1
|
Le TH, Burns KT, Jana M, Arnold HA, Vann CR, Darensbourg MY. From [2Mn2S] Diamond Cores to Butterfly Rhombs: Transformations That Highlight Alternating Peptide Binding Sites. Inorg Chem 2024. [PMID: 39450645 DOI: 10.1021/acs.inorgchem.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Thiocarboxamide chelates are known to assemble [2Mn2S] diamond core complexes via μ-S bridges that connect two MnI(CO)3 fragments. These can exist as syn- and anti-isomers and interconvert via 16-electron, monomeric intermediates. Herein, we demonstrate that reduction of such Mn2 derivatives leads to a loss of one thiocarboxamide ligand and a switch of ligand binding mode from an O- to N-donor of the amide group, yielding a dianionic butterfly rhomb with a short Mn0-Mn0 distance, 2.52 Å. Structural and chemical analyses suggest that reduction of the Mn(I) centers is dependent on the protonation state of the amide-H, as total deprotonation followed by reduction does not result in the reduction of the Mn2 core. Partial deprotonation followed by reduction suggests a pathway that involves monomeric Mn(CO)3(S-O) and Mn(CO)3(S-N) intermediates. Ligand modifications to tertiary amides that remove the possibility of amide-H reduction led to complexes that preserve the [2Mn2S] diamond core during chemical reduction. Further comparison with the tethered system, linking the Mn(CO)3(S-O) sites together, suggests that dimer dissociation is necessary for the overall reductive transformation. These results highlight organomanganese carbonyl chemistry to establish illustrations of peptide fragment binding modes in the uptake of low-valent metal carbonyls related to binuclear active sites of biocatalysts.
Collapse
Affiliation(s)
- Trung H Le
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Kyle T Burns
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Heather A Arnold
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Connor R Vann
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
2
|
Zhang YK, Zhao L, Xie WJ, Li HR, He LN. Mononuclear Iron Pyridinethiolate Complex Promoted CO 2 Photoreduction via Rapid Intramolecular Electron Transfer. CHEMSUSCHEM 2024; 17:e202400090. [PMID: 38426643 DOI: 10.1002/cssc.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
Designing earth-abundant metal complexes as efficient molecular photocatalysts for visible light-driven CO2 reduction is a key challenge in artificial photosynthesis. Here, we demonstrated the first example of a mononuclear iron pyridine-thiolate complex that functions both as a photosensitizer and catalyst for CO2 reduction. This single-component bifunctional molecular photocatalyst efficiently reduced CO2 to formate and CO with a total turnover number (TON) of 46 and turnover frequency (TOF) of 11.5 h-1 in 4 h under visible light irradiation. Notably, the quantum yield was determined to be 8.4 % for the generation of formate and CO at 400 nm. Quenching experiments indicate that high photocatalytic activity is mainly attributed to the rapid intramolecular quenching protocol. The mechanism investigation by DFT calculation and electrochemical studies revealed that the protonation of Febpy(pyS)2 is indispensable step for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yong-Kang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Jun Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong-Ru Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
4
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Cohen KY, Nedd DG, Evans R, Bocarsly AB. Mechanistic insights into CO 2 conversion to CO using cyano manganese complexes. Dalton Trans 2023. [PMID: 37183860 DOI: 10.1039/d3dt00891f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Without the use of a photosensitizer, [Mn(bpy)(CO)3(CN)] (MnCN) can photochemically form [Mn(bpy)(CO)3]-, the active species for CO2 reduction. While cases of the axial X-ligand dissociating upon irradiation of fac-[M(N-N)(CO)3X] complexes (M = Mn or Re; N-N = bipyridine (bpy) ligand; X = halogen or pseudohalogen) are well documented, the axial cyanide ligand is retained when either [Mn(bpy)(CO)3(CN)] or [Mn(mesbpy)(CO)3(CN)], MnCN(mesbpy), are irradiated anaerobically. Infrared and UV-vis spectroscopies indicate the formation of [Mn(bpy)(CO)2(MeCN)(CN)] (s-MnCN) as the primary product during the irradiation of MnCN. An in-depth analysis of the photochemical mechanism for the formation of [Mn(bpy)(CO)3]- from MnCN is presented. MnCN(mesbpy) is too sterically hindered to undergo the same photochemical mechanism as MnCN. However, MnCN(mesbpy) is found to be electrocatalytically active for CO2 reduction to CO. Thus providing an interesting distinction between photochemical and electrochemical charge transfer.
Collapse
Affiliation(s)
- Kailyn Y Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Delaan G Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Andrew B Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
6
|
Photocatalytic reduction of CO2 to CO using nickel(II)-bipyridine complexes with different substituent groups as catalysts. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Li NX, Chen YM, Xu QQ, Yang Z. Photocatalytic Reduction of CO2 to CO Using Manganese Complexes with Bipyridine Modified Electron-Donating Groups. Catal Letters 2022. [DOI: 10.1007/s10562-022-04226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Le TH, Nguyen H, Arnold HA, Darensbourg DJ, Darensbourg MY. Chirality-Guided Isomerization of Mn 2S 2 Diamond Core Complexes: A Mechanistic Study. Inorg Chem 2022; 61:16405-16413. [PMID: 36194618 DOI: 10.1021/acs.inorgchem.2c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Occasioned by the discovery of a ligand transfer from M(N2S2) to MnI in Mn(CO)5Br, the resulting H2N2S2 ligand-tethered dimanganese complex, (μ4-N,N'-ethylenebis(mercaptoacetamide))[Mn2(CO)6], was found to have myriad analogues of the type (μ-S-E)2[Mn2(CO)6], making up an under-studied class containing Mn2S2 rhombs. The attempt to synthesize a nontethered version resulted in a solid-state structure in an anti-conformation. However, a direct comparison of the Fourier-transform infrared spectra of the tethered versus nontethered complexes in combination with theoretical frequency calculation suggested the coexistence of syn- and anti-isomers and their interconversion in solution. Analysis of the syn- versus anti-version of the dimanganese components led to the understanding that whereas the anti-form exists as centrosymmetric RS isomers, the syn-form is restricted by C2 symmetry to be either RR or SS. Molecular scrambling experiments indicated monomeric, pentacoordinate, 16-e- (S-O)Mn(CO)3 intermediates with lifetimes sufficiently long to sample R and S monomers. Density functional theory analysis of the mechanistic pathway and a kinetic study corroborated that the proposed isomerization involves the cleavage and reformation of the dimeric structures.
Collapse
Affiliation(s)
- Trung H Le
- Department of Chemistry, Texas A&M University, College StationTexas77845, United States
| | - Hao Nguyen
- Department of Chemistry, Texas A&M University, College StationTexas77845, United States
| | - Heather A Arnold
- Department of Chemistry, Texas A&M University, College StationTexas77845, United States
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College StationTexas77845, United States
| | | |
Collapse
|
9
|
Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three new cyanide-bridged heterometallic complexes {{[Cu(S,S-Chxn)2][Fe(bbp)(CN)3]}2·2 H2O}
n
(1), {{[Cu(R,R-Chxn)2][Fe(bbp)(CN)3]}2·2 H2O}
n
(2) and {{[Cu(Cycam)][Fe(bbp)(CN)3]}·CH3OH·2 H2O}
n
(3) (bbp = bis(2-benzimidazolyl)pyridine dianion, Chxn = 1,2-diaminocyclo hexane, cyclam = 1,4,8,11-tetraazacyclodecane) have been assembled from the rarely used mer-tricyanidoiron(III) building block [PPh4]2[Fe(bbp)(CN)3] and three copper(II) compounds. The complexes have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. For the chiral enantiomers 1 and 2, the circular dichroism (CD) spectrum was also investigated. X-ray structural analyses revealed that the structures of the cyanide-bridged Fe-Cu complexes 1 and 2 are characterized by two crystallographically independent but structurally very similar homochiral neutral chains, each consisting of the repeating units {[Cu(S,S-Chxn)2][Fe(bbp)(CN)3]} (1) or {[Cu(R,R-Chxn)2][Fe(bbp)(CN)3]} (2). The crystal structure of 3 likewise is build up of chains consisting of {[Cu(Cyclam)][Fe(bbp)(CN)3]} building blocks. The temperature-dependent magnetic susceptibility and field dependent magnetization of the complexes showed antiferromagnetic interactions in complex 1 between the Fe(III) and Cu(II) ions, while complex 3 is ferromagnetic, indicating that the magnetic coupling through cyanide linkage is very sensitive to the structure parameters around the paramagnetic metal ions. These results have been further confirmed by fitting of the experimental data using a uniform chain model, leading to the coupling constants J = −6.35 cm−1, g = 2.08, R = 4.42 × 10−4 and J = 1.24 cm−1, g = 2.09, R = ∑(χ
obsd
T − χ
cald
T)2/∑(χ
obsd
T)2 = 4.67 × 10−4 for complexes 1 and 3, respectively.
Collapse
|
10
|
Scherpf T, Carr CR, Donnelly LJ, Dubrawski ZS, Gelfand BS, Piers WE. A Mesoionic Carbene-Pyridine Bidentate Ligand That Improves Stability in Electrocatalytic CO 2 Reduction by a Molecular Manganese Catalyst. Inorg Chem 2022; 61:13644-13656. [PMID: 35981323 DOI: 10.1021/acs.inorgchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tricarbonyl Group 7 complexes have a longstanding history as efficacious CO2 electroreduction catalysts. Typically, these complexes feature an auxiliary 2,2'-bipyridine ligand that assists in redox steps by delocalizing the electron density into the ligand orbitals. While this feature lends to an accessible redox potential for CO2 electroreduction, it also presents challenges for electrocatalysis with Mn because the electron density is removed from metal-ligand bonding orbitals. The results presented here thus introduce a mesoionic carbene (MIC) as a potent ligand platform to promote Mn-based electrocatalysis. The strong σ donation of the N,C-bidentate MIC is shown to help centralize the electron density on the Mn center while also maintaining relevant redox potentials for CO2 electroreduction. Mechanistic investigation supports catalytic turnover at two operative potentials separated by 400 mV. In the low operating potential regime at -1.54 V, Mn(0) species catalyze CO2 to CO and CO32-, which has a maximum rate of 7 ± 5 s-1 and is stable for up to 30.7 h. At higher operating potential at -1.94 V, "Mn(-1)" catalyzes CO2 to CO and H2O with faster turnovers of 200 ± 100 s-1, with the trade-off being less stability at 6.7 h. The relative stabilities of Mn complexes bearing MIC and 4,4'-di-tert-butyl-2,2'-bipyridine were compared by evaluation under the same electrolysis conditions and therefore elucidated that the MIC promotes longevity for CO evolution throughout a 5 h period.
Collapse
Affiliation(s)
- Thorsten Scherpf
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Cody R Carr
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Laurie J Donnelly
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
12
|
Qiu LQ, Yang ZW, Yao X, Li XY, He LN. Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrromethene-BF 2 Chromophores for Visible Light-Driven CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200337. [PMID: 35470575 DOI: 10.1002/cssc.202200337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Indexed: 06/14/2023]
Abstract
New rhenium bipyridyl complexes with dipyrromethene-BF2 chromophores (A-ReBDP-CZ, A-ReBDP2 , ReBDP-CZ, and ReBDP2 ) were developed for highly efficient photocatalytic carbon dioxide (CO2 ) reduction to carbon monoxide (CO). These catalysts consisted of two moderate electron-deficient groups (dipyrromethene-BF2 , BDP) as the visible-light-harvesting antenna as well as both electron donor (N-phenylcarbazole, CZ) and acceptor (BDP) on Re bipyridyl framework. Among ReBDP-CZ and ReBDP2 complexes, the ReBDP2 incorporating two electron-deficient BDP chromophores had a longer-lived photoexcited state (182.4 μs) and a twofold enhanced molar absorption coefficient (ϵ=157000 m-1 cm-1 ) compared with ReBDP-CZ. Thus, ReBDP2 achieved the superior photocatalytic reactivity and stability with a CO turnover number (TONCO ) value as high as 1323 and quantum yield (ΦCO ) up to 55 %, which was the most excellent photocatalysis efficiency among the single-active-site Re catalysts without additional photosensitizer. Furthermore, the acetylene-bridged linker was detrimental to the photoactivity and durability of the catalyst. In brief, two BDP-based Re bipyridyl systems with outstanding catalytic performance and significant visible-light-harvesting capabilities in the solar spectrum offer a promising strategy for solar-to-fuel conversion schemes.
Collapse
Affiliation(s)
- Li-Qi Qiu
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Zhi-Wen Yang
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Xiangyang Yao
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Xiao-Yang Li
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Liang-Nian He
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
13
|
Gong Y, Pan J, Zhang L, Wang X, Song S, Zhang H. Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cohen KY, Evans R, Dulovic S, Bocarsly AB. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO 2 Conversion to Fuels and Feedstocks. Acc Chem Res 2022; 55:944-954. [PMID: 35290017 DOI: 10.1021/acs.accounts.1c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our global society generates an unwieldy amount of CO2 per unit time. Therefore, the capture of this greenhouse gas must involve a diverse set of strategies. One solution to this problem is the conversion of CO2 into a more useful chemical species. Again, a multiplicity of syntheses and products will be necessary. No matter how elegant the chemistry is, commercial markets often have little use for a small set of compounds made in tremendous yield. Following this reasoning, the Bocarsly Research Group seeks to develop new electrochemical and photochemical processes that may be of utility in the conversion of CO2 to organic compounds. We focus on investigating proton-coupled charge transfer mechanisms that produce both C1 and carbon-carbon bonded products (C2+).In early work, we considered the reduction of CO2 to formate at electrocatalytic indium and tin electrodes. These studies demonstrated the key role of surface oxides in catalyzing the reduction of CO2. This work generated efficient systems for the formation of formate and paved the way to studies using non-copper, intermetallic electrocatalysts for the generation of C2+ species. Most notable is the efficient formation of oxalate at an oxidized Cr3Ga electrode. Oxalate has recently been suggested as a potential nonfossil, alternate organic feedstock.Separately, we have focused on the electrocatalytic effects of pyridine on the reduction of CO2 in aqueous electrolyte. These studies demonstrated that electrodes that normally yield a low hydrogen overpotential (Pd and Pt) show suppressed H2 evolution and strongly enhanced activity for CO2 reduction in the presence of pyridinium. Methanol was observed to form in high Faradaic yield at low overpotential using this system. The 6-electron, 6-proton reduction of CO2 in the presence of pyridinium was intriguing, and significant effort was placed on understanding the mechanism of this reaction both on metal electrodes and on semiconducting photocathodes. P-GaP electrodes were found to provide exceptional behavior for the formation of methanol using only light as the energy source.The pyridinium studies highlighted the role of protons in the overall reduction of CO2, stimulating our interest in the chemistry of MnBr(bpy)(CO)3 and related compounds. This complex was reported to electrochemically reduce CO2 to CO. We saw these reports as an opportunity to study the detailed nature of the proton-coupled electron transfer (PCET) mechanism associated with CO2 reduction. Our investigation of this system revealed the role of hydrogen-bonding in CO2 reduction and pointed the way for the construction of a photochemical process for CO generation using a [(bpy)(CO)3Mn(CN)Mn(bpy)(CO)3]+ photocatalyst.Based on our studies to date, it appears likely that heterogeneous systems can be assembled to convert CO2 into products that are "beyond C2 products." This may open up new practical chemistry in the area of fossil-based replacements for both synthesis and fuels. Systems with pragmatic efficiencies are close to reality. Electrochemical reactors using heterogeneous electrocatalysts show the stability and product selectivity needed to generate industrial opportunities. Continued growth of mechanistic understanding is expected to facilitate the chemical design of cogent systems for the taming of CO2.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca Evans
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephanie Dulovic
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew B. Bocarsly
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Huang Z, Dong Y, Jiang X, Wang F, Du CX, Li Y. Bifunctional Ligand Enabled Selective Alkoxycarbonylation of Aliphatic Alkenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yuan H, Du J, Ming M, Chen Y, Jiang L, Han Z. Combination of Organic Dye and Iron for CO 2 Reduction with Pentanuclear Fe 2Na 3 Purpurin Photocatalysts. J Am Chem Soc 2022; 144:4305-4309. [PMID: 35254816 DOI: 10.1021/jacs.1c13081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular photocatalysts designed with earth-abundant elements are rare and challenging in artificial photosynthesis study. Herein, we report a multimetallic Fe2Na3 purpurin (1) complex for the reduction of CO2 in DMF under visible-light irradiation. The photocatalytic system achieves 91% selectivity and 2625 ± 334 turnovers of CO in 120 h, which is among the highest reported for a noble-metal-free catalyst without an additional photosensitizer. UV-vis and electrochemical studies suggest that the mechanism involves subsequent reductions and protonations of 1 to generate [FeII2Na3((H)2PP)6]5- and [FeIII2Na3((H)2PP)6]3- as the active photocatalysts in CO2 reduction.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ya Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Siewert I. Electrochemical CO 2 Reduction Catalyzed by Binuclear LRe 2(CO) 6Cl 2 and LMn 2(CO) 6Br 2 Complexes with an Internal Proton Source. Acc Chem Res 2022; 55:473-483. [PMID: 35077152 DOI: 10.1021/acs.accounts.1c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of certain commodity chemicals, e.g., methanol and acetic acid, relies on CO, which is currently mainly produced by the combustion of carbon or natural gas. Photo- or electrochemical conversion of atmospheric CO2 to CO represents an attractive alternative strategy as this approach is carbon-neutral. Such photo- or electrochemically formed CO can also be used in the Fischer-Tropsch process forming liquid hydrocarbons for energy storage applications. The multiple electroreduction of CO2 is preferably coupled with proton transfer steps as this requires less energy than the single outer-sphere 1e- reduction of CO2.In 1984 and 2011, it was shown that [(Lbpy)Re(CO)3Cl] (1) and [(Lbpy)Mn(CO)3Br] (2), respectively, mediate the electrochemical 2e-/2H+ reduction of CO2 forming CO and water (Lbpy = 2,2'-bipyridine). Since proton management is crucial for catalysis, recently the impact of internal proton sources close to the axial position in such complexes has been investigated. However, binuclear complexes have been used rarely as mediators although it has been shown very early for 1 that electron management is also important: the 2e-/2H+ reduction pathway with 1 exhibits a higher reaction rate than going via the singly reduced species, though the pathway requires a higher overpotential. In this Account, we focus on recent developments of binuclear LMn2(CO)6 and LRe2(CO)6 mediators with an internal phenol group in the electroreduction of CO2. In contrast to mononuclear derivatives, for which the impact of the internal proton source on catalysis is very diverse, we always observed a higher reaction rate and for the Mn complexes also a lower overpotential with the binuclear complexes compared to the mononuclear variants. Spectroscopic, electrochemical, and computational studies on the mono- and binuclear complexes shed light on their reactivity under reductive conditions, elucidated the structure of reduced species, unraveled the kinetics for catalytically productive and unproductive (side) reactions, and allowed us to derive some hypothesis on the CO2 reduction mechanism. Finally, I emphasize that the electrohydrogenation of the polar double bonds by the binuclear complex LMn2(CO)6 with a central phenol unit is not restricted to CO2 but is also applicable to organic compounds with C═O bonds.
Collapse
Affiliation(s)
- Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Cohen KY, Reinhold A, Evans R, Lee TS, Kuo HY, Nedd DG, Scholes GD, Bocarsly AB. Elucidating the mechanism of photochemical CO 2 reduction to CO using a cyanide-bridged di-manganese complex. Dalton Trans 2022; 51:17203-17215. [DOI: 10.1039/d2dt02506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex, [{[Mn(bpy)(CO)3]2}(μ-CN)]+ (Mn2CN+), has previously been shown to photochemically reduce CO2 to CO.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Adam Reinhold
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Tia S. Lee
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Hsin-Ya Kuo
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Delaan G. Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Gregory D. Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrew B. Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
19
|
Alexandru MG, Visinescu D, Cula B, Shova S, Rabelo R, Moliner N, Lloret F, Cano J, Julve M. A rare isostructural series of 3d-4f cyanido-bridged heterometallic squares obtained by assembling [Fe III{HB(pz) 3}(CN) 3] - and Ln III ions: synthesis, X-ray structure and cryomagnetic study. Dalton Trans 2021; 50:14640-14652. [PMID: 34581372 DOI: 10.1039/d1dt02512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of cyanido-bridged {FeIIILnIII}2 neutral molecular squares of general formula [Fe{HB(pz)3}(CN)(μ-CN)2Ln(NO3)2(pyim)(Ph3PO)]2·2CH3CN [Ln = Ce (1), Pr (2), Nd (3), Gd (4), Tb (5), Dy (6) and Er (7); {HB(pz)3}- = hydrotris(pyrazolyl)borate, pyim = 2-(1H-imidazol-2-yl)pyridine and Ph3PO = triphenylphosphine oxide] were obtained by reacting the low-spin [Fe{HB(pz)3}(CN)3]- species with the preformed [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ complex anions (generated in situ by mixing the nitrate salt of each Ln(III) ion with pyim and Ph3PO molecules). Single-crystal X-ray diffraction studies show that 1-7 are isostructural compounds that crystallize in the triclinic P1̄ space group. Their crystal structures consist of centrosymmetric cyanido-bridged {FeIIILnIII}2 molecular squares where two [Fe{HB(pz)3}(CN)3]- units adopt bis-monodentate coordination modes towards two [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ moieties. The cis-oriented convergent sites from both low-spin FeIII and LnIII fragments form a quasi square-shaped molecule in which the 3d and 4f ions alternatively occupy the corners of the square. Both FeIII ions show a distorted octahedral surrounding (C3v symmetry), whereas the LnIII ions exhibit a distorted muffin-like geometry (Cs symmetry) in 1-7. The intramolecular FeIII⋯LnIII distances across the two cyanido-bridges range from ca. 5.48/5.46 up to ca. 5.58/5.61 Å. The molecular squares in 1-7 are interlinked through hydrogen bonds, weak π⋯π stacking and very weak C-H⋯π type interactions into three-dimensional supramolecular networks. The analysis of the solid-state direct-current (dc) magnetic susceptibility data of 1-7 in the temperature range 1.9-300 K reveals the occurrence of weak intra- and intermolecular antiferromagnetic interactions. The small intramolecular antiferromagnetic couplings in 4 compare well with those previously reported for parent systems. Although the coexistence of the spin-orbit coupling (SOC) of the low-spin iron(III) and lanthanide(III) ions in the remaining compounds together with the ligand field effects mask the visualization and make difficult the evaluation of the possible magnetic interactions in them, we were able to do it through a SOC model applied on exact or effective Hamiltonians. Frequency-dependent alternating current magnetic susceptibility signals in the temperature range 2.0-9.0 K under zero and non-zero static fields were observed for 5-7 which indicate slow magnetic relaxation (SMM) behavior. The usual absence of χ''M maxima moved us to estimate their energy barriers through ln(χ''M/ χ'M) vs. 1/T plots, obtaining values from 25 to 40 cm-1.
Collapse
Affiliation(s)
- Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania.
| | - Beatrice Cula
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Ro, an Academy, mani, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Renato Rabelo
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Nicolás Moliner
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Joan Cano
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| |
Collapse
|
20
|
Visinescu D, Alexandru MG, Dumitrescu DG, Shova S, Moliner N, Lloret F, Julve M. Cyanido-bridged {Fe IIILn III} heterobimetallic chains assembled through the [Fe III{HB(pz) 3}(CN) 3] − complex as metalloligand: synthesis, crystal structure and magnetic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00626f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first isostructural series of cyanido-bridged 3d–4f chains showing a unique zig-zag motif have been obtained by using the heteroleptic [FeIII{HB(pz)3}(CN)3]− complex as a metalloligand towards the preformed [LnIII(bpdo)(NO3)2(H2O)]+ species.
Collapse
Affiliation(s)
- Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory
- “Ilie Murgulescu” Institute of Physical Chemistry
- Romanian Academy
- Bucharest 060021
- Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry
- Faculty of Applied Chemistry and Materials Science
- University Politehnica of Bucharest
- 011061 Bucharest
- Romania
| | | | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- RO-700487 Iasi
- Romania
| | - Nicolás Moliner
- Departament de Química Inorgànica/Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
21
|
Shi Z, Jiao J, Han Q, Xiao Y, Huang L, Li M. Synthesis Cu(I)–CN-based MOF with in-situ generated cyanogroup by cleavage of acetonitrile: Highly efficient for catalytic cyclization of propargylic alcohols with CO2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Saghian M, Dehghanpour S, Sharbatdaran M. Amine-functionalized frameworks as highly actives catalysts for chemical fixation of CO2 under solvent and co-catalyst free conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Kuo HY, Tignor SE, Lee TS, Ni D, Park JE, Scholes GD, Bocarsly AB. Reduction-induced CO dissociation by a [Mn(bpy)(CO) 4][SbF 6] complex and its relevance in electrocatalytic CO 2 reduction. Dalton Trans 2020; 49:891-900. [PMID: 31859334 DOI: 10.1039/c9dt04150h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[Mn(bpy)(CO)3Br] is recognized as a benchmark electrocatalyst for CO2 reduction to CO, with the doubly reduced [Mn(bpy)(CO)3]- proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO)4]+, thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO)4][SbF6] (1) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO2 to CO in the presence of H2O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g., [Mn(bpy)(CO)3Br] (2) and [Mn(bpy)(CO)3(MeCN)][PF6] (3). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1, producing a [Mn(bpy)(CO)3(MeCN)]+ species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Hsin-Ya Kuo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shipp JD, Carson H, Spall SJP, Parker SC, Chekulaev D, Jones N, Mel'nikov MY, Robertson CC, Meijer AJHM, Weinstein JA. Sterically hindered Re- and Mn-CO 2 reduction catalysts for solar energy conversion. Dalton Trans 2020; 49:4230-4243. [PMID: 32104876 DOI: 10.1039/d0dt00252f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel molecular Re and Mn tricarbonyl complexes bearing a bipyridyl ligand functionalised with sterically hindering substituents in the 6,6'-position, [M(HPEAB)(CO)3(X)] (M/X = Re/Cl, Mn/Br; HPEAB = 6,6'-{N-(4-hexylphenyl)-N(ethyl)-amido}-2,2'-bipyridine) have been synthesised, fully characterised including by single crystal X-ray crystallography, and their propensity to act as catalysts for the electrochemical and photochemical reduction of CO2 has been established. Controlled potential electrolysis showed that the catalysts are effective for electrochemical CO2-reduction, yielding CO as the product (in MeCN for the Re-complex, in 95 : 5 (v/v) MeCN : H2O mixture for the Mn-complex). The recyclability of the catalysts was demonstrated through replenishment of CO2 within solution. The novel catalysts had similar reduction potentials to previously reported complexes of similar structure, and results of the foot-of-the-wave analysis showed comparable maximum turnover rates, too. The tentative mechanisms for activation of the pre-catalysts were proposed on the basis of IR-spectroelectrochemical data aided by DFT calculations. It is shown that the typical dimerisation of the Mn-catalyst was prevented by incorporation of sterically hindering groups, whilst the Re-catalyst undergoes the usual mechanism following chloride ion loss. No photochemical CO2 reduction was observed for the rhenium complex in the presence of a sacrificial donor (triethylamine), which was attributed to the short triplet excited state lifetime (3.6 ns), insufficient for diffusion-controlled electron transfer. Importantly, [Mn(HPEAB)(CO)3Br] can act as a CO2 reduction catalyst when photosensitised by a zinc porphyrin under red light irradiation (λ > 600 nm) in MeCN : H2O (95 : 5); there has been only one reported example of photoactivating Mn-catalysts with porphyrins in this manner. Thus, this work demonstrates the wide utility of sterically protected Re- and Mn-diimine carbonyl catalysts, where the rate and yield of CO-production can be adjusted based on the metal centre and catalytic conditions, with the advantage of suppressing unwanted side-reactions through steric protection of the vacant coordination site.
Collapse
Affiliation(s)
- James D Shipp
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | - Heather Carson
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | - Simon C Parker
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | - Natalie Jones
- Department of Chemistry, University of Sheffield, S3 7HF, UK.
| | | | | | | | | |
Collapse
|
25
|
Hong D, Kawanishi T, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. Efficient Photocatalytic CO2 Reduction by a Ni(II) Complex Having Pyridine Pendants through Capturing a Mg2+ Ion as a Lewis-Acid Cocatalyst. J Am Chem Soc 2019; 141:20309-20317. [DOI: 10.1021/jacs.9b10597] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takuya Kawanishi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yuto Tsukakoshi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
26
|
Fokin I, Denisiuk A, Würtele C, Siewert I. The Impact of a Proton Relay in Binuclear α-Diimine-Mn(CO)3 Complexes on the CO2 Reduction Catalysis. Inorg Chem 2019; 58:10444-10453. [DOI: 10.1021/acs.inorgchem.9b00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Igor Fokin
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Alisa Denisiuk
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Christian Würtele
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
- Universität Göttingen, International Center for Advanced Studies of Energy Conversion, 37077 Göttingen, Germany
| |
Collapse
|