1
|
Boro B, Paul R, Tan HL, Trinh QT, Rabeah J, Chang CC, Pao CW, Liu W, Nguyen NT, Mai BK, Mondal J. Experimental Validation and Computational Predictions Join Forces to Map Catalytic C-H Activation in Ferrocene Metalated Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21027-21039. [PMID: 37083336 DOI: 10.1021/acsami.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent times, a self-complementary balanced characteristic feature with the combination of both covalent bonds (structural stability) and open metal sites (single-site catalysis) introduced an advanced emerging functional nanoarchitecture termed metalated porous organic polymers (M-POPs). However, the development of M-POPs in view of the current interest in catalysis has been realized still in its infancy and remains a challenge for the years to come. In this work, we built benzothiazole-linked Fe-metalated porous organic polymer (Fc-Bz-POP) using ferrocene dicarboxaldehyde (FDC), 1,3,5-tris(4-aminophenyl) benzene (APB), and elemental sulfur (S8) via a template-free, multicomponent, cost-effective one-pot synthetic approach. This Fc-Bz-POP is endowed with unique features including an extended network unit, isolated active sites, and catalytic pocket with a possible local structure, in which convergent binding sites are positioned in such a way that substrate molecules can be held in close proximity. Prospective catalytic application of this Fc-Bz-POP has been explored in executing catalytic allylic "C-H" bond functionalization of cyclohexene (CHX) in water at room temperature. Catalytic screening results identified that a superior performance with a CHX conversion of 95% and a 2-cyclohexene-1-ol selectivity (COL) of 80.8% at 4 h and 25 °C temperature has been achieved over Fc-Bz-POP, thereby addressing previous shortcomings of the other conventional catalytic systems. Comprehensive characterization understanding with the aid of synchrotron-based extended X-ray absorption fine structure (EXAFS) analysis manifested that the Fe atom with an oxidation state of +2 in our Fc-Bz-POP catalytic system encompasses a sandwich structural environment with the two symmetrical eclipsed cyclopentadienyl (Cp) rings, featuring nearest-neighbor (NN) Fe-C (≈2.05 Å) intramolecular bonds, as validated by the Fe L3-edge EXAFS fitting result. Furthermore, in situ attenuated total reflection-infrared spectroscopy (ATR-IR) analysis data for liquid-phase oxidation of cyclohexene allow for the formulation of a molecular-level reaction mechanistic pathway with the involvement of specific reaction intermediates, which is initiated by the radical functionalization of the allyl hydrogen. A deep insight investigation from density functional theory (DFT) calculations unambiguously revealed that the dominant pathway from cyclohexene to 2-cyclohexene-1-ol is initiated by an allyl-H functionalization step accompanied by the formation of 2-cyclohexene-1-hydroperoxide species as the key reaction intermediate. Electronic properties obtained from DFT simulations via the charge density difference plot, Bader charge, and density of state (DOS) demonstrate the importance of the organic polymer frame structure in altering the electronic properties of the Fe site in Fc-Bz-POP, resulting in its high activity. Our contribution has great implications for the precise design of metalated porous organic polymer-based robust catalysts, which will open a new avenue to get a clear image of surface catalysis.
Collapse
Affiliation(s)
- Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hui Ling Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Quang Thang Trinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock), Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Chia-Che Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Kar AK, Kaur SP, Dhilip Kumar TJ, Srivastava R. Improving the hydrodeoxygenation activity of vanillin and its homologous compounds by employing MoO 3-incorporated Co-BTC MOF-derived MoCoO x@C. Dalton Trans 2023; 52:3111-3126. [PMID: 36789722 DOI: 10.1039/d2dt03744k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lignin-derived aryl ethers and vanillin are essential platform chemicals that fulfil the demands for renewable aromatic compounds. Herein, an efficient heterogeneous catalyst is reported for reforming vanillin via a selective hydrodeoxygenation route to 2-methoxy-4-methyl phenol (MMP), a precursor to medicinal, food, and petrochemical industries. A series of MoCoOx@C catalysts were synthesized by decorating the Co-BTC MOF with different contents of MoO3 rods, followed by carbonization. Among these catalysts, MoCoOx@C-2 afforded ∼99% vanillin conversion and ∼99% MMP selectivity at 150 °C in 1.5 h in an aqueous medium. In contrast, CoOx@C afforded ∼75% vanillin conversion and ∼85% MMP selectivity. Detailed catalyst characterization revealed that CoOx and Co2Mo3O8 were the active species contributing to the higher activity of MoCoOx@C-2. The excellent H2-adsorption characteristics and acidity of MoCoOx@C-2 were beneficial to the hydrodeoxygenation of vanillin and other homologous compounds. The DFT adsorption energy calculations suggested the favourable interactions of vanillin and vanillyl alcohol with the Co2Mo3O8 sites in MoCoOx@C-2. The catalyst could be efficiently recycled 5 times, with a negligible loss in activity after the 5th cycle. These findings provide a systematic explication of the active sites of the mixed metal oxide-based MoCoOx@C-2 catalyst for the selective hydrodeoxygenation of vanillin to MMP, which is important for the academic and industrial catalysis community.
Collapse
Affiliation(s)
- Ashish Kumar Kar
- Catalysis Research Laboratory, Indian Institute of Technology Ropar, Rupnagar-140001, India. .,Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - Surinder Pal Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Indian Institute of Technology Ropar, Rupnagar-140001, India. .,Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| |
Collapse
|
3
|
Zhang Y, Zhao J, Fan G, Yang L, Li F. Robust MOF-derived carbon-supported bimetallic Ni-Co catalysts for aqueous phase hydrodeoxygenation of vanillin. Dalton Trans 2022; 51:2238-2249. [PMID: 35048094 DOI: 10.1039/d1dt03970a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, rapidly increasing consumption of fossil resources has propelled the upgrading of biomass as an alternative and sustainable technology to produce important chemicals and bio-oils. In this regard, the rational design of low-cost and robust supported metal-based catalysts that exhibit excellent catalytic hydrodeoxygenation (HDO) performance for the conversion of biomass is quite necessary. Herein, we developed hierarchical flower-like nitrogen-doped carbon layer-coated bimetallic Ni-Co nanoparticles, which were distributed over the carbonaceous matrix (NixCo@NC@C), via a metal-organic framework (MOF) ZIF-67 precursor approach, assisted by the etching of Ni2+ ions, hydrothermal treatment together with glucose, and following carbonization processes. The as-fabricated Ni3Co@NC@C catalyst bearing a 3 : 1 Ni/Co molar ratio showed a superior catalytic HDO activity towards aqueous phase HDO of vanillin to other bimetallic NiCo catalysts with different Ni/Co molar ratios under mild reaction conditions, along with a 100% selectivity to 2-methoxy-4-methylphenol at a full vanillin conversion, despite its smaller number of exposed metallic sites. It was revealed that over the Ni3Co@NC@C catalyst, the surface abundant defective oxygen vacancies and electron-rich Co0 species were conducive to the adsorption and activation of vanillin and the reaction intermediate, thereby giving rise to the outstanding catalytic activity. Moreover, for Ni3Co@NC@C, the adequate protection effect of surface carbon layers, as well as the unique hierarchical flower-like microstructure, could significantly inhibit the leaching of active metal species in the reaction medium, thereby leading to high structural stability. The present findings afford a promising strategy for constructing low-cost and robust carbon-supported bimetallic catalysts for the HDO of lignin-derived derivatives.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jingwen Zhao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoli Fan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lan Yang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Paul R, Shit SC, Singh A, Wong RJ, Dao DQ, Joseph B, Liu W, Bhattacharya S, Mondal J. Organogel-assisted porous organic polymer embedding Cu NPs for selectivity control in the semi hydrogenation of alkynes. NANOSCALE 2022; 14:1505-1519. [PMID: 35029265 DOI: 10.1039/d1nr07255b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heteroatom-rich porous-organic-polymers (POPs) comprising highly cross-linked robust skeletons with high physical and thermal stability, high surface area, and tunable pore size distribution have garnered significant research interest owing to their versatile functionalities in a wide range of applications. Here, we report a newly developed organogel-assisted porous-organic-polymer (POP) supported Cu catalyst (Cu@TpRb-POP). The organogel was synthesized via a temperature induced gelation strategy, employing Schiff-base coupling between 2,4,6-triformylphloroglucinol aldehyde (Tp) and pararosaniline base (Rb). The gel is subsequently transformed to hierarchical porous organic structures without the use of any additive, thereby offering advantageous features including extremely low density, high surface area, a highly cross-linked framework, and a heteroatom-enriched backbone of the polymer. During the semi-hydrogenation of terminal and internal alkynes, the Cu@TpRb-POP-B catalyst with Cu embedded in the TpRb-POP structure consistently demonstrated improved selectivity towards alkenes compared to Cu@TpRb-POP-A, which contains Cu NPs exposed at the exterior surfaces of the POP support. Additionally, Cu@TpRb-POP-B showed higher stability and reusability than Cu@TpRb-POP-A. The superior performance of the Cu@TpRb-POP-B catalyst is attributed to the steric hindrance effect, which controls the product selectivity, as well as the synergistic interaction between the heteroatom-rich POP framework and the embedded Cu NPs. Both the effects are corroborated by experimental characterization of the catalysts and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - Roong Jien Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Boby Joseph
- Elettra-Sincrotrone Trieste, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic-inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun (Camb) 2022; 58:3429-3460. [DOI: 10.1039/d1cc06340e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of organic functionalities into the porous inorganic materials make the resulting hybrid porous framework not only more flexible and hydrophobic, but also provide additional scope for further functionalization, which...
Collapse
|
6
|
Qiu Z, He X, Li Z, Guan Q, Ding L, Zhu Y, Cao Y. CoZn/N-Doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C 3N 4 for efficient hydrodeoxygenation of vanillin. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-noble Co–Zn/NPC fabricated by pyrolysis of Co–Zn-ZIF/g-C3N4 presents high efficiency in hydrodeoxygenation of the aldehyde group of vanillin under mild conditions.
Collapse
Affiliation(s)
- Zegang Qiu
- Xi'an Shiyou University, Xi'an 710065, PR China
| | - Xiaoxia He
- Xi'an Shiyou University, Xi'an 710065, PR China
| | - Zhiqin Li
- Xi'an Shiyou University, Xi'an 710065, PR China
| | - Qichen Guan
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Liang Ding
- Xi'an Shiyou University, Xi'an 710065, PR China
| | - Yanan Zhu
- Xi'an Shiyou University, Xi'an 710065, PR China
| | - Yueling Cao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, PR China
| |
Collapse
|
7
|
Wang D, Gong W, Zhang J, Han M, Chen C, Zhang Y, Wang G, Zhang H, Zhao H. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63828-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
9
|
Smith CA, Brandi F, Al-Naji M, Guterman R. Resin-supported iridium complex for low-temperature vanillin hydrogenation using formic acid in water. RSC Adv 2021; 11:15835-15840. [PMID: 35481198 PMCID: PMC9030846 DOI: 10.1039/d1ra01460a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Biorefinery seeks to utilize biomass waste streams as a source of chemical precursors with which to feed the chemical industry. This goal seeks to replace petroleum as the main feedstock, however this task requires the development of efficient catalysts capable of transforming substances derived from biomass into useful chemical products. In this study, we demonstrate that a highly-active iridium complex can be solid-supported and used as a low-temperature catalyst for both the decomposition of formic acid (FA) to produce hydrogen, and as a hydrogenation catalyst to produce vanillyl alcohol (VA) and 2-methoxy-4-methylphenol (MMP) from vanillin (V); a lignin-derived feedstock. These hydrogenation products are promising precursors for epoxy resins and thus demonstrate an approach for their production without the need for petroleum. In contrast to other catalysts that require temperatures exceeding 100 °C, here we accomplish this at a temperature of <50 °C in water under autogenous pressure. This approach provides an avenue towards biorefinery with lower energy demands, which is central to the decentralization and broad implementation. We found that the high activity of the iridium complex transfers to the solid-support and is capable of accelerating the rate determining step; the decomposition of FA into hydrogen and carbon dioxide. The yield of both VA and MMP can be independently tuned depending on the temperature. The simplicity of this approach expands the utility of molecular metal complexes and provides new catalyst opportunities in biorefinery.
Collapse
Affiliation(s)
- Christene A Smith
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Francesco Brandi
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Majd Al-Naji
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Ryan Guterman
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
10
|
|
11
|
Mäki-Arvela P, Ruiz D, Murzin DY. Catalytic Hydrogenation/Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran. CHEMSUSCHEM 2021; 14:150-168. [PMID: 32940953 DOI: 10.1002/cssc.202001927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Recent developments in transformations of biobased 5-hydroxymethylfurfural to 2,5-dimethylfuran, a potential liquid fuel, are critically summarized. The highest yield of 2,5-dimethylfuran (more than 98 %) from 5-hydroxymethylfurfural are obtained over bimetallic Cu-Co supported on carbon at 180 °C under 5 bar hydrogen in 2-propanol and over Ni supported on mesoporous carbon at 200 °C under 30 bar hydrogen in water in a batch reactor. The desired catalyst should have relatively high metal dispersion and some acidity to facilitate both hydrogenation and hydrogenolysis. However, overhydrogenation and overhydrogenolysis forming 2,5-dimethyltetrahydrofuran and methylfuran, respectively, should be suppressed. Furthermore, a hydrophobic support is more selective than oxide-based support. After a careful adjustment of the residence time in a continuous reactor it is also possible to produce high yields of 2,5-dimethylfuran even over Pt/C. The main challenges limiting the industrial feasibility of these reactions are relatively low initial reactant concentration, catalyst deactivation by sintering, leaching and coking. In addition to selection of optimum reaction conditions and catalyst properties, kinetic modelling was also summarized.
Collapse
Affiliation(s)
- Päivi Mäki-Arvela
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Turku/Åbo, Finland
| | - Doris Ruiz
- Physical Chemistry Department, Faculty of Chemical Science, University of Concepcion, Casilla 160-C, Concepción, Chile
| | - Dmitry Yu Murzin
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Turku/Åbo, Finland
| |
Collapse
|
12
|
Arias KS, Liu L, Garcia-Ortiz A, Climent MJ, Concepcion P, Iborra S, Corma A. Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00339a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective hydrogenation of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) has been efficiently performed using bimetallic CuFe nanoparticles covered by thin carbon layers as catalysts.
Collapse
Affiliation(s)
- Karen S. Arias
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Lichen Liu
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Andrea Garcia-Ortiz
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Maria J. Climent
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Patricia Concepcion
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Sara Iborra
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Avelino Corma
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| |
Collapse
|
13
|
Iron oxide modified N-doped porous carbon derived from porous organic polymers as a highly-efficient catalyst for reduction of nitroarenes. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Paul R, Shit SC, Fovanna T, Ferri D, Srinivasa Rao B, Gunasooriya GTKK, Dao DQ, Le QV, Shown I, Sherburne MP, Trinh QT, Mondal J. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50550-50565. [PMID: 33111522 DOI: 10.1021/acsami.0c16680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Davide Ferri
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Bolla Srinivasa Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Indrajit Shown
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Matthew P Sherburne
- Materials Science and Engineering Department, University of California Berkeley, Berkeley, California 94720, United States
- A Singapore Berkeley Research Initiative for Sustainable Energy, Berkeley Educational Alliance for Research in Singapore, 1 Create Way, 138602, Singapore
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602, Singapore
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Jia J, Hao X, Chang Y, Jia M, Wen Z. Rational design of Cu 3PdN nanocrystals for selective electroreduction of carbon dioxide to formic acid. J Colloid Interface Sci 2020; 586:491-497. [PMID: 33190830 DOI: 10.1016/j.jcis.2020.10.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
The selective electrochemical reduction of CO2 yields value-added products that are important renewable energy resources for carbon recycling. In this study, Cu3PdN nanocrystals (NCs) exhibited higher electrocatalytic activity for carbon dioxide (CO2) reduction to formic acid (HCOOH) than as-prepared Cu3N and Cu3Pd NCs. In addition, the reaction yielded small amounts of CO (<5%), H2, and HCOOH as the main products, and the electrocatalytic activity of the Cu NCs was significantly enhanced by modification with N and Pd. This work demonstrates a simple and effective strategy for improving the electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xiaokai Hao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
16
|
Li T, Ji N, Jia Z, Diao X, Wang Z, Liu Q, Song C, Lu X. Effects of metal promoters in bimetallic catalysts in hydrogenolysis of lignin derivatives into value‐added chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingting Li
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhichao Jia
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xinyong Diao
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhenjiao Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Qingling Liu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Chunfeng Song
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- Department of Chemistry & Environmental Science Tibet University Lhasa 850000 P. R. China
| |
Collapse
|
17
|
Das T, Singha D, Nandi M. The big effect of a small change: formation of CuO nanoparticles instead of covalently bound Cu(ii) over functionalized mesoporous silica and its impact on catalytic efficiency. Dalton Trans 2020; 49:10138-10155. [PMID: 32662469 DOI: 10.1039/d0dt01922d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two different heterogeneous catalysts, one with Cu(ii) covalently bonded to functionalized mesoporous silica (FMS-Cu(II)) and another with CuO nanoparticles immobilized over the same silica (FMS-CuO-np), have been synthesized by a common route but with a minor alteration in the sequence of addition of reagents. It is interesting to find that by merely changing the order of the addition of reagents Cu(ii) can be incorporated into the framework in two different forms. In one case Cu(ii) binds to the N and O donor centers present in the functionalized material whereas in the other case CuO nanoparticles are generated in situ. The materials have been thoroughly characterized by powder X-ray diffraction, nitrogen adsorption/desorption, transmission electron microscopy, thermal analysis, FT-IR spectroscopy, solid state MAS-NMR spectroscopy and atomic absorption spectrophotometric studies. The synthesized products have been examined for their catalytic efficiencies in the oxidation of olefins, as a model case. Styrene, α-methyl styrene, cyclohexene, trans-stilbene and cyclooctene have been used as substrates in the presence of tert-butyl hydroperoxide as the oxidant in acetonitrile medium under mild conditions. The products of the catalytic reactions have been identified and estimated by gas chromatography and gas chromatography-mass spectrometry. The rate of conversion of the substrates for both the catalysts is high and the selectivity is also good. But from comparative studies, it is found that FMS-CuO-np which contains CuO nanoparticles shows better efficiency than FMS-Cu(II). The catalysts have been recycled for five catalytic cycles without showing much decrease in their catalytic activity.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | | | | |
Collapse
|
18
|
You LX, Yao SX, Zhao BB, Xiong G, Dragutan I, Dragutan V, Liu XG, Ding F, Sun YG. Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp 2)-C(sp 2) bond-forming and CO 2 fixation reactions. Dalton Trans 2020; 49:6368-6376. [PMID: 32347863 DOI: 10.1039/d0dt00770f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pd nanoparticles were immobilized on a highly porous, hydrothermally stable Eu-MOF via solution impregnation and H2 reduction to yield a novel Pd@Eu-MOF nanocatalyst. This composite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS). Unprecedentedly, the Pd@Eu-MOF nanocatalyst could be applied with excellent results in two strikingly different, mechanistically distinct, reactions i.e., Suzuki-Miyaura cross-coupling and cycloaddition of CO2 to a range of epoxides. Under the best reaction conditions, 98-99% yields have been attained in both catalytic processes. Moreover, in either case the heterogeneous catalyst was easily recovered and efficiently reused for more than four cycles, indicating its high stability and reproducibility. PXRD, TEM and XPS measurements on the recycled catalyst confirmed that it maintained its original structure and morphology; no Pd NP agglomeration was observed.
Collapse
Affiliation(s)
- Li-Xin You
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Shan-Xin Yao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Bai-Bei Zhao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Gang Xiong
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fu Ding
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ya-Guang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| |
Collapse
|
19
|
Koley P, Chandra Shit S, Joseph B, Pollastri S, Sabri YM, Mayes ELH, Nakka L, Tardio J, Mondal J. Leveraging Cu/CuFe 2O 4-Catalyzed Biomass-Derived Furfural Hydrodeoxygenation: A Nanoscale Metal-Organic-Framework Template Is the Prime Key. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21682-21700. [PMID: 32314915 DOI: 10.1021/acsami.0c03683] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enormous efforts have been initiated in the production of biobased fuels and value-added chemicals via biorefinery owing to the scarcity of fossil resources and huge environmental synchronization. Herein, non-noble metal-based metal/mixed metal oxide supported on carbon employing a metal-organic framework as a sacrificial template is demonstrated for the first time in the selective hydrodeoxygenation (HDO) of biomass-derived furfural (FFR) to 2-methyl furan (MF). The aforementioned catalyst (referred to as Cu/CuFe2O4@C-A) exhibited extraordinary catalytic proficiency (100% selectivity toward MF) compared with the conventional Cu/CuFe2O4@C-B catalyst which was prepared by the wet impregnation method. High-resolution transmission electron microscopy and synchrotron X-ray diffraction studies evidenced the existence of both metal (Cu) and mixed metal oxide (CuFe2O4) phases, in which the metal could help in hydrogenation to alcohol and metal oxide could assist in the hydroxyl group removal step during HDO reaction. The stabilization of encapsulated metal/metal oxide nanoparticles in the carbon matrix, modulation of the electronic structure, and regulation of geometric effects in the Cu/CuFe2O4@C-A are thought to play an important role in its excellent catalytic performance, confirmed by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy investigations. Furthermore, the structure and activity interconnection was confirmed by in situ attenuated total reflection-IR studies, which manifested the strong interfacial interaction between FFR and the Cu/CuFe2O4@C-A catalyst. This finding was further supported by NH3 temperature-programmed desorption analysis, which suggested that the presence of more Lewis/weak acidic sites in this catalyst was beneficial for the hydrogenolysis step in HDO reaction. Additionally, H2 temperature-programmed reduction studies revealed that the adsorption of H2 was stronger on the Cu/CuFe2O4@C-A than that over the conventional Cu/CuFe2O4@C-B catalyst; thus, the former catalyst promoted activation of H2. A detailed kinetic analysis which demonstrated the lower activation energy barrier along with dual active sites attributed for the activation of the two separate reactions in the HDO process on the Cu/CuFe2O4@C-A catalyst. This work has great implication in developing a highly stable catalyst for the selective upgradation of biomass without deactivation of metal sites in extended catalytic cycles and opens the door of opportunity for developing a sustainably viable catalyst in biomass refinery industries.
Collapse
Affiliation(s)
- Paramita Koley
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Boby Joseph
- GdR IISc-ICTP, Elettra-Sincrotrone Trieste, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Simone Pollastri
- CERIC-ERIC, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Ylias M Sabri
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Edwin L H Mayes
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Lingaiah Nakka
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - James Tardio
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
20
|
Wang S, Wu C, Yu H, Li T, Yan X, Yan B, Yin H. Fabrication of Ir-CoO x@mesoporous SiO 2 Nanoreactors for Selective Hydrogenation of Substituted Nitroaromatics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9966-9976. [PMID: 31990170 DOI: 10.1021/acsami.9b21077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized Ir catalysts suffer from serious side reactions and poor stability during hydrogenation of substituted nitroaromatics to produce aromatic amines. In this work, core-shell nanostructures with sub-4 nm Ir-CoOx hybrid cores and mesoporous SiO2 shells were designed and prepared to overcome these problems. The Ir-CoOx hybrid cores were converted from IrCo alloy nanoparticles (NPs) inside SiO2 through in situ calcination and reduction pretreatments. The SiO2 mesoporous shells in Ir-CoOx@SiO2 nanoreactors prevented the agglomeration/sintering of IrCo NPs, while allowing the free reactants and products (big molecules). The synergy between Ir and CoOx species improved H2 adsorption, thus affecting the reaction rate as well as the selectivity to aromatic amines. As a result, the obtained Ir-CoOx@SiO2 nanocatalyst showed tremendous improvement in catalytic activity, selectivity, and stability.
Collapse
Affiliation(s)
- Shujian Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Chunzheng Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Xuedong Yan
- Ningbo Polytechnic , 388 East Lushan Road , Ningbo , Zhejiang 315800 , P. R. China
| | - Bo Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| |
Collapse
|
21
|
Zhang H, Li H, Xu CC, Yang S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02748] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450066, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
22
|
Zinc (II) incorporated porous organic polymeric material (POPs): A mild and efficient catalyst for synthesis of dicoumarols and carboxylative cyclization of propargyl alcohols and CO2 in ambient conditions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Shit SC, Koley P, Joseph B, Marini C, Nakka L, Tardio J, Mondal J. Porous Organic Polymer-Driven Evolution of High-Performance Cobalt Phosphide Hybrid Nanosheets as Vanillin Hydrodeoxygenation Catalyst. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24140-24153. [PMID: 31198035 DOI: 10.1021/acsami.9b06789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrodeoxygenation (HDO) is a promising route for the upgrading of bio-oils to eco-friendly biofuel produced from lignocellulose. Herein, we report the sequential synthesis of a hybrid nanocatalyst CoxP@POP, where substoichiometric CoxP nanoparticles are distributed in a porous organic polymer (POP) via solid-state phosphidation of the Co3O4@POP nanohybrid system. We also explored the catalytic activity of the above two nanohybrids toward the HDO of vanillin, a typical compound of lignin-derived bio-oil to 2-methoxy-4-methylphenol, which is a promising future biofuel. The CoxP@POP exhibited superior catalytic activity and selectivity toward desired product with improved stability compared to the Co3O4@POP. Based on advanced sample characterization results, the extraordinary selectivity of CoxP@POP is attributed to the strong interaction of the cation of the CoxP nanoparticle with the POP matrix and the consequent modifications of the electronic states. Through attenuated total reflectance-infrared spectroscopy, we have also observed different interaction strengths between vanillin and the two catalysts. The decreased catalytic activity of Co3O4@POP compared to CoxP@POP catalyst could be attributed to the stronger adsorption of vanillin over the Co3O4@POP catalyst. Also from kinetic investigation, it is clearly demonstrated that the Co3O4@POP has higher activation energy barrier than the CoxP@POP, which also reflects to the reduction of the overall efficiency of the Co3O4@POP catalyst. To the best of our knowledge, this is the first approach in POP-encapsulated cobalt phosphide catalyst synthesis and comprehensive study in establishing the structure-activity relationship in significant step-forwarding in promoting biomass refining.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Catalysis & Fine Chemicals Division , CSIR-Indian Institute of Chemical Technology , Uppal Road , Hyderabad 500 007 , India
| | - Paramita Koley
- Catalysis & Fine Chemicals Division , CSIR-Indian Institute of Chemical Technology , Uppal Road , Hyderabad 500 007 , India
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences , RMIT University , GPO Box 2476, Melbourne 3001 , Australia
| | - Boby Joseph
- GdR IISc-ICTP, Elettra-Sincrotrone Trieste , S.S. 14, Km 163.5 in Area Science Park , Basovizza 34149 , Italy
| | - Carlo Marini
- Alba Synchrotron Ctra. BP 1413 km. 3,3, erdanyola del Vallès , Barcelona 08290 , Spain
| | - Lingaiah Nakka
- Catalysis & Fine Chemicals Division , CSIR-Indian Institute of Chemical Technology , Uppal Road , Hyderabad 500 007 , India
| | - James Tardio
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences , RMIT University , GPO Box 2476, Melbourne 3001 , Australia
| | - John Mondal
- Catalysis & Fine Chemicals Division , CSIR-Indian Institute of Chemical Technology , Uppal Road , Hyderabad 500 007 , India
| |
Collapse
|
24
|
Li DD, Zhang JW, Jiang JZ, Cai C. Amphiphilic cellulose supported PdNi alloy nanoparticles towards biofuel upgrade under mild conditions. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Song C, Wang G, Li B, Miao C, Ma K, Zhu K, Cheng K, Ye K, Yan J, Cao D, Yin J. A novel electrode of ternary CuNiPd nanoneedles decorated Ni foam and its catalytic activity toward NaBH4 electrooxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
27
|
Bakuru VR, Davis D, Kalidindi SB. Cooperative catalysis at the metal–MOF interface: hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Trans 2019; 48:8573-8577. [DOI: 10.1039/c9dt01371g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cooperative catalysis has been demonstrated over metal–MOF hybrids for the conversion of vanillin (biomass based platform molecules) into value-added 2-methoxy-4-methylphenol.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
- Manipal Academy of Higher Education
| | - Deljo Davis
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
| | - Suresh Babu Kalidindi
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
| |
Collapse
|
28
|
Lu C, Zhang X, Qi Y, Ji H, Zhu Q, Wang H, Zhou Y, Feng Z, Li X. Surface-Group-Oriented, Condensation Cyclization-Driven, Nitrogen-Doping Strategy for the Preparation of a Nitrogen-Species-Tunable, Carbon-Material-Supported Pd Catalyst. ChemistryOpen 2019; 8:87-96. [PMID: 30693172 PMCID: PMC6345223 DOI: 10.1002/open.201800227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
A nitrogen-carbon framework with the thickness of several molecules was fabricated through a straightforward nitrogen-doping strategy, in which specially designed surface-oxygen-containing groups (SOGs) first introduced onto the porous carbon support were used to guide the generation of a surface-nitrogen-containing structure through condensation reactions between SOGs and the amidogen group of organic amines under hydrothermal conditions. The results indicate that different kinds of SOGs generate different types and abundances of N species. The CO-releasing groups are apt to form a high proportion of amino groups, whereas the CO2-releasing groups, especially carboxyl and lactones, are mainly transformed into pyrrolic-type nitrogen. In the framework with dominant pyrrolic-type nitrogen, an electron-rich Pd activated site composed of Pd, pyrrolic-type N and C is built, in which electron transfer occurs from N to C and Pd atoms. This activated site contributes to the formation of electron-rich activated hydrogen and desorption of p-chloroaniline, which work together to achieve the superior selectivity about 99.90 % of p-chloroaniline and the excellent reusable performance. This strategy not only provides low-cost, nitrogen-doped carbon materials, but also develops a new method for the fabrication of different kinds of nitrogen species structures.
Collapse
Affiliation(s)
- Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Xuejie Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Yani Qi
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Haoke Ji
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Qianwen Zhu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Hao Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Yebin Zhou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Zhenlong Feng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
29
|
Das T, Chatterjee R, Majee A, Uyama H, Morgan D, Nandi M. In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides. Dalton Trans 2019; 48:17874-17886. [DOI: 10.1039/c9dt03418h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A versatile and novel mesoporous silica supported CuO nanoparticle catalyst (nCuO-FMS) and its application in the syntheses of symmetrical diselenides.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| | - Rana Chatterjee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Adinath Majee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - David Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| |
Collapse
|
30
|
Enjamuri N, Sarkar S, Reddy BM, Mondal J. Design and Catalytic Application of Functional Porous Organic Polymers: Opportunities and Challenges. CHEM REC 2018; 19:1782-1792. [DOI: 10.1002/tcr.201800080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Nagasuresh Enjamuri
- Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad - 500 007 India
| | - Santu Sarkar
- Basic Science & Humanities DepartmentDumka Engineering College Polytechnic Compound Rd., Dumka Jharkhand - 814 101 India
| | - Benjaram M. Reddy
- Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad - 500 007 India
| | - John Mondal
- Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad - 500 007 India
| |
Collapse
|
31
|
Khatioda R, Pathak D, Sarma B. Cu(II) Complex onto a Pyridine‐Based Porous Organic Polymer as a Heterogeneous Catalyst for Nitroarene Reduction. ChemistrySelect 2018. [DOI: 10.1002/slct.201801003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rajiv Khatioda
- Department of Chemical SciencesTezpur University, Napaam - 784028 Tezpur, Assam India
| | - Debabrat Pathak
- Department of Chemical SciencesTezpur University, Napaam - 784028 Tezpur, Assam India
| | - Bipul Sarma
- Department of Chemical SciencesTezpur University, Napaam - 784028 Tezpur, Assam India
| |
Collapse
|