16:17893-17907. [PMID: 39253754 DOI: 10.1039/d4nr02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 μg mL-1 concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 μg mL-1. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number (Z = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.
Collapse
Affiliation(s)
- A I Pastukhov
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
| | - M S Savinov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - I V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- Uppsala University, Department of Medicinal Chemistry, 75310, Uppsala, Sweden
| | - J S Babkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
| | - G V Tikhonowski
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A A Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - S M Klimentov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A Devi
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - A Patra
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - I N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A V Kabashin
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| |
Collapse
|
16
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
18
|
Zhao H, Wang Z, Yang S, Zhang R, Guo J, Yang D. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy. Biomaterials 2024; 309:122620. [PMID: 38788456 DOI: 10.1016/j.biomaterials.2024.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Photodynamic therapy (PDT) is a promising modality for cancer treatment. However, limited tissue penetration of external radiation and complicated tumor microenvironments (TMEs) restrict the antitumor efficiency of PDT. Herein, we report an energy-storing DNA-based hydrogel, which enables tumor-selective PDT without external radiation and regulates TMEs to achieve boosted PDT-mediated tumor immunotherapy. The system is constructed with two ultralong single-stranded DNA chains, which programmed partial complementary sequences and repeated G-quadruplex forming AS1411 aptamer for photosensitizer loading via hydrophobic interactions and π-π stacking. Then, energy-storing persistent luminescent nanoparticles are incorporated to sensitize PDT selectively at tumor site without external irradiation, generating tumor antigen to agitate antitumor immune response. The system catalytically generates O2 to alleviate hypoxia and releases inhibitors to reverse the IDO-related immunosuppression, synergistically remodeling the TMEs. In the mouse model of breast cancer, this hydrogel shows a remarkable tumor suppression rate of 78.3 %. Our study represents a new paradigm of photodynamic immunotherapy against cancer by combining laser-free fashion and TMEs remodeling.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Zhongyu Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Sen Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
19
|
Du J, Wang X, Sun S, Wu Y, Jiang K, Li S, Lin H. Pushing Trap-Controlled Persistent Luminescence Materials toward Multi-Responsive Smart Platforms: Recent Advances, Mechanism, and Frontier Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314083. [PMID: 39003611 DOI: 10.1002/adma.202314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.
Collapse
Affiliation(s)
- Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomeng Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongjian Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
20
|
Shen Y, Li W, Zhou Z, Xu J, Li Y, Li H, Zheng X, Liu S, Zhang XB, Yuan L. Dual-Locked Fluorescent Probes Activated by Aminopeptidase N and the Tumor Redox Environment for High-Precision Imaging of Tumor Boundaries. Angew Chem Int Ed Engl 2024; 63:e202406332. [PMID: 38781113 DOI: 10.1002/anie.202406332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junchao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xudong Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
21
|
Qiao R, Yuan Z, Yang M, Tang Z, He L, Chen T. Selenium-Doped Nanoheterojunctions for Highly Efficient Cancer Radiosensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402039. [PMID: 38828705 PMCID: PMC11304322 DOI: 10.1002/advs.202402039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/30/2024] [Indexed: 06/05/2024]
Abstract
Exploring efficient and low-toxicity radiosensitizers to break through the bottleneck of radiation tolerance, immunosuppression and poor prognosis remains one of the critical developmental challenges in radiotherapy. Nanoheterojunctions, due to their unique physicochemical properties, have demonstrated excellent radiosensitization effects in radiation energy deposition and in lifting tumor radiotherapy inhibition. Herein, they doped selenium (Se) into prussian blue (PB) to construct a nano-heterojunction (Se@PB), which could promote the increase of Fe2+/Fe3+ ratio and conversion of Se to a high valence state with Se introduction. The Fe2+-Se-Fe3+ electron transfer chain accelerates the rate of electron transfer on the surface of the nanoparticles, which in turn endows it with efficient X-ray energy transfer and electron transport capability, and enhances radiotherapy physical sensitivity. Furthermore, Se@PB induces glutathione (GSH) depletion and Fe2+ accumulation through pro-Fenton reaction, thereby disturbs the redox balance in tumor cells and enhances biochemical sensitivity of radiotherapy. As an excellent radiosensitizer, Se@PB effectively enhances X-ray induced mitochondrial dysfunction and DNA damage, thereby promotes cell apoptosis and synergistic cervical cancer radiotherapy. This study elucidates the radiosensitization mechanism of Se-doped nanoheterojunction from the perspective of the electron transfer chain and biochemistry reaction, which provides an efficient and low-toxic strategy in radiotherapy.
Collapse
Affiliation(s)
- Rui Qiao
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zhongwen Yuan
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Meijin Yang
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zhiying Tang
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Lizhen He
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Tianfeng Chen
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
22
|
Policei Marques N, Isikawa MM, Muradova Z, Morris T, Berbeco R, Guidelli EJ. Size-Dependent Blue Emission from Europium-Doped Strontium Fluoride Nanoscintillators for X-Ray-Activated Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2400372. [PMID: 38630101 DOI: 10.1002/adhm.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.
Collapse
Affiliation(s)
- Natasha Policei Marques
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Mileni M Isikawa
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Toby Morris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Eder J Guidelli
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| |
Collapse
|
23
|
Fu Q, Gu Z, Shen S, Bai Y, Wang X, Xu M, Sun P, Chen J, Li D, Liu Z. Radiotherapy activates picolinium prodrugs in tumours. Nat Chem 2024; 16:1348-1356. [PMID: 38561425 DOI: 10.1038/s41557-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Radiotherapy-induced prodrug activation provides an ideal solution to reduce the systemic toxicity of chemotherapy in cancer therapy, but the scope of the radiation-activated protecting groups is limited. Here we present that the well-established photoinduced electron transfer chemistry may pave the way for developing versatile radiation-removable protecting groups. Using a functional reporter assay, N-alkyl-4-picolinium (NAP) was identified as a caging group that efficiently responds to radiation by releasing a client molecule. When evaluated in a competition experiment, the NAP moiety is more efficient than other radiation-removable protecting groups discovered so far. Leveraging this property, we developed a NAP-derived carbamate linker that releases fluorophores and toxins on radiation, which we incorporated into antibody-drug conjugates (ADCs). These designed ADCs were active in living cells and tumour-bearing mice, highlighting the potential to use such a radiation-removable protecting group for the development of next-generation ADCs with improved stability and therapeutic effects.
Collapse
Affiliation(s)
- Qunfeng Fu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongxuan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Changping Laboratory, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
24
|
Shang R, Yang F, Gao G, Luo Y, You H, Dong L. Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230124. [PMID: 39175886 PMCID: PMC11335470 DOI: 10.1002/exp.20230124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 08/24/2024]
Abstract
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
Collapse
Affiliation(s)
- Ruipu Shang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Feifei Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
| | - Ge Gao
- Division of Physical Science and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical TechnologyCollege of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
25
|
Ming Z, Zhang Y, Song L, Chen M, Lin L, He Y, Liu W, Zhu Y, Zhang Y, Zhang G. Rare Earth Nanoprobes for Targeted Delineation of Triple Negative Breast Cancer and Enhancement of Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309992. [PMID: 38774946 PMCID: PMC11304243 DOI: 10.1002/advs.202309992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Indexed: 08/09/2024]
Abstract
Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.
Collapse
Affiliation(s)
- Zi‐He Ming
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yong‐Qu Zhang
- Department of Breast CenterCancer Hospital of Shantou University Medical CollegeShantouGuangdong515041China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Lin‐Ling Lin
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yue‐Yang He
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Wan‐Ling Liu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yuan‐Yuan Zhu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- The Breast CenterYunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityBeijing University Cancer HospitalKunmingYunnan650118China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| |
Collapse
|
26
|
Wang J, Sun X, Xu J, Liu L, Lin P, Luo X, Gao Y, Shi J, Zhang Y. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality in vivo imaging. Biomater Sci 2024; 12:3841-3850. [PMID: 38881248 DOI: 10.1039/d4bm00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.
Collapse
Affiliation(s)
- Jinyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Lin
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yan Gao
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
27
|
Dong M, Lv A, Zou X, Gan N, Peng C, Ding M, Wang X, Zhou Z, Chen H, Ma H, Gu L, An Z, Huang W. Polymorphism-Dependent Organic Room Temperature Phosphorescent Scintillation for X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310663. [PMID: 38267010 DOI: 10.1002/adma.202310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Organic phosphorescent scintillating materials have shown great potential for applications in radiography and radiation detection due to their efficient utilization of excitons. However, revealing the relationship between molecule stacking and the phosphorescent radioluminescence of scintillators is still challenging. This study reports on two phenothiazine derivatives with polymorphism-dependent phosphorescence radioluminescence. The experiments reveal that molecule stacking significantly affects the non-radiation decay of the triplet excitons of scintillators, which further determines the phosphorescence scintillation performance under X-ray irradiation. These phosphorescent scintillators exhibit high radio stability and have a low detection limit of 278 nGys-1. Additionally, the potential application of these scintillators in X-ray radiography, based on their X-ray excited radioluminescence properties, is demonstrated. These findings provide a guideline for obtaining high-performance phosphorescent scintillating materials by shedding light on the effect of crystal packing on the radioluminescence of organic molecules.
Collapse
Affiliation(s)
- Mengyang Dong
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Zou
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Meijuan Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiao Wang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Zixing Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Chen
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Long Gu
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
28
|
Zhang H, Tang B, Zhang B, Huang K, Li S, Zhang Y, Zhang H, Bai L, Wu Y, Cheng Y, Yang Y, Han G. X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation. Nat Commun 2024; 15:3247. [PMID: 38622169 PMCID: PMC11018743 DOI: 10.1038/s41467-024-47559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Boyan Tang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA
| | - Shanshan Li
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuangong Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, Baoding, 071000, P. R. China
| | - Libin Bai
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yongqiang Cheng
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanmin Yang
- College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, P. R. China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA.
| |
Collapse
|
29
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
30
|
Xu M, Yun Y, Li C, Ruan Y, Muraoka O, Xie W, Sun X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J Mater Chem B 2024; 12:3240-3248. [PMID: 38437473 DOI: 10.1039/d3tb03046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) is a promising strategy for cancer therapy. However, the always-on bioactivity of PROTACs may lead to non-target toxicity, which restricts their antitumor performance. Here, we developed an X-ray radiation responsive PROTAC nanomicelle (RCNprotac) by covalently conjugating a reported small molecule PROTAC (MZ1) to hydrophilic PEG via a diselenide bond-containing carbon chain, which then self-assembled into a 141.80 ± 5.66 nm nanomicelle. The RCNprotac displayed no bioactivity during circulation due to the occupation of the hydroxyl group on the E3 ubiquitin ligand component and could effectively accumulate at the tumor site owing to the enhanced permeability and retention effect. Upon exposure to X-ray radiation, the radiation-sensitive diselenide bonds were broken to specifically release MZ1 for tumor BRD4 protein degradation. Furthermore, the reduction in the BRD4 protein level could increase the tumor's sensitivity to radiation. RCNprotac showed a synergistic enhancement of antitumor effects both in vitro and in vivo. We believe that this X-ray-responsive PROTAC nanomicelle could provide a new strategy for the X-ray-activated spatiotemporally controlled protein degradation and for the BRD4 proteolysis enhanced tumor radiosensitivity.
Collapse
Affiliation(s)
- Mengxia Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyang Yun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Su L, Zhu K, Ge X, Wu Y, Zhang J, Wang G, Liu D, Chen L, Li Q, Chen J, Song J. X-ray Activated Nanoprodrug for Visualization of Cortical Microvascular Alterations and NIR-II Image-Guided Chemo-Radiotherapy of Glioblastoma. NANO LETTERS 2024; 24:3727-3736. [PMID: 38498766 DOI: 10.1021/acs.nanolett.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.
Collapse
Affiliation(s)
- Lichao Su
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Xiaoguang Ge
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Jieping Zhang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Guoyu Wang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Daojia Liu
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Qingqing Li
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Junqiang Chen
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
32
|
Tsang CY, Zhang Y. Nanomaterials for light-mediated therapeutics in deep tissue. Chem Soc Rev 2024; 53:2898-2931. [PMID: 38265834 DOI: 10.1039/d3cs00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
33
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Zhong Y, Li X, Qi P, Sun C, Wang Z. A light-controlled single-atom nanozyme hydrogels for glutathione depletion mediated low-dose radiotherapy. NANOTECHNOLOGY 2024; 35:135102. [PMID: 38134437 DOI: 10.1088/1361-6528/ad183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Due to the unique ability to mimic natural enzymes, single-atom nanoenzymes (SAE) have garnered significant attention and research in tumor therapy. However, their efficacy often faces challenges in terms of drug delivery methods, and the research regarding their applications in radiotherapy is scarce. Herein, we introduce a light-controlled SAE hydrogel platform (SH) for glutathione-depletion-mediated low-dose radiotherapy. The SH incorporates a Cu single-atom enzyme (CuSA), and upon irradiation with 1064 nm near-infrared light, the CuSA can convert light energy into heat, which in turn degrades the hydrogel, enabling the release of CuSA into tumor cells or tissues. The diffused CuSA not only can facilitate the conversion of H2O2into hydroxyl radicals (•OH), but also can effectively depletes cellular glutathione. This leads to increased sensitivity of tumor cells to radiotherapy, resulting in enhanced cytotoxicity even at low doses. The animal study results further confirmed the good tumor-killing efficacy of this SH system. To the best of our knowledge, this stands as the pioneering report on leveraging a single-atom enzyme for GSH depletion-mediated low-dose radiotherapy.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Xiaopeng Li
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Pengyuan Qi
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chenglong Sun
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| |
Collapse
|
35
|
Zhang R, Jia M, Lv H, Li M, Ding G, Cheng G, Li J. Assembling Au 8 clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor. J Nanobiotechnology 2024; 22:20. [PMID: 38183048 PMCID: PMC10768385 DOI: 10.1186/s12951-023-02279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Radiotherapy is one of the mainstays of cancer therapy and has been used for treating 65-75% of patients with solid tumors. However, radiotherapy of tumors has two limitations: high-dose X-rays damage adjacent normal tissue and tumor metastases cannot be prevented. RESULTS Therefore, to overcome the two limitations of radiotherapy, a multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer were fabricated by assembling Au8NCs on the surface of a bifunctional nanoimmunomodulator R837/BMS nanocore using nanoprecipitation followed by electrostatic assembly. Formed R837/BMS@Au8 NP composed of R837, BMS-1, and Au8 clusters. Au8NC can enhance X-ray absorption at the tumor site to reduce X-ray dose and releases a large number of tumor-associated antigens under X-ray irradiation. With the help of immune adjuvant R837, dendritic cells can effectively process and present tumor-associated antigens to activate effector T cells, meanwhile, a small-molecule PD-L1 inhibitor BMS-1 can block PD-1/PD-L1 pathway to reactivate cytotoxic T lymphocyte, resulting in a strong systemic antitumor immune response that is beneficial for limiting tumor metastasis. According to in vivo and in vitro experiments, radioimmunotherapy based on R837/BMS@Au8 nanoparticles can increase calreticulin expression on of cancer cells, reactive oxygen species generation, and DNA breakage and decrease colony formation. The results revealed that distant tumors were 78.2% inhibited depending on radioimmunotherapy of primary tumors. Therefore, the use of a novel radiosensitizer R837/BMS@Au8 NPs realizes low-dose radiotherapy combined with immunotherapy against advanced cancer. CONCLUSION In conclusion, the multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer effectively limiting tumor metastasis and decrease X-ray dose to 1 Gy, providing an efective strategy for the construction of nanosystems with radiosensitizing function.
Collapse
Affiliation(s)
- Rui Zhang
- School of Public Health, Jilin University, Chang Chun, 130021, China.
| | - Mengchao Jia
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Hongying Lv
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Mengxuan Li
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Guanwen Ding
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Ge Cheng
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Chang Chun, 130021, China.
| |
Collapse
|
36
|
Peng QC, Si YB, Yuan JW, Yang Q, Gao ZY, Liu YY, Wang ZY, Li K, Zang SQ, Zhong Tang B. High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator. Angew Chem Int Ed Engl 2023; 62:e202308194. [PMID: 37366600 DOI: 10.1002/anie.202308194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal-organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm-1 .
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Bing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia-Wang Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Ying Gao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan-Yuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
37
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Gong Z, Tong L, Wang J, Huang S, Chen G, Ouyang G. Photonanozyme with Light Mediated Activity. Chempluschem 2023; 88:e202300352. [PMID: 37624692 DOI: 10.1002/cplu.202300352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Since the discovery that Fe3 O4 nanoparticle has intrinsic natural peroxidase-like activity by Yan et al in 2007, mimicking native enzymes via nano-engineering (named as nanozyme) pays a new avenue to bypass the fragility and recyclability of natural enzymes and thus expedites the biocatalysis in multidisciplinary applications. In addition, the high programmability and structural stability attributes of nanozyme afford the ease of coupling with electromagnetic waves of different energies, providing great opportunities to construct photo-responsive nanozyme under user-defined electromagnetic waves, which is known as photo-nanozyme. In this concept, we aim to providing a summary of how electromagnetic waves with varying wavelengths can serve as external stimuli to induce or enhance the biocatalytic performance of photo-nanozymes, thereby offering fascinating functions that cannot be achieved by pristine nanozyme.
Collapse
Affiliation(s)
- Zeyu Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Linjing Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guosheng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| |
Collapse
|
39
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Liu H, Zhao J, Xue Y, Zhang J, Bai H, Pan S, Peng B, Li L, Voelcker NH. X-Ray-Induced Drug Release for Cancer Therapy. Angew Chem Int Ed Engl 2023; 62:e202306100. [PMID: 37278399 DOI: 10.1002/anie.202306100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Drug delivery systems (DDSs) are designed to deliver therapeutic agents to specific target sites while minimizing systemic toxicity. Recent developments in drug-loaded DDSs have demonstrated promising characteristics and paved new pathways for cancer treatment. Light, a prevalent external stimulus, is widely utilized to trigger drug release. However, conventional light sources primarily concentrate on the ultraviolet (UV) and visible light regions, which suffer from limited biological tissue penetration. This limitation hinders applications for deep-tissue tumor drug release. Given their deep tissue penetration and well-established application technology, X-rays have recently received attention for the pursuit of controlled drug release. With precise spatiotemporal and dosage controllability, X-rays stand as an ideal stimulus for achieving controlled drug release in deep-tissue cancer therapy. This article explores the recent advancements in using X-rays for stimulus-triggered drug release in DDSs and delves into their action mechanisms.
Collapse
Affiliation(s)
- Hui Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jun Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sijun Pan
- The Institute of Flexible Electronics, IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia
- Wuhan National Laboratory for Optoelectronics, Advanced Biomedical Imaging Facility, 13 Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lin Li
- The Institute of Flexible Electronics, IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Nicolas H Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia
| |
Collapse
|
41
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
42
|
Yu Y, Xiang L, Zhang X, Zhang L, Ni Z, Zhu Z, Liu Y, Lan J, Liu W, Xie G, Feng G, Tang BZ. Pure Organic AIE Nanoscintillator for X-ray Mediated Type I and Type II Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302395. [PMID: 37424049 PMCID: PMC10502865 DOI: 10.1002/advs.202302395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
X-ray induced photodynamic therapy (X-PDT) circumvents the poor penetration depth of conventional PDT with minimal radio-resistance generation. However, conventional X-PDT typically requires inorganic scintillators as energy transducers to excite neighboring photosensitizers (PSs) to generate reactive oxygen species (ROS). Herein, a pure organic aggregation-induced emission (AIE) nanoscintillator (TBDCR NPs) that can massively generate both type I and type II ROS under direct X-ray irradiation is reported for hypoxia-tolerant X-PDT. Heteroatoms are introduced to enhance X-ray harvesting and ROS generation ability, and AIE-active TBDCR exhibits aggregation-enhanced ROS especially less oxygen-dependent hydroxyl radical (HO•- , type I) generation ability. TBDCR NPs with a distinctive PEG crystalline shell to provide a rigid intraparticle microenvironment show further enhanced ROS generation. Intriguingly, TBDCR NPs show bright near-infrared fluorescence and massive singlet oxygen and HO•- generation under direct X-ray irradiation, which demonstrate excellent antitumor X-PDT performance both in vitro and in vivo. To the best of knowledge, this is the first pure organic PS capable of generating both 1 O2 and radicals (HO•- ) in response to direct X-ray irradiation, which shall provide new insights for designing organic scintillators with excellent X-ray harvesting and predominant free radical generation for efficient X-PDT.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Zhiqiang Ni
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Zhong‐Hong Zhu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Yubo Liu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Jie Lan
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Liu
- Analysis and Testing Research CenterEast China University of TechnologyNanchang330013China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangsha410082China
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer CentreRadiation Treatment CentreSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
43
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
44
|
Ding S, Chen L, Liao J, Huo Q, Wang Q, Tian G, Yin W. Harnessing Hafnium-Based Nanomaterials for Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300341. [PMID: 37029564 DOI: 10.1002/smll.202300341] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
With the rapid development of nanotechnology and nanomedicine, there are great interests in employing nanomaterials to improve the efficiency of disease diagnosis and treatment. The clinical translation of hafnium oxide (HfO2 ), commercially namedas NBTXR3, as a new kind of nanoradiosensitizer for radiotherapy (RT) of cancers has aroused extensive interest in researches on Hf-based nanomaterials for biomedical application. In the past 20 years, Hf-based nanomaterials have emerged as potential and important nanomedicine for computed tomography (CT)-involved bioimaging and RT-associated cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties. In this review, a bibliometric analysis method is employed to summarize the progress on the synthesis technology of various Hf-based nanomaterials, including HfO2 , HfO2 -based compounds, and Hf-organic ligand coordination hybrids, such as metal-organic frameworks or nanoscaled coordination polymers. Moreover, current states in the application of Hf-based CT-involved contrasts for tissue imaging or cancer diagnosis are reviewed in detail. Importantly, the recent advances in Hf-based nanomaterials-mediated radiosensitization and synergistic RT with other current mainstream treatments are also generalized. Finally, current challenges and future perspectives of Hf-based nanomaterials with a view to maximize their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Shuaishuai Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Lei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Liao
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Qing Huo
- College of Biochemical and Engineering, Beijing Union University, Beijing, 100023, China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Sivasubramanian M, Chu CH, Hsia Y, Chen NT, Cai MT, Tew LS, Chuang YC, Chen CT, Aydogan B, Liao LD, Lo LW. Illuminating and Radiosensitizing Tumors with 2DG-Bound Gold-Based Nanomedicine for Targeted CT Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111790. [PMID: 37299694 DOI: 10.3390/nano13111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential solution. Herein, we developed 2-deoxy-d-glucose (2DG)-labeled poly(ethylene glycol) (PEG) gold nanodots (2DG-PEG-AuD) as a tumor-targeted computed tomography (CT) contrast agent and radiosensitizer. The key advantages of the design are its biocompatibility and targeted AuD with excellent sensitivity in tumor detection via avid glucose metabolism. As a consequence, CT imaging with enhanced sensitivity and remarkable radiotherapeutic efficacy could be attained. Our synthesized AuD displayed linear enhancement of CT contrast as a function of its concentration. In addition, 2DG-PEG-AuD successfully demonstrated significant augmentation of CT contrast in both in vitro cell studies and in vivo tumor-bearing mouse models. In tumor-bearing mice, 2DG-PEG-AuD showed excellent radiosensitizing functions after intravenous injection. Results from this work indicate that 2DG-PEG-AuD could greatly potentiate theranostic capabilities by providing high-resolution anatomical and functional images in a single CT scan and therapeutic capability.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yu Hsia
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nai-Tzu Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Meng-Ting Cai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Lih Shin Tew
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Yao-Chen Chuang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Bulent Aydogan
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Shonde TB, Chaaban M, Liu H, Olasupo OJ, Ben-Akacha A, Gonzalez FG, Julevich K, Lin X, Winfred JSRV, Stand LM, Zhuravleva M, Ma B. Molecular Sensitization Enabled High Performance Organic Metal Halide Hybrid Scintillator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301612. [PMID: 36988220 DOI: 10.1002/adma.202301612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 06/09/2023]
Abstract
Scintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare-earth-containing inorganic materials. Here, a new type of organic-inorganic hybrid scintillators containing earth abundant elements that can be prepared via low-temperature processes is reported. With room temperature co-crystallization of an aggregation-induced emission (AIE) organic halide, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyrindin-1ium bromide (TPA-PBr), and a metal halide, zinc bromide (ZnBr2 ), a zero-dimensional (0D) organic metal halide hybrid (TPA-P)2 ZnBr4 with a yellowish-green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X-ray scintillation of TPA-P+ is achieved via the sensitization by ZnBr4 2- . The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA-P)2 ZnBr4 is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well-known organic scintillator, while its X-ray absorption is comparable to those of inorganic scintillators. With TPA-P+ as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X-ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X-ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.
Collapse
Affiliation(s)
- Tunde Blessed Shonde
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - He Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Fabiola G Gonzalez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Kerri Julevich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Luis M Stand
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Scintillation Materials Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariya Zhuravleva
- Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
47
|
Secchi V, Cova F, Villa I, Babin V, Nikl M, Campione M, Monguzzi A. Energy Partitioning in Multicomponent Nanoscintillators for Enhanced Localized Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24693-24700. [PMID: 37172016 DOI: 10.1021/acsami.3c00853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Multicomponent nanomaterials consisting of dense scintillating particles functionalized by or embedding optically active conjugated photosensitizers (PSs) for cytotoxic reactive oxygen species (ROS) have been proposed in the last decade as coadjuvant agents for radiotherapy of cancer. They have been designed to make scintillation-activated sensitizers for ROS production in an aqueous environment under exposure to ionizing radiations. However, a detailed understanding of the global energy partitioning process occurring during the scintillation is still missing, in particular regarding the role of the non-radiative energy transfer between the nanoscintillator and the conjugated moieties which is usually considered crucial for the activation of PSs and therefore pivotal to enhance the therapeutic effect. We investigate this mechanism in a series of PS-functionalized scintillating nanotubes where the non-radiative energy transfer yield has been tuned by control of the intermolecular distance between the nanotube and the conjugated system. The obtained results indicate that non-radiative energy transfer has a negligible effect on the ROS sensitization efficiency, thus opening the way to the development of different architectures for breakthrough radiotherapy coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Francesca Cova
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
| | - Irene Villa
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Vladimir Babin
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Martin Nikl
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Marcello Campione
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, Università Degli Studi Milano-Bicocca, Piazza Della Scienza 4, 20126 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| |
Collapse
|
48
|
Gu X, Shu T, Deng W, Shen C, Wu Y. An X-ray activatable gold nanorod encapsulated liposome delivery system for mitochondria-targeted photodynamic therapy (PDT). J Mater Chem B 2023; 11:4539-4547. [PMID: 37161717 DOI: 10.1039/d3tb00608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we developed a mitochondria-targeted nanomaterial for neoadjuvant X-ray-triggered photodynamic therapy of rectal cancer. Herein, we designed a biodegradable liposome incorporating a photosensitizer, verteporfin, to generate X-ray-induced reactive oxygen species, gold nanorods as radiation enhancers, and triphenylphosphonium as the mitochondrial targeting moiety. The average size of the nanocarrier was about 150 nm. Due to the synergetic effect between X-ray and a combination of verteporfin and gold nanorods, as well as precise site-targeted TPP-modified liposomal nanocarriers, our nanoconjugates generated sufficient cytotoxic singlet oxygen within the mitochondria under X-ray irradiation, triggering the loss of membrane potential and mitochondria-related apoptosis of cancer cells.
Collapse
Affiliation(s)
- Xuefan Gu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South, Wales Kensington, 2052 NSW, Australia
- Faculty of Science and Engineering, Macquarie University, Sydney, 2109 NSW, Australia
| | - Tiantian Shu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Chao Shen
- Faculty of Science and Engineering, Macquarie University, Sydney, 2109 NSW, Australia
| | - Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
49
|
Zhang X, Qiu H, Luo W, Huang K, Chen Y, Zhang J, Wang B, Peng D, Wang Y, Zheng K. High-Performance X-Ray Imaging using Lanthanide Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207004. [PMID: 36950755 DOI: 10.1002/advs.202207004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Indexed: 05/27/2023]
Abstract
Scintillating materials that convert ionizing radiation into low-energy photons hold great potential for radiation detection, nondestructive inspection, medical radiography, and space exploration. However, organic scintillators are characterized by low radioluminescence, while bulky inorganic scintillators are not suitable for the development of flexible detectors. Here, high-resolution X-ray imaging using solution-processable lanthanide-based metal-organic frameworks as microscale scintillators is demonstrated. Mechanistic studies suggest that lanthanide ions absorb X-rays to generate high-density molecular triplet excitons, and excited linkers subsequently sensitize lanthanide ions via nonradiative resonance energy transfer. Furthermore, the crystalline nature offers a delocalized electronic feature rather than isolated subunits, which enables direct trapping of charge carriers by lanthanide emitters. By controlling the concentration ratio between Tb3+ and Eu3+ ions, efficient and color-tunable radioluminescence of lanthanide ions can be achieved. When coupled with elastic, transparent polymer matrices, these metal-organic framework-based microscintillators allow the fabrication of flexible X-ray detectors. Such detectors feature a detection limit of 23 nGy s-1 , which is 240 times lower than the typical radiation dose for medical diagnosis. X-ray imaging with resolution higher than 16.6 line pairs per millimeter is further demonstrated. These findings provide insight into the future design of hybrid scintillators for optoelectronics and X-ray sensing and imaging.
Collapse
Affiliation(s)
- Xintong Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Haiyi Qiu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wang Luo
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Kaofeng Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Jiacheng Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Bohan Wang
- SZU-NUS Collaborative Innovation Center, ICL 2DMOST, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Daoling Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center, ICL 2DMOST, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Kezhi Zheng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
50
|
Hua Y, Shao ZH, Zhai A, Zhang LJ, Wang ZY, Zhao G, Xie F, Liu JQ, Zhao X, Chen X, Zang SQ. Water-Soluble Au 25 Clusters with Single-Crystal Structure for Mitochondria-Targeting Radioimmunotherapy. ACS NANO 2023; 17:7837-7846. [PMID: 37022191 DOI: 10.1021/acsnano.3c01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Atomically precise gold clusters play an important role in the development of high-Z-element-based radiosensitizers, due to their intriguing structural diversity and advantages in correlating structures and properties. However, the synthesis of gold clusters with both water-solubility and single-crystal structure remains a challenge. In this study, atomically precise Au25(S-TPP)18 clusters (TPP-SNa = sodium 3-(triphenylphosphonio)propane-1-thiolate bromide) showing both mitochondria-targeting ability and water-solubility were obtained via ligand design for enhanced radioimmunotherapy. Compared with Au25(SG)18 clusters (SG = glutathione), Au25(S-TPP)18 exhibited higher radiosensitization efficiency due to its mitochondria-targeting ability, higher ROS production capacity, and obvious inhibition upon thioredoxin reductase (TrxR). In addition, the enhanced radiotherapy-triggered abscopal effect in combination with checkpoint blockade displayed effective growth inhibition of distant tumors. This work reveals the ligand-regulated organelle targeting ability of metal clusters by which feasible strategies to promote their application in precise theranostics could be realized.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Hui Shao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Aoqiang Zhai
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Jun Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, 61 Biopolis Drive, 138673, Singapore
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|