1
|
Liu P, Han J, Yu H, Chen Y, Zhou X. Structural Study of [Sc 3O 4(CO 2) n] + ( n = 2, 3) Complexes by Infrared Photodissociation Spectroscopy and Density Functional Calculations. J Phys Chem A 2024; 128:7158-7166. [PMID: 39152915 DOI: 10.1021/acs.jpca.4c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The catalytic transformation of CO2 into valuable products has garnered wide interest owing to both economic and environmental benefits, in which the chemical fixation of CO2 into carbonate structures represents a crucial step that occurs on the adsorbed catalyst surfaces. Transition metal oxides with acidic and basic active sites have exhibited potential in promoting the carbonation of weakly bound CO2 molecules. Here, the interactions between CO2 molecules and the Sc3O4+ cation in the gas phase are investigated by using infrared photodissociation spectroscopy in conjunction with quantum chemical calculations. Both end-on and various carbonate-containing configurations, including center and bridge carbonate structures, have been theoretically identified for the CO2-coordinated ion-molecule complexes. Based on the comparison between the experimental spectra and simulated spectra of low-lying isomers in the CO2 antisymmetric stretching vibrational frequency region, isomers characterized by a bridge carbonate core structure are demonstrated to be the major contributors to the observed spectra. Examination of potential energy surfaces reveals lower energy barriers and simpler reaction routes for the conversion of molecularly bound CO2 into a bridge carbonate moiety, providing reasonable explanations for their prevalence in the experiments.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Zhu T, Xu Y, Li Z, He J, Yuan X, Qian D, Chang T, Lu L, Chi B, Guo K. Cholinium Pyridinolate Ionic Pair-Catalyzed Fixation of CO 2 into Cyclic Carbonates. J Org Chem 2024. [PMID: 38787343 DOI: 10.1021/acs.joc.3c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yue Xu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Jun He
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Xin Yuan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Dong Qian
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Tong Chang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Longlin Lu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
3
|
Suhail Z, Koch CJ, Goeppert A, Prakash GKS. Integrated Carbon Dioxide Capture and Conversion to Methanol Utilizing Tertiary Amines over a Heterogenous Cu/ZnO/Al 2O 3 Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5401-5408. [PMID: 38426862 DOI: 10.1021/acs.langmuir.3c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Increasing carbon dioxide emissions has sparked a growing interest in capturing these emissions at the source of their release. For such processes, amines can be used as carbon dioxide capture agents. Herein, CO2 was captured under ambient conditions using solutions of amines and polyamines in ethylene glycol. The captured solutions were then successfully hydrogenated to methanol under hydrogen pressure with a heterogeneous Cu/ZnO/Al2O3 industrial catalyst. An extensive amine scope found that tetramethyl-1,6-hexanediamine, with two tertiary amine sites, provided the highest methanol productivity. This reaction was then optimized to achieve up to 89% methanol yield under relatively mild conditions of 250 °C and 80 bar H2 pressure. The catalyst was shown to be recyclable over five reaction cycles.
Collapse
Affiliation(s)
- Zohaib Suhail
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| |
Collapse
|
4
|
Zhu Y, Mu Y, Sun L, Zeng Z, Liu Z. Mechanistic study on the formation of the alkyl acrylates from CO 2, ethylene and alkyl iodides over nickel-based catalyst. Phys Chem Chem Phys 2023; 25:24733-24744. [PMID: 37670665 DOI: 10.1039/d3cp02943c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The catalytic conversion of carbon dioxide (CO2) and olefins into acrylates has been a long standing target, because society attempts to synthesize commodity chemicals in a more economical and sustainable fashion. In this work, two alkylation reaction pathways were investigated to explore the role of methylene linkage (-CH2-) on the formation of alkyl acrylate from coupling of CO2 and ethylene, catalyzed by a nickel catalyst in the presence of different alkyl iodides. The energy barrier of Ni-O bond cleavage decreases with increasing methylene linkage of alkyl iodides, which may be due to NPA charge transfer of alkyl iodides. Meanwhile, the O1 (ester sp3 O atom) attack route leading to the formation of alkyl acrylate competes with the O2 (carboxylic sp2 O atom) attack route in terms of energy barriers. Further studies on the fluoro-substituted alkyl acrylates show that neither CF3I nor CF3CH2I is effective in releasing trifluoroalkyl acrylates from the nickellacycle, which explains why only negligible amounts of the desired product were detected in the experiment. In addition, we investigated the non-productive pathways leading to byproducts, such as propionic acid, propionates and ion pair complexes, etc. By comparing the results obtained with CH3I, the use of C2H5I as an electrophilic reagent may stabilize the non-productive intermediates. The methylene linkage has little effect on the main productive pathway. However, it has a significant influence on the side reactions, which is detrimental to the formation of alkyl acrylate in competing with the main productive pathway.
Collapse
Affiliation(s)
- Youcai Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yue Mu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Li Sun
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zuoxiang Zeng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Green Energy by Hydrogen Production from Water Splitting, Water Oxidation Catalysis and Acceptorless Dehydrogenative Coupling. INORGANICS 2023. [DOI: 10.3390/inorganics11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
In this review, we want to explain how the burning of fossil fuels is pushing us towards green energy. Actually, for a long time, we have believed that everything is profitable, that resources are unlimited and there are no consequences. However, the reality is often disappointing. The use of non-renewable resources, the excessive waste production and the abandonment of the task of recycling has created a fragile thread that, once broken, may never restore itself. Metaphors aside, we are talking about our planet, the Earth, and its unique ability to host life, including ourselves. Our world has its balance; when the wind erodes a mountain, a beach appears, or when a fire devastates an area, eventually new life emerges from the ashes. However, humans have been distorting this balance for decades. Our evolving way of living has increased the number of resources that each person consumes, whether food, shelter, or energy; we have overworked everything to exhaustion. Scientists worldwide have already said actively and passively that we are facing one of the biggest problems ever: climate change. This is unsustainable and we must try to revert it, or, if we are too late, slow it down as much as possible. To make this happen, there are many possible methods. In this review, we investigate catalysts for using water as an energy source, or, instead of water, alcohols. On the other hand, the recycling of gases such as CO2 and N2O is also addressed, but we also observe non-catalytic means of generating energy through solar cell production.
Collapse
|
6
|
Bezerra WDA, Milani JLS, Franco CHDJ, Martins FT, de Fátima Â, da Mata ÁFA, das Chagas RP. Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Milani JLS, da Mata ÁFA, Oliveira IS, Valdo AKSM, Martins FT, Rabelo R, Cangussu D, Cano J, Lloret F, Julve M, das Chagas RP. Single-molecule magnet behaviour and catalytic properties of tetrahedral Co(II) complexes bearing chloride and 1,2-disubstituted benzimidazole as ligands. Dalton Trans 2022; 51:12258-12270. [PMID: 35895288 DOI: 10.1039/d2dt01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.
Collapse
Affiliation(s)
- Jorge Luiz Sônego Milani
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Departamento de Química, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, MG, Brazil.
| | | | | | - Ana Karoline Silva Mendanha Valdo
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Instituto Federal Goiano, IF Goiano, Iporá, GO, Brazil
| | | | - Renato Rabelo
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil.
| | - Joan Cano
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Francesc Lloret
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Miguel Julve
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | | |
Collapse
|
8
|
Razaghi M, Khorasani M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ma J, Wu Y, Yan X, Chen C, Wu T, Fan H, Liu Z, Han B. Efficient synthesis of cyclic carbonates from CO 2 under ambient conditions over Zn(betaine) 2Br 2: experimental and theoretical studies. Phys Chem Chem Phys 2022; 24:4298-4304. [PMID: 35107469 DOI: 10.1039/d1cp05553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is very interesting to synthesize high value-added chemicals from CO2 under mild conditions with low energy consumption. Here, we report that a novel catalyst, Zn(betaine)2Br2, can efficiently promote the cycloaddition of CO2 with epoxides to synthesize cyclic carbonates under ambient conditions (30 °C, 1 atm). DFT calculations provide important insights into the mechanism, particularly the unusual synergistic catalytic action of Zn2+, Br- and NR4+, which is the critical factor for the outstanding performance of Zn(betaine)2Br2. The unique features of the catalyst are that it is cheap, green and very easy to prepare.
Collapse
Affiliation(s)
- Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Guo L, Xiong Y, Zhang R, Zhan H, Chang D, Yi L, Chen J, Wu X. Catalytic coupling of CO2 and epoxides by lignin-based catalysts: A combined experimental and theoretical study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022. [DOI: 10.3390/catal12020124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This review is dedicated to the state-of-the art routes used for the synthesis of CO2-based (a)cyclic carbonates and polycarbonates from alcohol substrates, with an emphasis on their respective main advantages and limitations. The first section reviews the synthesis of organic carbonates such as dialkyl carbonates or cyclic carbonates from the carbonation of alcohols. Many different synthetic strategies have been reported (dehydrative condensation, the alkylation route, the “leaving group” strategy, the carbodiimide route, the protected alcohols route, etc.) with various substrates (mono-alcohols, diols, allyl alcohols, halohydrins, propargylic alcohols, etc.). The second section reviews the formation of polycarbonates via the direct copolymerization of CO2 with diols, as well as the ring-opening polymerization route. Finally, polycondensation processes involving CO2-based dimethyl and diphenyl carbonates with aliphatic and aromatic diols are described.
Collapse
|
12
|
Zhu Y, Ding X, Sun L, Liu Z. Advances in the Production of Acrylic Acid and Its Derivatives by CO 2/C 2H 4 Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhu Y, Guo X, Ding X, Sun L, Zhang M, Liu Z. Understanding the acrylates formation from CO2 and ethylene over Ni- and Pd-based catalysts: A DFT study on the effects of solvents, methyl halides, and ligands. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
15
|
Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
|
17
|
Rong Q, Liu XB, Chen C, Hu YL. Novel and Sustainable Solvent‐Free Synthesis of 2‐Oxazolidinones Using Periodic Mesoporous Organosilica‐Supported Triazolium Ionic Liquids as Highly Active Catalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202103442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qi Rong
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002 Hubei province P. R. China
| | - Xiao Bing Liu
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 P. R. China
| | - Chen Chen
- College of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002 Hubei province P. R. China
| |
Collapse
|
18
|
Aomchad V, Del Gobbo S, Yingcharoen P, Poater A, D’Elia V. Exploring the potential of group III salen complexes for the conversion of CO2 under ambient conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Rios Yepes Y, Mesías-Salazar Á, Becerra A, Daniliuc CG, Ramos A, Fernández-Galán R, Rodríguez-Diéguez A, Antiñolo A, Carrillo-Hermosilla F, Rojas RS. Mono- and Dinuclear Asymmetric Aluminum Guanidinates for the Catalytic CO2 Fixation into Cyclic Carbonates. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yersica Rios Yepes
- Laboratorio de Química Inorgánica, Facultad de Química, Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| | - Ángela Mesías-Salazar
- Laboratorio de Química Inorgánica, Facultad de Química, Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| | - Alexandra Becerra
- Laboratorio de Química Inorgánica, Facultad de Química, Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Alberto Ramos
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rafael Fernández-Galán
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
| | - Antonio Antiñolo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Fernando Carrillo-Hermosilla
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - René S. Rojas
- Laboratorio de Química Inorgánica, Facultad de Química, Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| |
Collapse
|
20
|
Bresciani G, Bortoluzzi M, Pampaloni G, Marchetti F. Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. Org Biomol Chem 2021; 19:4152-4161. [PMID: 33881440 DOI: 10.1039/d1ob00458a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The catalytic potential of ammonium halide salts was explored in the coupling reaction of a model aziridine with carbon dioxide, highlighting the superior activity of [NH2Et2]I. Then, working at room temperature, atmospheric CO2 pressure and in the absence of solvent, the [NH2Et2]I-catalyzed synthesis of a series of 5-aryl-2-oxazolidinones was accomplished in good to high yields and excellent selectivity, from 2-aryl-aziridines with N-methyl or N-ethyl groups. NMR studies and DFT calculations outlined the pivotal role of both the diethylammonium cation and the iodide anion. The proposed method represents a convenient choice for obtaining a limited number of valuable molecules for which more complex and more expensive catalytic systems have been reported even in recent years.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Marco Bortoluzzi
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy. and University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| |
Collapse
|
21
|
Xu J, Xian A, Li Z, Liu J, Zhang Z, Yan R, Gao L, Liu B, Zhao L, Guo K. A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C-H H-Bonding Organocatalysis. J Org Chem 2021; 86:3422-3432. [PMID: 33512164 DOI: 10.1021/acs.joc.0c02790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cycloadditions of carbon dioxide into epoxides to afford cyclic carbonates by H-bond donor (HBD) and onium halide (X) cocatalysis have emerged as a key strategy for CO2 fixation. However, if the HBD is also a halide receptor, the two will quench each other, decreasing the catalytic activity. Here, we propose a strained ion pair tris(alkylamino)cyclopropenium halide (TAC·X), in which TAC repels X. TAC possesses a positively charged cyclopropenium core that makes the vicinal C-H or N-H a nonclassical HBD. The interionic strain within TAC·X makes TAC a more electrophilic HBD, allowing it to activate the oxygen of the epoxide and making X more nucleophilic and better able to attack the methylene carbon of the epoxide. NMR titration spectra and computational studies were employed to probe the mechanism of the cycloaddition of CO2 to epoxides reactions under the catalysis of TAC·X. The 1H and 13C{1H}NMR titration spectra of the catalyst with the epoxide substrate unambiguously confirmed H-bonding between TAC and the epoxide. DFT computational studies identified the transition states in the ring-opening of the epoxide (TS1) and in the ring-closure of the cyclic carbonate (TS2).
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Anmei Xian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Zhihao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Rui Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Luoyu Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Bo Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, Jiangsu 211816, China
| |
Collapse
|
22
|
Ghosh D, Kumar GR, Subramanian S, Tanaka K. More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. CHEMSUSCHEM 2021; 14:824-841. [PMID: 33369102 DOI: 10.1002/cssc.202002660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Stoichiometric carbon dioxide reduction to highly reduced C1 molecules, such as formic acid (2e- ), formaldehyde (4e- ), methanol (6e- ) or even most-reduced methane (8e- ), has been successfully achieved by using organosilanes, organoboranes, and frustrated Lewis Pairs (FLPs) in the presence of suitable catalyst. The development of renewable organohydride compounds could be the best alternative in this regard as they have shown promise for the transfer of hydride directly to CO2 . Reduction of CO2 by two electrons and two protons to afford formic acid by using renewable organohydride molecules has recently been investigated by various groups. However, catalytic CO2 reduction to ≥2e- -reduced products by using renewable organohydride-based molecules has rarely been explored. This Minireview summarizes important findings in this regard, encompassing both stoichiometric and catalytic CO2 reduction.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore, 560027, Karnataka, India
| | - George Rajendra Kumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Saravanan Subramanian
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koji Tanaka
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Applied Chemistry, College of Life Science, Ritsumeikan University, 525-8577 Noji-higashi, 1-1-1, Kusatsu, Shiga, Japan
| |
Collapse
|
23
|
Yan R, Chen K, Li Z, Qu Y, Gao L, Tong H, Li Y, Li J, Hu Y, Guo K. Fixation of CO 2 into Cyclic Carbonates by Halogen-Bonding Catalysis. CHEMSUSCHEM 2021; 14:738-744. [PMID: 33210437 DOI: 10.1002/cssc.202002525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Halogen bonding, parallel to hydrogen bonding, was introduced into the catalytic cycloaddition of carbon dioxide into epoxide (CCE) reactions. A series of halogen-bond donor (XBD) catalysts of N-iodopyridinium halide featured with N-I bond were synthesized and evaluated in CCE reactions. The optimal XBD catalyst, 4-(dimethylamino)-N-iodopyridinium bromide ([DMAPI]Br), under screened conditions at 100 °C, ambient pressure, and 1 mol % catalyst loading, realized 93 % conversion of styrene oxide into cyclic carbonate in 6 h. The substrate scope was successfully extended with excellent yields (mostly ≥93 %) and quantitative selectivity (more than 99 %). 1 H NMR spectroscopy of the catalyst [DMAPI]Br on substrate epoxide certified that the N-I bond directly coordinated with the epoxide oxygen. A plausible mechanism of halogen-bonding catalysis was proposed, in which the DMAPI cation functioned as halogen-bond donor to activate the epoxide, and the counter anion bromide attacked the methylene carbon to initiate the ring-opening of the epoxide. CCE reactions promoted by N-iodopyridinium halide, exemplify a first case of halogen-bonding catalysis in epoxide activation and CO2 transformation.
Collapse
Affiliation(s)
- Rui Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Kai Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Yuanyuan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Luoyu Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Haoying Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Yongqiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Jie Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Yongzhu Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing, 211816, P.R. China
| |
Collapse
|
24
|
Natongchai W, Luque-Urrutia JA, Phungpanya C, Solà M, D'Elia V, Poater A, Zipse H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 2021. [DOI: 10.1039/d0qo01327g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New highly nucleophilic homogeneous and heterogeneous catalysts based on the 3,4-diaminopyridine scaffold are reported for the halogen-free cycloaddition of CO2 to epoxides.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Hendrik Zipse
- Department Chemie
- Ludwig-Maximilians-Universität München
- 81377 München
- Germany
| |
Collapse
|
25
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
26
|
Lin XT, Matsumoto K, Maegawa Y, Takeuchi K, Fukaya N, Sato K, Inagaki S, Choi JC. Immobilized Zn(OAc) 2 on bipyridine-based periodic mesoporous organosilica for N-formylation of amines with CO 2 and hydrosilanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01204e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zn(OAc)2 immobilized on bipyridine-based periodic mesoporous organosilica is a good catalyst for N-formylation of amines with CO2 and PhSiH3.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| |
Collapse
|
27
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
28
|
Voit G, Jenthra S, Hölscher M, Weyhermüller T, Leitner W. Reversible Insertion of Carbon Dioxide at Phosphine Sulfonamido PdII–Aryl Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregor Voit
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Sangeth Jenthra
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Bresciani G, Antico E, Ciancaleoni G, Zacchini S, Pampaloni G, Marchetti F. Bypassing the Inertness of Aziridine/CO 2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. CHEMSUSCHEM 2020; 13:5586-5594. [PMID: 32902136 DOI: 10.1002/cssc.202001823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2 . The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases.
Collapse
Affiliation(s)
- Giulio Bresciani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Emanuele Antico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
30
|
Tolzmann M, Schürmann L, Hepp A, Uhl W, Layh M. Hydrosilylation and Hydrogermylation of CO
2
and CS
2
by Al and Ga Functionalized Silanes and Germanes – Cooperative Reactivity with Formation of Silyl Formates and Disilylacetals. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Tolzmann
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Lina Schürmann
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Werner Uhl
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| |
Collapse
|
31
|
Shen N, Zhai SJ, Cheung CW, Ma JA. Direct N-formylation of nitroarenes with CO 2. Chem Commun (Camb) 2020; 56:9620-9623. [PMID: 32691036 DOI: 10.1039/d0cc03098h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we describe a straightforward N-formylation of nitroarenes with CO2 to access N-aryl formamides exclusively in the presence of iron and hydrosilane as additives. This protocol showcases a good tolerance of a wide range of nitroarenes and nitroheteroarenes.
Collapse
Affiliation(s)
- Ni Shen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.
| | | | | | | |
Collapse
|
32
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
33
|
|
34
|
Li W, Chen L, Lin Z, Man S, Qin X, Lyu Y, Li C, Leng G. Theoretical Characterization of Catalytically Active Species in Reductive Hydroxymethylation of Styrene with CO 2 over a Bisphosphine-Ligated Copper Complex. Inorg Chem 2020; 59:9667-9682. [PMID: 32585105 DOI: 10.1021/acs.inorgchem.0c00861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, a density functional theory (DFT) study was performed to identify the catalytically active species in the copper-catalyzed three-component reductive hydroxymethylation of styrene with CO2 and hydrosilane. The calculations reveal that the dimeric copper(I) hydride species, formed in a mixture of the bisphosphine ligand, Cu(OAc)2, and hydrosilane, probably acts as the catalyst precursor. In the beginning, this species is catalytically competent to trigger the hydrocupration of styrene, along with the formation of the dimeric copper(I) alkyl intermediate. Subsequently, CO2 insertion into the dimeric copper(I) alkyl intermediate occurs, which is accompanied by the cleavage of the Cu-Cu bond and the generation of the monomeric copper(I) carboxylate intermediate. In the end, the sequential reduction of the monomeric copper(I) carboxylate intermediate with the hydrosilane produces the monomeric copper(I) hydride species as the actual catalyst and turns on the catalytic cycle. On the other hand, the monomeric copper(II) hydride species, yielded as the kinetic product in the initial reaction of the bisphosphine ligand, Cu(OAc)2, and hydrosilane, is also reactive for the hydrocupration of styrene. However, the resulting monomeric copper(II) alkyl intermediate is found to be the catalyst resting state, because of the much higher energy barrier demanded for the subsequent nucleophilic attack toward CO2. On the basis of the results of an activation-strain model (ASM) analysis and charge decomposition analysis (CDA), the low activity of the monomeric copper(II) alkyl intermediate can be ascribed to the more crowded environment around the central copper(II) ion and the weaker nucleophilicity of the alkyl moiety. Furthermore, all of the possible CuH species generated in the system are competent to promote the two-component hydrosilylation of CO2 with hydrosilane, which is an inevitable side reaction along with the reductive hydroxymethylation of styrene with CO2 and hydrosilane.
Collapse
Affiliation(s)
- Weiyi Li
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Liqiong Chen
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Zhenyi Lin
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Shanyou Man
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Xi Qin
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Yajing Lyu
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu, Sichuan 610039, People's Republic of China
| | - Caiqin Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, People's Republic of China
| | - Geng Leng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| |
Collapse
|
35
|
Lakliang Y, Mankad NP. Heterometallic Cu2Fe and Zn2Fe2 Complexes Derived from [Fe(CO)4]2– and Cu/Fe Bifunctional N2O Activation Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
36
|
Li M, Abdolmohammadi S, Hoseininezhad-Namin MS, Behmagham F, Vessally E. Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Brege A, Méreau R, McGehee K, Grignard B, Detrembleur C, Jerome C, Tassaing T. The coupling of CO2 with diols promoted by organic dual systems: Towards products divergence via benchmarking of the performance metrics. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Natongchai W, Pornpraprom S, D' Elia V. Synthesis of Bio‐Based Cyclic Carbonates Using a Bio‐Based Hydrogen Bond Donor: Application of Ascorbic Acid to the Cycloaddition of CO
2
to Oleochemicals. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| | - Suriyaporn Pornpraprom
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| | - Valerio D' Elia
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| |
Collapse
|
39
|
Shaikh AR, Ashraf M, AlMayef T, Chawla M, Poater A, Cavallo L. Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137239] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Mu J, Liu J, Ran Z, Arif M, Gao M, Wang C, Ji S. Critical Role of CUS in the Au/MOF-808(Zr) Catalyst for Reaction of CO 2 with Amine/H 2 via N-Methylation and N-Formylation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jincheng Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of XPCC, Tarim University, Xinjiang, Alar 843300, China
| | - Jianfang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenzhen Ran
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Arif
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
41
|
A copper complex based catalytic conversion and isolation of carbonate from CO2 for the carbon sequestration process. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Huang W, Roisnel T, Dorcet V, Orione C, Kirillov E. Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates of Group 13 and 12 Elements. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Weiheng Huang
- Organometallics: Materials and Catalysis laboratories, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
| | - Thierry Roisnel
- Centre de diffraction X, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
| | - Vincent Dorcet
- Centre de diffraction X, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
| | - Clement Orione
- CRMPO, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
| | - Evgueni Kirillov
- Organometallics: Materials and Catalysis laboratories, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
| |
Collapse
|
43
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Si D, Song X, Li H, Ji M, Shi Y, Hao C. Study of the mechanisms of dialkyl carbonates directly formed from carbon dioxide and alcohols: New insights from kinetic and thermodynamic processes. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ghosh S, Ghosh A, Riyajuddin S, Sarkar S, Chowdhury AH, Ghosh K, Islam SM. Silver Nanoparticles Architectured HMP as a Recyclable Catalyst for Tetramic Acid and Propiolic Acid Synthesis through CO
2
Capture at Atmospheric Pressure. ChemCatChem 2020. [DOI: 10.1002/cctc.201901461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Swarbhanu Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani Nadia 741235, W.B. India
| | - Aniruddha Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani Nadia 741235, W.B. India
| | - Sk Riyajuddin
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| | - Somnath Sarkar
- Department of ChemistryUniversity of Kalyani Kalyani Nadia 741235, W.B. India
| | | | - Kaushik Ghosh
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| | - Sk. Manirul Islam
- Department of ChemistryUniversity of Kalyani Kalyani Nadia 741235, W.B. India
| |
Collapse
|
46
|
Yingcharoen P, Natongchai W, Poater A, D' Elia V. Intertwined chemistry of hydroxyl hydrogen-bond donors, epoxides and isocyanates in the organocatalytic synthesis of oxazolidinones versus isocyanurates: rational catalytic investigation and mechanistic understanding. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00987c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficiency and chemoselectivity of the cycloaddition of isocyanates to epoxides to afford oxazolidinones were investigated using hydroxyl hydrogen-bond donors as organocatalysts.
Collapse
Affiliation(s)
- Prapussorn Yingcharoen
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D' Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| |
Collapse
|
47
|
Wang L, Que S, Ding Z, Vessally E. Oxidative carboxylation of olefins with CO2: environmentally benign access to five-membered cyclic carbonates. RSC Adv 2020; 10:9103-9115. [PMID: 35496570 PMCID: PMC9050038 DOI: 10.1039/c9ra10755j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this focus review is to provide a comprehensive overview of the direct synthesis of five-membered cyclic carbonates via oxidative carboxylation of the corresponding olefins and carbon dioxide with particular attention on the mechanistic features of the reactions. The review is divided into two main sections. The first section is a discussion of the single-step reactions, while the second consists of an overview of one-pot, two-step sequential reactions. This review provides an overview of the direct synthesis of five-membered cyclic carbonates via oxidative carboxylation of the corresponding olefins and carbon dioxide.![]()
Collapse
Affiliation(s)
- Liang Wang
- State Key Lab of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
| | - Sisi Que
- State Key Lab of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- State Key Laboratory of Coal Resources in Western China
| | - Ziwei Ding
- State Key Laboratory of Coal Resources in Western China
- Xi'an University of Science and Technology
- Xi'an
- China
| | | |
Collapse
|
48
|
Fixation of CO2 in structurally diverse quinazoline-2,4(1H,3H)-diones under ambient conditions. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Milani JLS, Bezerra WDA, Valdo AKSM, Martins FT, Camargo LTFDM, Carvalho-Silva VH, dos Santos SS, Cangussu D, das Chagas RP. Zinc complexes with 1,2-disubstituted benzimidazole ligands: Experimental and theoretical studies in the catalytic cycloaddition of CO2 with epoxides. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Ojeda‐Amador AI, Munarriz J, Alamán‐Valtierra P, Polo V, Puerta‐Oteo R, Jiménez MV, Fernández‐Alvarez FJ, Pérez‐Torrente JJ. Mechanistic Insights on the Functionalization of CO
2
with Amines and Hydrosilanes Catalyzed by a Zwitterionic Iridium Carboxylate‐Functionalized Bis‐NHC Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ana I. Ojeda‐Amador
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Julen Munarriz
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Pablo Alamán‐Valtierra
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Víctor Polo
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Raquel Puerta‐Oteo
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| |
Collapse
|