1
|
Moree LK, Faulkner LAV, Crowley JD. Heterometallic cages: synthesis and applications. Chem Soc Rev 2024; 53:25-46. [PMID: 38037385 DOI: 10.1039/d3cs00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
High symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis and drug delivery. Recently there have been increasing efforts to enhance those applications by generating reduced symmetry MSAs. While there are several emerging methods for generating lower symmetry MSAs, this tutorial review examines the general methods used for synthesizing heterometallic MSAs with a particular focus on heterometallic cages. Additionally, the intrinsic properties of the cages and their potential emerging applications as host-guest systems and reaction catalysts are described.
Collapse
Affiliation(s)
- Lana K Moree
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Logan A V Faulkner
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C 6H 9NBr) 2(NO 3) 2] with Very Different Binding Motives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020731. [PMID: 36677789 PMCID: PMC9866386 DOI: 10.3390/molecules28020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Two isomeric 2-bromomethylpyridine Cu(II) complexes [Cu(C6H9NBr)2(NO3)2] with 2-bromo-5-methylpyridine (L1) and 2-bromo-4-methylpyridine (L2) were synthesized as air-stable blue materials in good yields. The crystal structures were different with [Cu(L1)2(NO3)2] (CuL1) crystallizing in the monoclinic space group P21/c, while the 4-methyl derivative CuL2 was solved and refined in triclinic P1¯. The orientation of the Br substituents in the molecular structure (anti (CuL1) vs. syn (CuL2) conformations) and the geometry around Cu(II) in an overall 4 + 2 distorted coordination was very different with two secondary (axially elongated) Cu-O bonds on each side of the CuN2O2 basal plane in CuL1 or both on one side in CuL2. The two Br substituents in CuL2 come quite close to the Cu(II) centers and to each other (Br⋯Br ~3.7 Å). Regardless of these differences, the thermal behavior (TG/DTA) of both materials is very similar with decomposition starting at around 160 °C and CuO as the final product. In contrast to this, FT-IR and Raman frequencies are markedly different for the two isomers and the UV-vis absorption spectra in solution show marked differences in the π-π* absorptions at 263 (CuL2) or 270 (CuL1) nm and in the ligand-to-metal charge transfer bands at around 320 nm which are pronounced for CuL1 with the higher symmetry at the Cu(II) center, but very weak for CuL2. The T-dependent susceptibility measurements also show very similar results (µeff = 1.98 µB for CuL1 and 2.00 µB for CuL2 and very small Curie-Weiss constants of about -1. The EPR spectra of both complexes show axial symmetry, very similar averaged g values of 2.123 and 2.125, respectively, and no hyper-fine splitting.
Collapse
|
3
|
Li XL, Zhao L, Wu J, Shi W, Struch N, Lützen A, Powell AK, Cheng P, Tang J. Subcomponent self-assembly of circular helical Dy 6(L) 6 and bipyramid Dy 12(L) 8 architectures directed via second-order template effects. Chem Sci 2022; 13:10048-10056. [PMID: 36128245 PMCID: PMC9430530 DOI: 10.1039/d2sc03156f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
In situ metal-templated (hydrazone) condensation also called subcomponent self-assembly of 4,6-dihydrazino-pyrimidine, o-vanillin and dysprosium ions resulted in the formation of discrete hexa- or dodecanuclear metallosupramolecular Dy6(L)6 or Dy12(L)8 aggregates resulting from second-order template effects of the base and the lanthanide counterions used in these processes. XRD analysis revealed unique circular helical or tetragonal bipyramid architectures in which the bis(hydrazone) ligand L adopts different conformations and shows remarkable differences in its mode of metal coordination. While a molecule of trimethylamine acts as a secondary template that fills the void of the Dy6(L)6 assembly, sodium ions take on this role for the formation of heterobimetallic Dy12(L)8 by occupying vacant coordination sites, thus demonstrating that these processes can be steered in different directions upon subtle changes of reaction conditions. Furthermore, Dy6(L)6 shows an interesting spin-relaxation energy barrier of 435 K, which is amongst the largest values within multinuclear lanthanide single-molecular magnets.
Collapse
Affiliation(s)
- Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Lang Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Niklas Struch
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische-Friedrich-Wilhelms-University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische-Friedrich-Wilhelms-University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15, 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, Eggensteinn-Leopoldshafen 76344 Karlsruhe Germany
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
4
|
Akhtar MN, Mereacre V, Novitchi G, AlDamen MA, Anson CE, Powell AK. Synthesis, structures, and magnetic properties of Fe4-Ln2 (Ln = Tb, Ho, and Er) clusters with N, N, N′, N′-tetrakis-(2-hydroxyethyl)ethylenediamine. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Wang T, Yao B, Guo Z, Chang X, Deng YF, Zhang YZ. Self-assembly of Ni(II) metallacycles (a square and a triangle) supported by tetrazine radical bridges. Dalton Trans 2022; 51:7644-7649. [PMID: 35510917 DOI: 10.1039/d2dt00221c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two Ni(II) molecular metallacycles of [Ni4(bpz*tz˙-)4(N3)4] (1) and [Ni3(bpzPhtz˙-)3(pzPh(Cl)tz˙-)3]·1.3CH3OH·9.3H2O (2) (bpz*tz = 3,6-bis(3,5-dimethyl-pyrazolyl)-1,2,4,5-tetrazine; bpzPhtz = 3,6-bis(3-phenyl-pyrazolyl)-1,2,4,5-tetrazine; and pzPh(Cl)tz = 3-bis(3-phenyl-pyrazolyl)-6-Cl-1,2,4,5-tetrazine) are reported. The single-crystal X-ray diffraction study reveals that 1 displays a square structure while 2 shows a triangle structure due to the steric effect, both bearing tetrazine radical bridges. Furthermore, magnetic studies reveal that the Ni-radical interaction in 1 is strongly ferromagnetic with a coupling constant (J) of 90.8 cm-1 in the 2J formalist, while the overall antiferromagnetic behaviour of 2 is presumably due to the compete ferromagnetic (for the Ni-radicalbridging interaction with J1 = 95.4 cm-1) and antiferromagnetic (for the Ni-radicalterminal interaction, J2 = -57.5 cm-1) couplings.
Collapse
Affiliation(s)
- Te Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Zhilin Guo
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
6
|
Ahmed N, Uddin Ansari K. Experimental and theoretical insights into Co-Ln magnetic exchange and the rare slow-magnetic relaxation behavior of [CoII2Pr] 2+ in a series of linear [CoII2Ln] 2+ complexes. Dalton Trans 2022; 51:4122-4134. [PMID: 35188157 DOI: 10.1039/d1dt03573h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.
Collapse
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
7
|
Clauss R, Hey-Hawkins E. Phosphorus guiding palladium: [4+4] metallomacrocyclic PdII complex and self-assembly of heterometallic Pd II/Zn II grid-type complex. Dalton Trans 2022; 51:9632-9641. [DOI: 10.1039/d2dt01176j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of heteroditopic ligand 1 featuring a hard pyridine-hydrazone-pyrimidine (N,N,N) site and a softer pyrimidine-hydrazone-phosphane (N,N,P) pocket with [Pd(CH3CN4)](OTf)2 in different metal-to-ligand ratios (M:L) gave the homobimetallic PdII complex...
Collapse
|
8
|
Syntheses and magnetic properties of a series of discrete Ni(II)-Ln(III) heterometallic complexes based on 2,3-dichlorobenzoate and 2,2′-bipyridine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wang HL, Liu T, Zhu ZH, Peng JM, Zou HH, Liang FP. A series of dysprosium clusters assembled by a substitution effect-driven out-to-in growth mechanism. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00101a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The diacylhydrazone ligands with different substituents were reacted with Dy(NO3)3·6H2O to obtain 16 nuclear (1) and 10 nuclear (2) and pentanuclear (3) dysprosium clusters. Clusters 1–3 are gradually formed through out-to-in growth mechanism.
Collapse
Affiliation(s)
- Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Tong Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zhong-Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- State Key Laboratory of Luminescent Materials and Devices
| | - Jin-Mei Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
| |
Collapse
|
10
|
Mondal A, Raizada M, Sahu PK, Konar S. A new family of Fe 4Ln 4 (Ln = Dy III, Gd III, Y III) wheel type complexes with ferromagnetic interaction, magnetocaloric effect and zero-field SMM behavior. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00781e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Observation of ferromagnetic interactions and single molecule toroic (SMT) behavior in Fe4Ln4 wheel complexes.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| |
Collapse
|
11
|
Wang HL, Liu T, Zhu ZH, Peng JM, Zou HH, Liang FP. pH manipulates the assembly of a series of dysprosium clusters with subtle differences. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00371b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study is the first to fine-tune a series of lanthanide clusters with the same shape through pH manipulation.
Collapse
Affiliation(s)
- Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Tong Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zhong-Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- State Key Laboratory of Luminescent Materials and Devices
| | - Jin-Mei Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
| |
Collapse
|
12
|
Zhang Y, Yang Q, Lu J, Guo M, Li XL, Tang J. Heterometallic {DyIII2FeII2} grids with slow magnetic relaxation and spin crossover. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The self-assembly of a DyIII ion, an FeII ion and a multitopic H2L ligand produces novel [2 × 2] {DyIII2FeII2} grids exhibiting slow magnetic relaxation and spin crossover.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jingjing Lu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Mei Guo
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
13
|
Hardy M, Engeser M, Lützen A. A heterobimetallic tetrahedron from a linear platinum(II)-bis(acetylide) metalloligand. Beilstein J Org Chem 2020; 16:2701-2708. [PMID: 33214795 PMCID: PMC7653331 DOI: 10.3762/bjoc.16.220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Employing 4-ethynylaniline as a simple organic ligand we were able to prepare the stable trans-bis(acetylide)platinum(II) complex [Pt(L1)2(PBu3)2] as a linear metalloligand. The reaction of this metalloligand with iron(II) cations and pyridine-2-carbaldehyde according to the subcomponent self-assembly approach yielded decanuclear heterobimetallic tetrahedron [Fe4Pt6(L2)12](OTf)8. Thus, combination of these two design concepts - the subcomponent self-assembly strategy and the complex-as-a-ligand approach - ensured a fast and easy synthesis of large heterobimetallic coordination cages of tetrahedral shape with a diameter of more than 3 nm as a mixture of all three possible T-, S 4- and C 3-symmetric diastereomers. The new complexes were characterized by NMR and UV-vis spectroscopy and ESI mass spectrometry. Using GFN2-xTB we generated energy-minimized models of the diastereomers of this cage that further corroborated the results from analytical findings.
Collapse
Affiliation(s)
- Matthias Hardy
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Marianne Engeser
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Arne Lützen
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
14
|
A Quasi-Liner {MnIIDyIIIMnII} Cluster Featuring In Situ Schiff Base Ligand Transformation. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Petrovskii SK, Paderina AV, Sizova AA, Baranov AY, Artem'ev AA, Sizov VV, Grachova EV. Luminescence behaviour of Au(I)-Cu(I) heterobimetallic coordination polymers based on alkynyl-tris(2-pyridyl)phosphine Au(I) complexes. Dalton Trans 2020; 49:13430-13439. [PMID: 32966450 DOI: 10.1039/d0dt02583f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A set of alkynyl-tris(2-pyridyl)phosphine Au(i) complexes was synthesized and characterized. Free coordination functions on the ligand environment periphery, namely 'scorpionate' PPy3 and the C[triple bond, length as m-dash]C bond, allowed these ditopic metalloligands to be selectively linked to 1D coordination polymers by reaction with Cu(i), which used both Cu-(N-PPy3) and Cu-(η2-C[triple bond, length as m-dash]C) coordination modes. Single-crystal and powder XRD, NMR, and XPS techniques were used to characterize the coordination polymers obtained. Heterobimetallic Au(i)-Cu(i) coordination polymers demonstrate triplet photoluminescence which was studied by spectroscopic and computational methods to understand the pathway of energy transfer inside the chain of linked chromophore centres. The intriguing feature of the electronic structure of heterobimetallic supramolecular assemblies is the 'long-distance' electronic transition involving PhC2 and PPy3 ligands located at a distance of more than 1 nm from each other. Thus, the assembly of a heterobimetallic coordination polymer from relatively simple 'building blocks' retains the block-wise nature of the electronic structure, but the photophysical properties of the polymer are fundamentally different from the properties of discrete organometallic components.
Collapse
Affiliation(s)
- Stanislav K Petrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hardy M, Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chemistry 2020; 26:13332-13346. [PMID: 32297380 PMCID: PMC7693062 DOI: 10.1002/chem.202001602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host‐systems or as magnetic, photo‐active, redox‐active, and even catalytically active materials.
Collapse
Affiliation(s)
- Matthias Hardy
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| |
Collapse
|
17
|
|
18
|
Li G, Zhao X, Han Q, Wang L, Liu W. Radii-dependent self-assembly of chiral lanthanide complexes: synthesis, chirality, and single-molecule magnet behavior. Dalton Trans 2020; 49:10120-10126. [PMID: 32662479 DOI: 10.1039/d0dt01711f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A pair of 3-methoxysalicylhydrazone-based homochiral ligands constructed chiral trinuclear and pentanuclear complexes with LaIII and DyIII ions, respectively, which indicates that the radii controlled the self-assembled structures. Chiral transfer during the self-assembly processes was confirmed by crystal structure analysis and CD spectroscopy. Then, magnetic investigations demonstrated that the chiral Dy5 complexes exhibited typical single-molecule magnet behavior.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | |
Collapse
|
19
|
Deng Q, Zeng Y, Wang J, Chen S, Xiao Y, Zhang S. Heterometallic One-Dimensional Tetranuclear Cu–Na Cluster-Based Polymers: Room Temperature Synthesis, Structures, and Properties. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01809-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Abstract
Rapid kinetics, complex and diverse reaction intermediates, and difficult screening make the study of assembly mechanisms of high-nuclearity lanthanide clusters challenging. Here, we synthesize a double-cage dysprosium cluster [Dy60(H2L1)24(OAc)71(O)5(OH)3(H2O)27]·6H2O·6CH3OH·7CH3CN (Dy60) by using a multidentate chelate-coordinated diacylhydrazone ligand. Two Dy30 cages are included in the Dy60 structure, which are connected via an OAc- moiety. The core of Dy60 is composed of 8 triangular Dy3 and 12-fold linear Dy3 units. We further change the alkali added in the reaction system and successfully obtain a single cage-shaped cluster [Dy30(H2L1)12(OAc)36(OH)4(H2O)12]·2OH·10H2O·12CH3OH·13CH3CN (Dy30) with a perfect spherical cavity, which could be considered an intermediate in Dy60 formation. Time-dependent, high-resolution electrospray ionization mass spectrometry (HRESI-MS) is used to track the formation of Dy60. A possible self-assembly mechanism is proposed. We track the formation of Dy30 and the six intermediate fragments are screened.
Collapse
|
21
|
Shukla P, Roy S, Dolui D, Cañón-Mancisidor W, Das S. Pentanuclear Spirocyclic Ni4
Ln Derivatives: Field Induced Slow Magnetic Relaxation in the Dysprosium and Erbium Analogues. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pooja Shukla
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| | - Soumalya Roy
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| | - Dependu Dolui
- Discipline of Chemistry; Indian Institute of Technology; 382355 Gandhinagar Gujarat India
| | - Walter Cañón-Mancisidor
- Facultad de Químicas y Biología; Departamento de Química de Materiales; Universidad de Santiago de Chile (USACH); Santiago Chile
- Departamento de Química de Materiales; Center for the Development of Nanoscience and Nanotechnology (CEDENNA); Santiago Chile
| | - Sourav Das
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| |
Collapse
|
22
|
Wong JWL, Demeshko S, Dechert S, Meyer F. Heterometallic Ru 2Co 2 [2 × 2] Grid with Localized Single Molecule Magnet Behavior. Inorg Chem 2019; 58:13337-13345. [PMID: 31502457 DOI: 10.1021/acs.inorgchem.9b02214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complexes with a [n × n] gridlike structure are discussed as attractive building blocks for various materials chemistry applications in molecular nanotechnology and electronics, which often rely on the grids' magnetic and redox properties. Most of the known metallogrids are homometallic, though heterometallic systems that comprise two or more different metals promise higher level functionalities. However, heterometallic [n × n] grids are relatively rare, mostly because of the more challenging synthetic strategies. To that end a new heterometallic [2 × 2] grid complex [L4Ru2Co2](BF4)4 (2) based on a known pyrazolate-bridged bis(tridentate) compartmental N-donor ligand [L]- is presented in this work, along with its doubly oxidized congener [L4Ru2Co2](BF4)6 (3). In order to prevent scrambling of the different metal ions, a stepwise synthetic approach was implemented in which an inert RuII "corner complex" [(HL)2Ru](BF4)2 (1) was isolated first, followed by addition of the more labile CoII. This exclusively yields the desired [L4Ru2Co2]4+ with anti-topology, viz., with the RuII and CoII ions situated at opposite corners of the [2 × 2] grid, as confirmed by single crystal X-ray diffraction. 2 can be sequentially oxidized four times, first at the Co vertices and then at the Ru vertices. 1H NMR spectroscopy as well as ESI mass spectrometry evidenced integrity of the [L4Ru2Co2]4+/6+ grids in solution. Structural and magnetic analyses revealed that paramagnetic 2 features LS-RuII and HS-CoII ions (LS = low-spin, HS = high-spin) whereas LS-RuII and LS-CoIII ions are present in diamagnetic 3. The LS-RuII ions in 2 serve to magnetically isolate the HS-CoII whose coordination geometry is strongly distorted from octahedral. A large and negative axial zero-field splitting value (D = -64 cm-1) for the local S = 3/2 ions is shown to lead to single molecule magnetic (SMM) properties characterized by a barrier to spin inversion of Ueff = 8.8 cm-1 and a single relaxation process with τo = 3.1 × 10-5 s. Transition metal [2 × 2] grid complexes showing SMM behavior are extremely rare, and this is the first heterometallic 3d/4d grid system featuring such a magnetic signature.
Collapse
Affiliation(s)
- Joanne W L Wong
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Serhiy Demeshko
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sebastian Dechert
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Franc Meyer
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
23
|
Alvariño C, Heinrich B, Donnio B, Deschenaux R, Therrien B. Supramolecular Arene-Ruthenium Metallacycle with Thermotropic Liquid-Crystalline Properties. Inorg Chem 2019; 58:9505-9512. [PMID: 31247839 DOI: 10.1021/acs.inorgchem.9b01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.
Collapse
Affiliation(s)
- Cristina Alvariño
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Robert Deschenaux
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| |
Collapse
|