1
|
Altyar AE, Albadrani GM, Farouk SM, Alamoudi MK, Sayed AA, Mohammedsaleh ZM, Al-Ghadi MQ, Saleem RM, Sakr HI, Abdel-Daim MM. The antioxidant, anti-inflammatory, and anti-apoptotic effects of sesamin against cisplatin-induced renal and testicular toxicity in rats. Ren Fail 2024; 46:2378212. [PMID: 39011587 PMCID: PMC467111 DOI: 10.1080/0886022x.2024.2378212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
PURPOSE The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sameh M. Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hader I. Sakr
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Ujah GA, Ofutet EO, Ukam CIO, Omiunu PE, Ackley EU, Japhet IG, Ntauko JC, Clement QC, Atu R, Nna VU. Protective effect of tert-butylhydroquinone against cisplatin-induced hepatorenal injury via modulating oxidative stress, inflammation, and apoptosis. Arch Physiol Biochem 2024; 130:951-961. [PMID: 38993034 DOI: 10.1080/13813455.2024.2376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
CONTEXT Cisplastin (CDDP) is a chemotherapeutic drug frequently used to manage a variety of cancers. However, its use is associated with hepatorenal toxicity resulting from elevated reactive oxygen species production. OBJECTIVE Herein, the hepatorenal protective effect of tert-butylhydroquinone (tBHQ) in cisplatin (CDDP)-treated rats was examined. METHODS Wistar male rats randomly divided into four groups: normal control, tBHQ, CDDP and tBHQ + CDDP received 50 mg/kg b.w./day of tBHQ orally for 14 days while 7 mg/kg b.w of CDDP was administered intraperitoneally on Day 8. RESULTS CDDP increased serum biomarkers of hepatic (AST, ALP, ALT, GGT) and renal (creatinine, urea, uric acid, kidney injury molecule 1) function. The levels of nuclear factor erythroid-2-related factor 2 protein and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities were decreased in liver and kidney. Also, CDDP increased hepatic and renal levels of NF-κB, TNFα, Bax and caspase-3 proteins and decreased hepatorenal levels of Bcl-2 protein in the liver and kidney. Pre-treatment with tBHQ prevented these negative effects. SIGNIFICANCE Pre-intervention with tBHQ attenuates hepatorenal toxicity of CDDP by dampening oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Godwin Adakole Ujah
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Emmanuel Oleba Ofutet
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
- Department of Physiology, Faculty of Medicine and Pharmaceutical Science, Kampala International University, Tanzania
| | - Catherine Ironya-Ogar Ukam
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Precious Evangeline Omiunu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Emaediong Ufot Ackley
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Iboro Godwin Japhet
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Jane Charles Ntauko
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Queen Comfort Clement
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Racheal Atu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| |
Collapse
|
3
|
Shi X, Liu S, Zou Y, Wu H, Ma J, Lin J, Zhang X. LncRNA Taurine Up-Regulated 1 Knockout Provides Neuroprotection in Ischemic Stroke Rats by Inhibiting Nuclear-Cytoplasmic Shuttling of HuR. Biomedicines 2024; 12:2520. [PMID: 39595085 PMCID: PMC11592331 DOI: 10.3390/biomedicines12112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Long non-coding RNA taurine-upregulated gene 1 (TUG1) is involved in various cellular processes, but its role in cerebral ischemia-reperfusion injury remains unclear. This study investigated TUG1's role in regulating the nucleocytoplasmic shuttling of human antigen R (HuR), a key apoptosis regulator under ischemic conditions. Methods: CRISPR-Cas9 technology was used to generate TUG1 knockout Sprague Dawley rats to assess TUG1's impact on ischemic injury. The infarct area and neuronal apoptosis were evaluated using TUNEL, hematoxylin and eosin (HE), and TTC staining, while behavioral functions were assessed. Immunofluorescence staining with confocal microscopy was employed to examine TUG1-mediated HuR translocation and expression changes in the apoptosis-related proteins COX-2 and Bax. Results: TUG1 knockout rats showed significantly reduced cerebral infarct areas, decreased neuronal apoptosis, and improved neurological functions compared to controls. Immunofluorescence staining revealed that HuR translocation from the nucleus to the cytoplasm was inhibited, leading to decreased COX-2 and Bax expression levels. Conclusions: TUG1 knockout reduces ischemic damage and neuronal apoptosis by inhibiting HuR nucleocytoplasmic shuttling, making TUG1 a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaocheng Shi
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
| | - Hengping Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Jinyang Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.Z.); (H.W.); (J.M.)
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Junbin Lin
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Xin Zhang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| |
Collapse
|
4
|
Gazwi HSS, Zaki AH, Abd Allah NAR, Gomaa AT, Milošević M, Al-Rejaie SS, Mohany M, Yassien EE. Mitigation of cisplatin-induced hepatotoxicity by Salvia officinalis: Attenuation of oxidative damage and inflammation in rats. Free Radic Biol Med 2024; 222:62-71. [PMID: 38852878 DOI: 10.1016/j.freeradbiomed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salvia officinalis L., commonly known as sage and belonging to the Lamiaceae family, is a medicinal herb indigenous to the Mediterranean region. It is celebrated for its diverse pharmacological properties and traditional uses in folk medicine, particularly in addressing hepatotoxicity. Cisplatin (Cis), a potent chemotherapeutic agent widely employed in cancer treatment, is recognized for its efficacy but often accompanied by adverse effects, including hepatotoxicity. The aim of this study was to assess whether an ethanolic S. officinalis extract (ESOE) could provide protection against Cis-induced hepatotoxicity in an experimental rat model. The ESOE was prepared using standard extraction techniques, and its chemical constituents were elucidated through UPLC-ESI-MS/MS analysis, revealing the presence of bioactive compounds such as alkaloids, phenolic compounds, and flavonoids, which are associated with various therapeutic effects, including hepatoprotection. Adult male albino rats were allocated into four groups: control, ESOE (250 mg/kg), Cis (7.5 mg/kg), and ESOE (250 mg/kg) + Cis (7.5 mg/kg). The treatment duration lasted 21 days, with Cis administration on the 22nd day. Twenty-four hours post-Cis administration, blood and liver samples were collected for analysis. Cis-induced hepatotoxicity was evidenced by alterations in hematological parameters, including erythrocyte, thrombocyte, leukocyte, and lymphocyte counts, alongside elevated serum levels of liver enzymes (ALT, LDH, AST, ALP, and GGT), indicative of liver damage. Furthermore, Cis exposure resulted in increased hepatic malondialdehyde (MDA) and Nitric oxide (NO) levels, oxidative stress markers, coupled with decreased levels of reduced glutathione (GSH), a non-enzymatic antioxidant, and histopathological changes in liver tissue, characterized by necrosis and inflammation. Additionally, Cis treatment led to elevated levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), TNF-α, and IL-6, indicating oxidative stress and inflammation. Remarkably, pretreatment with ESOE ameliorated these Cis-induced hepatotoxic effects, as evidenced by improved hematological parameters, reduced liver enzyme activities, alleviated oxidative stress, and ameliorated histopathological alterations. The observed hepatoprotective effects of ESOE against Cis-induced liver injury may be attributed to its antioxidant and anti-inflammatory properties, highlighting its potential as a natural therapeutic agent in mitigating chemotherapy-associated hepatotoxicity.
Collapse
Affiliation(s)
- Hanaa S S Gazwi
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt.
| | - Asmaa Hussein Zaki
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| | - Nedaa A R Abd Allah
- Department of Food Science, Faculty of Agriculture, Minia University, Minia, 61519, Egypt
| | - Asmaa Talat Gomaa
- Department of Agricultural Economics, Faculty of Agriculture, Minia University, 61519 Egypt
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Eman E Yassien
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| |
Collapse
|
5
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
6
|
Ramadan OI, S. Ali L, M. Abd-Allah F, E. A. Ereba R, S. Humeda H, A. Damanhory A, E. Moustafa A, M. Younes A, M. Y. Awad M, A. A. Omar N. Co-administration of either curcumin or resveratrol with cisplatin treatment decreases hepatotoxicity in rats via anti-inflammatory and oxidative stress-apoptotic pathways. PeerJ 2024; 12:e17687. [PMID: 39056050 PMCID: PMC11271648 DOI: 10.7717/peerj.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Background Cisplatin (CIS) is a broad-spectrum anticancer drug, with cytotoxic effects on either malignant or normal cells. We aimed to evaluate the hepatotoxicity in rats caused by CIS and its amelioration by the co-administration of either curcumin or resveratrol. Materials and Methods Forty adult male rats divided into four equal groups: (control group): rats were given a saline solution (0.9%) once intraperitoneally, daily for the next 28 days; (cisplatin group): rats were given a daily oral dose of saline solution (0.9%) for 28 days after receiving a single dose of cisplatin (3.3 mg/kg) intraperitoneally for three successive days; (CIS plus curcumin/resveratrol groups): rats received the same previous dose of cisplatin (3.3 mg/kg) daily for three successive days followed by oral administration of either curcumin/resveratrol solution at a dose of (20 mg/kg) or (10 mg/kg) consequently daily for 28 days. Different laboratory tests (ALT, AST, ALP, bilirubin, oxidative stress markers) and light microscopic investigations were done. Results Administration of CIS resulted in hepatotoxicity in the form of increased liver enzymes, oxidative stress markers; degenerative and apoptotic changes, the co-administration of CIS with either curcumin or resveratrol improved hepatotoxicity through improved microscopic structural changes, reduction in liver enzymes activity, decreased oxidative stress markers, improved degenerative, and apoptotic changes in liver tissues. Conclusion Co-administration of either curcumin or resveratrol with cisplatin treatment could ameliorate hepatotoxicity caused by cisplatin in rats via anti-inflammatory and oxidative stress-apoptotic pathways.
Collapse
Affiliation(s)
- Osama I. Ramadan
- Department of Dental Basic Sciences, Faculty of Dentistry, Applied Science Private University, Amman, Jordan
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Lashin S. Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatma M. Abd-Allah
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rafik E. A. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Humeda S. Humeda
- Department of Physiology, Faculty of Medicine, Alzaiem AlAzhari University, Khartoum North, Sudan
- Physiology Department, General Medicine Practice Program, Batterjee Medical College, Aseer, Saudi Arabia
| | - Ahmed A. Damanhory
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed E. Moustafa
- Medical Biochemistry Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr M. Younes
- Anatomy and Embryology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Moaaz M. Y. Awad
- Anatomy and Embryology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Anatomy Department, General Medicine Practice Program, Batterjee Medical Collage, Aseer, Saudi Arabia
| | - Nassar A. A. Omar
- Anatomy Department, General Medicine Practice Program, Batterjee Medical Collage, Aseer, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Hashemi M, Khosroshahi EM, Chegini MK, Asadi S, Hamyani Z, Jafari YA, Rezaei F, Eskadehi RK, Kojoori KK, Jamshidian F, Nabavi N, Alimohammadi M, Rashidi M, Mahmoodieh B, Khorrami R, Taheriazam A, Entezari M. Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108513. [PMID: 39216513 DOI: 10.1016/j.mrrev.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Hamyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Yasamin Alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast Eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faranak Jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Okkay IF, Famurewa A, Bayram C, Okkay U, Mendil AS, Sezen S, Ayaz T, Gecili I, Ozkaraca M, Senyayla S, Hacimuftuoglu A. Arbutin abrogates cisplatin-induced hepatotoxicity via upregulating Nrf2/HO-1 and suppressing genotoxicity, NF-κB/iNOS/TNF-α and caspase-3/Bax/Bcl2 signaling pathways in rats. Toxicol Res (Camb) 2024; 13:tfae075. [PMID: 38770183 PMCID: PMC11102346 DOI: 10.1093/toxres/tfae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Cisplatin is a potent anticancer agent widely employed in chemotherapy. However, cisplatin leads to toxicity on non-targeted healthy organs, including the liver. We investigated the hepatoprotective mechanism of arbutin (ARB), a glycosylated hydroquinone, against cisplatin-induced hepatotoxicity. METHODS Rats were orally administered with ARB (ARB1 = 50 mg/kg; ARB2 = 100 mg/kg) for 14 consecutive days against hepatotoxicity induced by a single dose of cisplatin (10 mg/kg) on day 15. Three days after the intraperitoneal cisplatin injection, serum and liver tissue were collected for subsequent analyses. RESULTS Cisplatin triggered marked increases in serum AST, ALT, and ALP activities, hepatic malondialdehyde (MDA) and reactive oxygen species (ROS) coupled with a considerable diminution in hepatic activities of superoxide dismutase (SOD), catalase (CAT) and the concentration of reduced glutathione (GSH). The gene expressions of interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and IL-6 were notably increased. The pre-administration of ARB1 and ARB2 reduced AST, ALT and ALP in serum and restored SOD, CAT, GSH, ROS, MDA and cytokine levels which was also evidenced by alleviated hepatic lesions. Further, cisplatin-induced prominent alterations in the gene expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), iNOS, NF-κB, Bax, Bcl-2, caspase-3 and 8-OHdG in the liver. Interestingly, ARB protected the liver and mitigated the cisplatin-induced alterations in serum AST, ALT, ALP, and reduced hepatic redox markers, 8-OdG, inflammatory markers and gene expressions. CONCLUSION The findings demonstrate that ARB is a potential protective adjuvant against cisplatin-induced hepatotoxicity via inhibition of hepatic oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Pharmacology Department, Faculty of Pharmacy, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| | - Ademola Famurewa
- Medical Biochemistry Department, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Cemil Bayram
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| | - Ufuk Okkay
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
- Vaccine Development Application and Research Center, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Yenidogan, Kume Evleri, 38280 Talas, Kayseri, Turkey
| | - Selma Sezen
- Pharmacology Department, Faculty of Medicine, Agri Ibrahim Cecen University, New University Street, No 2, 04100, Agri, Turkey
| | - Teslime Ayaz
- Internal Medicine Department, Faculty of Medicine, Recep Tayyip Erdogan University, 53200, Islampasa, Rize, Turkey
| | - Ibrahim Gecili
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Pathology Department, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58070, Imaret, Sivas, Turkey
| | - Selcuk Senyayla
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
- Vaccine Development Application and Research Center, Ataturk University, Ataturk Street, 25240, Yakutiye, Erzurum, Turkey
| |
Collapse
|
9
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Liu Q, Li X, Li Y, Luo Q, Fan Q, Lu A, Guan D, Li J. A novel network pharmacology strategy to decode mechanism of Wuling Powder in treating liver cirrhosis. Chin Med 2024; 19:36. [PMID: 38429802 PMCID: PMC10905787 DOI: 10.1186/s13020-024-00896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Liver cirrhosis is a chronic liver disease with hepatocyte necrosis and lesion. As one of the TCM formulas Wuling Powder (WLP) is widely used in the treatment of liver cirrhosis. However, it's key functional components and action mechanism still remain unclear. We attempted to explore the Key Group of Effective Components (KGEC) of WLP in the treatment of Liver cirrhosis through integrative pharmacology combined with experiments. METHODS The components and potential target genes of WLP were extracted from published databases. A novel node importance calculation model considering both node control force and node bridging force is designed to construct the Function Response Space (FRS) and obtain key effector proteins. The genetic knapsack algorithm was employed to select KGEC. The effectiveness and reliability of KGEC were evaluated at the functional level by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the effectiveness and potential mechanism of KGEC were confirmed by CCK-8, qPCR and Western blot. RESULTS 940 effective proteins were obtained in FRS. KEGG pathways and GO terms enrichments analysis suggested that effective proteins well reflect liver cirrhosis characteristics at the functional level. 29 components of WLP were defined as KGEC, which covered 100% of the targets of the effective proteins. Additionally, the pathways enriched for the KGEC targets accounted for 83.33% of the shared genes between the targets and the pathogenic genes enrichment pathways. Three components scopoletin, caryophyllene oxide, and hydroxyzinamic acid from KGEC were selected for in vivo verification. The qPCR results demonstrated that all three components significantly reduced the mRNA levels of COL1A1 in TGF-β1-induced liver cirrhosis model. Furthermore, the Western blot assay indicated that these components acted synergistically to target the NF-κB, AMPK/p38, cAMP, and PI3K/AKT pathways, thus inhibiting the progression of liver cirrhosis. CONCLUSION In summary, we have developed a new model that reveals the key components and potential mechanisms of WLP for the treatment of liver cirrhosis. This model provides a reference for the secondary development of WLP and offers a methodological strategy for studying TCM formulas.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qiling Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| | - Jiahui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Alqahtani NF, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Serag WM, Hassan YA, El-Sayed WN. Exploring the chondroitin sulfate nanogel's potential in combating nephrotoxicity induced by cisplatin and doxorubicin-An in-vivo study on rats. Int J Biol Macromol 2024; 258:128839. [PMID: 38134998 DOI: 10.1016/j.ijbiomac.2023.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.
Collapse
Affiliation(s)
- Norah F Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Waleed M Serag
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Qalam University College, Kirkuk, Iraq; Department of pharmaceutics and Pharmaceutical Technology, Faculty of pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - W N El-Sayed
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Purgatorio R, Boccarelli A, Pisani L, de Candia M, Catto M, Altomare CD. A Critical Appraisal of the Protective Activity of Polyphenolic Antioxidants against Iatrogenic Effects of Anticancer Chemotherapeutics. Antioxidants (Basel) 2024; 13:133. [PMID: 38275658 PMCID: PMC10812703 DOI: 10.3390/antiox13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Polyphenolic compounds, encompassing flavonoids (e.g., quercetin, rutin, and cyanidin) and non-flavonoids (e.g., gallic acid, resveratrol, and curcumin), show several health-related beneficial effects, which include antioxidant, anti-inflammatory, hepatoprotective, antiviral, and anticarcinogenic properties, as well as the prevention of coronary heart diseases. Polyphenols have also been investigated for their counteraction against the adverse effects of common anticancer chemotherapeutics. This review evaluates the outcomes of clinical studies (and related preclinical data) over the last ten years, with a focus on the use of polyphenols in chemotherapy as auxiliary agents acting against oxidative stress toxicity induced by antitumor drugs. While further clinical studies are needed to establish adequate doses and optimal delivery systems, the improvement in polyphenols' metabolic stability and bioavailability, through the implementation of nanotechnologies that are currently being investigated, could improve therapeutic applications of their pharmaceutical or nutraceutical preparations in tumor chemotherapy.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Leonardo Pisani
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Modesto de Candia
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Marco Catto
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| |
Collapse
|
13
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
14
|
Kaju J, Leelarungrayub J, Natakankitkul S, Laskin JJ. Sweet-type star fruit supplementation controls oxidative stress status and enhances the community walking capacity among elderly Thai. BMC Complement Med Ther 2023; 23:446. [PMID: 38082283 PMCID: PMC10714658 DOI: 10.1186/s12906-023-04291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sweet-type Star fruit (SF) (Averrhoa carambola L.) is seasonal and more available for purchase in many markets in Thailand, when compared to the sour-type. But, its antioxidant activity results and potentially more modified supplement for elderly health during regular exercise in the community are unclear. OBJECTIVE This study aimed to evaluate the antioxidant activity and physical capacity from supplementation of sweet-type SF among elderly people performing home walking exercise. METHODS Mixing SF juice with honey industrially prepared the SF product. Its effects on oxidative stress status and physical capacity were studied in four groups; a supplement with walking exercise (n = 11, 67.00 ± 4.17 years), control (n = 12, aged 67.50 ± 5.58 years), supplementation (n = 11, aged 69.63 ± 7.14 years), and walking exercise (n = 12, aged 67.91 ± 4.33 years). Twenty grams or two teaspoons of supplement in warm water (150 mL) was the guideline for consumption twice daily for 4 weeks. In contrast, the walking exercise was prescribed with moderate intensity for 30 min, 3 days per week. Before and after the 4-week period, the oxidative stress status; glutathione (GSH), ascorbic acid (Vit C), total antioxidant capacity (TAC), and malondialdehyde (MDA), and 6-minute walking distance (6MWD) were evaluated. RESULTS Results after the 4-week period, showed that Vit C and TAC increased and the MDA decreased significantly in the supplementation group, except the GSH and 6MWD results. The GSH and Vit C slightly decreased in the walking exercise group, whereas, its TAC, MDA and 6MWD increased significantly. Finally, The GSH and Vit C did not decrease and MDA slightly decreased in the combined group, but, their TAC and 6MWD increased significantly. CONCLUSION Supplementation of the SF product during walking exercise possibly controls oxidative stress status and may enhance walking capacity.
Collapse
Affiliation(s)
- Jynwara Kaju
- Biomedical Sciences Program, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakrit Leelarungrayub
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Surapol Natakankitkul
- Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - James J Laskin
- Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
15
|
Niazvand F, Ashtari A, Chamkouri N, Azari M. Hepatoprotective effects of Alpinia officinarum rhizome extract on cisplatin-induced hepatotoxicity in rats: A biochemical, histopathological and immunohistochemical study. J Trace Elem Med Biol 2023; 80:127306. [PMID: 37757646 DOI: 10.1016/j.jtemb.2023.127306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Alpinia officinarum is a member of the ginger family (Zingiberaceae), which is widely cultivated in Asia and traditionally used for its anti-inflammatory, antimicrobial, and antihyperlipidemic qualities. This study aimed to evaluate the effect of Alpinia officinarum rhizome extract (AORE) on cisplatin (CP)-induced hepatotoxicity in rats. METHODS Forty-four male rats were divided into six groups including the control group, AORE control group, CP control group, and three groups of CP (7 mg/kg dose, on the 10th day) with AORE (at concentrations of 100, 200 and 400 mg/kg, daily for 14 days). After 14 days, the rats' livers were removed and their liver function was assessed using biochemical marker enzymes including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities and albumin, total protein, and total bilirubin (T. bilirubin). Oxidative stress was assessed by evaluating malondialdehyde concentration and hepatic superoxide dismutase activity, histopathological and immunohistochemical tests were also conducted. RESULTS Results demonstrated that treatment with AORE reduced the toxicity in levels of the hepatic biomarkers in cp-induced groups. AORE treatment decreased oxidative stress and improved histopathological indexes. Furthermore, immunohistochemical (IHC) investigation showed the B-cell lymphoma 2 (Bcl-2) upsurging and p53 downregulating expression exhibiting the recovery following AORE administration. CONCLUSION The founding suggested that AORE administration has positive biochemical, histopathological, and immunohistochemical impacts on the ameliorating of hepatotoxicity in CP-induced rats.
Collapse
Affiliation(s)
- Firoozeh Niazvand
- Department of Anatomical Sciences, Abadan University of Medical Sciences, Abadan, Iran
| | - Atefeh Ashtari
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Narges Chamkouri
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Mahdi Azari
- Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
16
|
Bekhit AA, Beshay ON, Fawzy MA, Abdel-Hafez SMN, Batiha GES, Ataya FS, Fathy M. Curative Effect of AD-MSCs against Cisplatin-Induced Hepatotoxicity in Rats is Potentiated by Azilsartan: Targeting Oxidative Stress, MAPK, and Apoptosis Signaling Pathways. Stem Cells Int 2023; 2023:6767735. [PMID: 37908315 PMCID: PMC10615573 DOI: 10.1155/2023/6767735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Despite its clinical value, cisplatin (CISP) is complicated by marked hepatotoxicity via inducing oxidative stress, inflammatory, and apoptotic pathways. This study aims to explore the protective impact of azilsartan (AZIL), an antihypertensive drug, in addition to adipose tissue-derived mesenchymal stem cells (AD-MSCs) on CISP-induced hepatotoxicity. After characterization and labeling of AD-MSCs by PKH26 dye, 54 Wistar male albino rats were randomly divided into nine groups: I (CONT), II (AZIL.H), III (CISP), IV (CISP + AZIL.L), V (CISP + AZIL.H), VI (CISP + AD-MSCs), VII (CISP + AZIL.L + AD-MSCs), VIII (CISP + AZIL.H + AD-MSCs), and IX (CISP + VITA C). Serum alanine aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels were determined. Assessment of reactive oxygen species, malondialdehyde, and glutathione contents, and superoxide dismutase activity and histopathological evaluations were done on hepatic tissue. Quantitative real-time PCR was utilized to estimate the expression of TNF-α and IL-6 genes. Cell homing of labeled AD-MSCs to the liver tissues was investigated. Hepatic expression of JNK1/2, ERK1/2, p38, Bax, Bcl-2, and cleaved caspase-3 proteins was investigated by western blot analysis. CISP elevated serum ALT and AST activities, reduced albumin level, and remarkably changed the hepatic architecture. It increased the expression TNF-α and IL-6 genes, raised the expression of JNK1/2, ERK1/2, p38, Bax, and cleaved caspase-3 proteins, and diminished the Bcl-2 protein. By contrast, treatment of animals with either AZIL or AD-MSCs dramatically reduced the effects of CISP injection. Moreover, treatment with combination therapy (AZIL.L or H + AD-MSCs) considerably mitigated all previously mentioned alterations superior to AZIL or AD-MSCs alone, which might be attributed to the AZIL-enhanced homing ability of AD-MSCs into the injured liver tissue. In conclusion, the present findings demonstrated that AZIL improves the hepatoprotective potential of AD-MSCs against CISP-induced hepatotoxicity by modulating oxidative stress, mitogen-activated protein kinase, and apoptotic pathways.
Collapse
Affiliation(s)
| | - Olivia N. Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Michael A. Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
17
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
18
|
El-Dawy K, Barakat N, Ali H, Sindi IA, Adly HM, Saleh SA. Dexpanthenol improved stem cells against cisplatin-induced kidney injury by inhibition of TNF-α, TGFβ-1, β-catenin, and fibronectin pathways. Saudi J Biol Sci 2023; 30:103773. [PMID: 37635837 PMCID: PMC10450985 DOI: 10.1016/j.sjbs.2023.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cisplatin interacts with DNA and induces an immunological response and reactive oxygen species, which are nephrotoxic mediators. Stem cells self-renew through symmetric divisions and can develop into other cell types due to their multipotency. Dexpanthenol has been proven to protect against renal injury. Aim This study aims to demonstrate that dexpanthenol could improve the effect of adipose-derived mesenchymal stem cells (ADMSC) against cisplatin-induced acute kidney injury. Methods Sixty male Sprague-Dawley rats were divided into 5 groups (N = 12): control, cisplatin, cisplatin & dexpanthenol, cisplatin & ADMSC, and cisplatin & dexpanthenol & ADMSCs. On the 5th day following cisplatin injection, half the rats in each group were sacrificed, and the other half were sacrificed on the 12th day. Histopathological examination, molecular studies (IL-6, Bcl2, TGFβ-1, Caspase-3, Fibronectin, and β-catenin), antioxidants (superoxide dismutase and catalase), and renal function were all investigated. Results In contrast to cisplatin group, the dexpanthenol and ADMSCs treatments significantly decreased renal function and oxidative stress while significantly enhancing antioxidants. Dexpanthenol improved stem cells by significantly down-regulating caspase-3, IL-6, TGF-β1, Fibronectin, and β-catenin and significantly up-regulating Bcl2 and CD34, which reversed the cisplatin effect. Conclusion Dexpanthenol enhanced ADMSCs' ability to protect against cisplatin-induced AKI by decreasing inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Khalifa El-Dawy
- Biochemistry Dept., Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Hala Ali
- Biochemistry Dept., Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ikhlas A. Sindi
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Adly
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A.K. Saleh
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo 11435, Egypt
| |
Collapse
|
19
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
20
|
Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. BRAZ J BIOL 2023; 82:e267633. [PMID: 36629544 DOI: 10.1590/1519-6984.267633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.
Collapse
Affiliation(s)
- I S Al-Dhuayan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
21
|
Ferah Okkay I, Okkay U, Bayram C, Cicek B, Sezen S, Aydin IC, Mendil AS, Hacimuftuoglu A. Bromelain protects against cisplatin-induced ocular toxicity through mitigating oxidative stress and inflammation. Drug Chem Toxicol 2023; 46:69-76. [PMID: 34894956 DOI: 10.1080/01480545.2021.2011308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this study was to investigate the molecular, biochemical, and histopathological effects of bromelain, which has antioxidant and anti-inflammatory properties, against cisplatin-induced ocular toxicity. The groups were designed as (1) Control, (2) Cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Bromelain (50 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Bromelain (100 mg/kg, orally for 14 consecutive days). The activity of total antioxidant capacity (TAC) and total oxidant status (TOS) and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β), IL-10, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and 8-OHdG were measured in ocular tissue. The mRNA expression of NF-κB and Caspase-3 was also evaluated. Also, ocular sections were evaluated histopathologically. Bromelain demonstrated a dose-dependent protective effect in cisplatin-induced toxicity by regulating oxidative stress, inflammation, and tissue damage. Our results suggested that bromelain may be a potential adjuvant that can protect the eye from cisplatin-induced toxicity.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Faculty of Pharmacy, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Ufuk Okkay
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Cemil Bayram
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Selma Sezen
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Ismail Cagri Aydin
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ali Sefa Mendil
- Faculty of Veterinary Medicine, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
22
|
7-hydroxycoumarin modulates Nrf2/HO-1 and microRNA-34a/SIRT1 signaling and prevents cisplatin-induced oxidative stress, inflammation, and kidney injury in rats. Life Sci 2022; 310:121104. [PMID: 36270424 DOI: 10.1016/j.lfs.2022.121104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The kidneys are vulnerable to toxicity and acute kidney injury (AKI) is the main adverse effect associated with the clinical use of the chemotherapeutic agent cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS nephrotoxicity. In this study, the effect of the antioxidant 7-hydroxycoumarin (7-HC) against CIS-induced renal intoxication was evaluated. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 14 days and CIS (7 mg/kg) at day 15, and samples were collected 3 days after CIS administration. CIS increased serum urea, creatinine and kidney injury molecule (Kim)-1, caused multiple histopathological changes and increased renal reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), NF-κB p65, iNOS, and pro-inflammatory cytokines. 7-HC dose-dependently prevented kidney dysfunction and tissue injury and suppressed ROS and inflammatory mediators. 7-HC boosted renal antioxidants and Bcl-2 while decreased Bax and caspase-3 expression in CIS-administered rats. In addition, 7-HC downregulated Keap-1 and microRNA-34a and upregulated Nrf2, NQO-1, HO-1, and SIRT1. Molecular docking revealed the binding affinity of 7-HC towards NF-κB, Keap-1, and SIRT1. In Conclusion, 7-HC prevented CIS nephrotoxicity by attenuating tissue injury, oxidative stress, inflammation, and apoptotic cell death. The protective efficacy of 7-HC was associated with inhibiting NF-κB and Keap-1, and modulating Nrf2/HO-1 and microRNA34a/Sirt1 signaling.
Collapse
|
23
|
Ibrahim MA, Khalifa AM, Mohamed AA, Galhom RA, Korayem HE, Abd El-Fadeal NM, Abd-Eltawab Tammam A, Khalifa MM, Elserafy OS, Abdel-Karim RI. Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, and Olive Leaf Extract Protect against Cisplatin-Induced Toxicity by Alleviating Oxidative Stress, Inflammation, and Apoptosis in Rats. TOXICS 2022; 10:toxics10090526. [PMID: 36136492 PMCID: PMC9504158 DOI: 10.3390/toxics10090526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. OBJECTIVES The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. METHODS The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. RESULTS Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1β) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. CONCLUSIONS These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.
Collapse
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| | - Athar M. Khalifa
- Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
| | - Alaa A. Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Rania A. Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Horeya E. Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Noha M. Abd El-Fadeal
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Mansour Khalifa
- Human Physiology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Human Physiology Department, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Osama S. Elserafy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Criminal Justice and Forensic Sciences Department, King Fahd Security College, Riyadh 11451, Saudi Arabia
| | - Rehab I. Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| |
Collapse
|
24
|
Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, Dandekar T, Othman EM. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines 2022; 10:biomedicines10071620. [PMID: 35884925 PMCID: PMC9312964 DOI: 10.3390/biomedicines10071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mostafa A. Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Al-Shaimaa M. Abdelhamid
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Gehad M. Alrashedy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Othman Ali Othman
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
25
|
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:806216. [PMID: 35300297 PMCID: PMC8921549 DOI: 10.3389/fphar.2022.806216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease has a high mortality, and the recommended therapy is reperfusion. Nevertheless, the restoration of blood flow to ischemic tissue leads to further damage, namely, myocardial ischemia/reperfusion injury (MIRI). Apoptosis is an essential pathogenic factor in MIRI, and ginsenosides are effective in inhibiting apoptosis and alleviating MIRI. Here, we reviewed published studies on the anti-apoptotic effects of ginsenosides and their mechanisms of action in improving MIRI. Each ginsenoside can regulate multiple pathways to protect the myocardium. Overall, the involved apoptotic pathways include the death receptor signaling pathway, mitochondria signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, and MAPK signaling pathway. Ginsenosides, with diverse chemical structures, regulate different apoptotic pathways to relieve MIRI. Summarizing the effects and mechanisms of ginsenosides contributes to further mechanism research studies and structure-function relationship research studies, which can help the development of new drugs. Therefore, we expect that this review will highlight the importance of ginsenosides in improving MIRI via anti-apoptosis and provide references and suggestions for further research in this field.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Li
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caijiao Liu
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Nikhat S, Fazil M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114614. [PMID: 34508800 DOI: 10.1016/j.jep.2021.114614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honey is one of the most popular functional foods, speculated to be in use since the advent of human civilization. Its health-protective activity is endorsed by many religions and traditional medicines. In Unani medicine, honey is prescribed for many health conditions as wound-healing, anti-inflammatory, anti-diabetic, etc. In the present era, honey is gaining popularity over sugar for its myriad health benefits and low glycemic index. This review attempts to provide a comprehensive account of the biological activities and potential therapeutic uses of honey, with scientific evidence. METHODOLOGY In this paper, we have provided a comprehensive overview of historical uses, types, physical characteristics, bioactive constituents and pharmacological activities of honey. The information was gathered from Classical Unani textbooks and leading scientific databases. There is a plethora of information regarding various therapeutic activities of honey, and it is daunting to draw practical conclusions. Hence, in this paper, we have tried to summarize those aspects which are most relevant to clinical application. OBSERVATIONS AND CONCLUSIONS Many important bioactive constituents are identified in different honey types, e.g. phenolics, proteins, vitamins, carbohydrates, organic acids, etc., which exert important biological activities like anti-microbial, wound healing, immunomodulatory, anti-toxin, antioxidant, and many others. Honey has the potential to alleviate many lifestyle disorders, mitigate the adverse effects of drugs and toxins, and also provide healthy nutrition. Although conclusive clinical evidence is not available, yet honey may potentially be a safer alternative to sucrose for diabetic patients.
Collapse
Affiliation(s)
- Sadia Nikhat
- Dept. of Ilaj bit Tadbeer, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammad Fazil
- HAK Institute for Literary and Historical Research in Unani Medicine, CCRUM, Jamia Millia Islamia Campus, New Delhi, India.
| |
Collapse
|
27
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1180-1192. [DOI: 10.1093/jpp/rgac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
|
28
|
Aboraya DM, El Baz A, Risha EF, Abdelhamid FM. Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J Biol Sci 2022; 29:3157-3166. [PMID: 35844386 PMCID: PMC9280168 DOI: 10.1016/j.sjbs.2022.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
29
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Quinzi D, Sargenti A, Bai W, Tian L, Giampieri F, Battino M. Manuka honey in combination with 5-Fluorouracil decreases physical parameters of colonspheres enriched with cancer stem-like cells and reduces their resistance to apoptosis. Food Chem 2021; 374:131753. [PMID: 34883427 DOI: 10.1016/j.foodchem.2021.131753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
The aim of the present work was to evaluate the in vitro effect of Manuka honey and its combination with 5-Fu, the most common drug used in the treatment of colon cancer, on the morphological and physical parameters of colonspheres enriched with cancer stem-like cells deriving from HCT-116 colon adenocarcinoma cell line and on the apoptosis rate. Manuka honey, alone and more in combination with 5-Fu, reduced the weight, the diameter and mass density of the spheroids and induced apoptosis through the downregulation of many apoptosis inhibitors, including IAPs (Livin, Survivin, XIAP), IGFs (IGF-I, IGF-II and IGF-IR) and HSPs (HSP-27, HSP-60 and HSP-70). These results led to a reduction in the survival ability of cancer stem-like cells, as well as to a chemosensitizing effect of honey towards 5-Fu, considering that apoptosis resistance is one of the main causes of cancer stem-like cells chemoresistance.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | | | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, 170157, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Denise Quinzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Azzurra Sargenti
- CellDynamics isrl, Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain.
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
30
|
Abstract
Prednisone (PRED) is a synthetic glucocorticoid (GC) widely used in immune-mediated diseases for its immunosuppressive and anti-inflammatory properties. The effects of GC are achieved by genomic and nongenomic mechanisms. However, the nongenomic effects are largely unknown. Thus, we aimed to investigate how long-term prednisone therapy changes the composition of the gut microbiota and fecal metabolites in rats. Male Sprague-Dawley rats were randomly assigned to a control (CON) group and a PRED group, which received prednisone treatment daily for 6 weeks by gavage. The V3 to V4 regions of bacterial 16S rRNA genes were amplified and sequenced after the total bacterial DNA was extracted from fecal samples. The alpha and beta diversities were calculated. The compositional alteration of the gut microbiota at different taxonomic levels was analyzed using the Metastats method. Meanwhile, the fecal metabolites were quantitated in an ultra-performance liquid chromatography system. Similar microbial richness and diversity between the CON and PRED groups were indicated by the alpha diversity results. The gut microbial communities differed significantly between two groups. The relative abundances of the genera Eisenbergiella, Alistipes, and Clostridium XIVb decreased, whereas that of Anaerobacterium increased significantly in rats after the 6-week prednisone treatment. In total, 11 downregulated and 10 upregulated fecal metabolites were identified. Differential fecal metabolites were enriched in the pathways, including phenylalanine metabolism, butanoate metabolism, and propanoate metabolism. The lowered production of short-chain fatty acids was associated with the decreased relative abundance of the genera Alistipes and Clostridium XIVb and increased abundance of the genus Anaerobacterium. The composition of the gut microbiota and fecal metabolites was changed after long-term prednisone treatment. This may help us to understand the pharmacology of prednisone. IMPORTANCE Prednisone is widely used in chronic glomerular diseases, immunological disorders, and rheumatic diseases for its anti-inflammatory and immunosuppressive properties. It is a synthetic glucocorticoid (GC) that shows therapeutic effects after conversion to prednisolone by the liver. Prolonged GC therapy causes anti-inflammatory effects; it also results in a variety of adverse events, including obesity, hypertension, psychiatric symptoms, and dyslipidemia. The therapeutic effects and adverse events of GCs may be associated with changes in the gut microbiota, as the host might be affected by the metabolites generated by the altered gut microbes. Thus, we investigated how long-term prednisone therapy changed the composition of the gut microbiota and fecal metabolites in rats. This study may shed new light on the pharmacology of prednisone.
Collapse
|
31
|
Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother 2021; 144:112328. [PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia.
| | | | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
32
|
Aldhahrani A, Soliman MM, Althobaiti F, Alkhedaide A, Nassan MA, Mohamed WA, Youssef GBA, Said AM. The modulatory impacts of Glycyrrhiza glabra extract against methotrexate-induced testicular dysfunction and oxidative stress. Toxicol Res (Camb) 2021; 10:677-686. [PMID: 34484660 DOI: 10.1093/toxres/tfab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhiza glabra root (licorice) is a widely used herb for its beneficial effects on health. This study explored the protective effects of licorice extract against oxidative stress and testicular dysfunction caused by methotrexate (MTX). Mice were allocated into (i) negative control group that received saline; (ii) licorice extract group, orally administered with 200 mg/kg body weight (bw) licorice extract for 12 days; (iii) positive MTX-intoxicated group, injected with a single intraperitoneal dose of MTX (20 mg/kg bw) on day 7; and (iv) a protective group that received licorice extract for 12 days and then MTX on day 7 as in groups 2 and 3. Total proteins, albumin, globulins, malondialdehyde, glutathione peroxidase, reduced glutathione, IL-1, and IL-6 were measured in blood and testis samples collected from all groups. Testicular oxidative stress, serum reproductive hormones, and spermogram were examined. The expression of steroidogenesis-associated genes (translocator protein; and P450scc) was examined by quantitative real-time PCR. Bcl-2-associated X protein and cyclogenase-2 genes were examined by immunohistochemical analysis. The bioactive contents of licorice extract were confirmed by gas chromatography-mass spectrometry analysis. Pretreatment with licorice extract ameliorated the toxic effects of MTX on total proteins, albumin, and globulins and oxidative stress biomarkers and reversed the effect of MTX on examined serum and tissue antioxidants. Besides, MTX down-regulated mRNA expression of translocator protein and P450scc genes. Licorice extract averted the decrease in serum testosterone and the increase in IL-1β and IL-6 levels induced by MTX. Moreover, MTX increased sperm abnormalities and percentage of dead sperms and reduced sperm motility. These changes were absent in the licorice preadministered group. Licorice prevented the increase in immunoreactivity of testis for Bcl-2-associated X protein and cyclogenase-2 that were overexpressed in MTX-injected mice. Licorice extracts positively regulated the expression of steroidogenesis genes suppressed by MTX, increased antioxidant enzymes (glutathione peroxidase, reduced glutathione, and catalase) and reduced biomarker of oxidative stress (testicular malondialdehyde) and inflammatory cytokines (IL-1 and -6). Moreover, reduction in testicular tissue immunoreactivity to Bcl-2-associated X protein and cyclogenase-2. In conclusion, licorice extract mitigated the toxic effects of MTX-induced testicular dysfunction at biochemical, molecular, and cellular levels.
Collapse
Affiliation(s)
- Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Fayez Althobaiti
- Biotechnology Department, College of Science, Taif University, Taif, 21995, Saudi Arabia
| | - Adel Alkhedaide
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gehan B A Youssef
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Alshaimaa Mohammed Said
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
33
|
Regression Modeling of the Antioxidant-to-Nephroprotective Relation Shows the Pivotal Role of Oxidative Stress in Cisplatin Nephrotoxicity. Antioxidants (Basel) 2021; 10:antiox10091355. [PMID: 34572987 PMCID: PMC8464812 DOI: 10.3390/antiox10091355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical utility of the chemotherapeutic drug cisplatin is significantly limited by its nephrotoxicity, which is characterized by electrolytic disorders, glomerular filtration rate decline, and azotemia. These alterations are consequences of a primary tubulopathy causing injury to proximal and distal epithelial cells, and thus tubular dysfunction. Oxidative stress plays a role in cisplatin nephrotoxicity and cytotoxicity, but its relative contribution to overall toxicity remains unknown. We studied the relation between the degree of oxidative reduction (provided by antioxidant treatment) and the extent of nephrotoxicity amelioration (i.e., nephroprotection) by means of a regression analysis of studies in animal models. Our results indicate that a linear relation exists between these two parameters, and that this relation very nearly crosses the value of maximal nephroprotection at maximal antioxidant effect, suggesting that oxidative stress seems to be a pivotal and mandatory mechanism of cisplatin nephrotoxicity, and, hence, an interesting, rationale-based target for clinical use. Our model also serves to identify antioxidants with enhanced effectiveness by comparing their actual nephroprotective power with that predicted by their antioxidant effect. Among those, this study identified nanoceria, erythropoietin, and maltol as highly effective candidates affording more nephroprotection than expected from their antioxidant effect for prospective clinical development.
Collapse
|
34
|
Verma VK, Malik S, Mutneja E, Sahu AK, Rupashi K, Dinda AK, Arya DS, Bhatia J. Mechanism Involved in Fortification by Berberine in CDDP-Induced Nephrotoxicity. Curr Mol Pharmacol 2021; 13:342-352. [PMID: 32077836 DOI: 10.2174/1874467213666200220142202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND The activation of Nrf2/HO-1 pathway has been shown to protect against cisplatin- induced nephrotoxicity by reducing oxidative stress. Berberine (Ber), an isoquinoline alkaloid, has demonstrated antioxidant, anti-inflammatory and anti-apoptotic activities in various experimental models. AIM To check the effect of Ber on cisplatin-induced nephrotoxicity and to explore the involved mechanism. METHODS Adult male Wistar rats were divided into 6 groups: Normal, cisplatin-control, treatment groups and per se group. Normal saline and Ber (20, 40 and 80 mg/kg; p.o.) was administered to rats for 10 days. A single intraperitoneal injection of cisplatin (8 mg/kg) was injected on 7th day to induced nephrotoxicity. On 10th day, rats were sacrificed, the kidney was removed and stored for the estimation of various parameters. RESULTS As compared to cisplatin-control group, Ber pretreatment improved renal function system and preserved renal architecture. It also diminished oxidative stress by upregulating the expression of Nrf2/HO-1 proteins. In addition, Ber attenuated the cisplatin mediated inflammation and apoptosis. Furthermore, it also reduced the phosphorylation of p38/JNK and PARP/Beclin-1 expression in the kidney. CONCLUSION Ber attenuated renal injury by activating Nrf2/HO-1 and inhibiting JNK/p38MAPKs/ PARP/Beclin-1 expression which prevented oxidative stress, inflammation, apoptosis and autophagy in renal tissue.
Collapse
Affiliation(s)
- Vipin K Verma
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Mutneja
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Anil K Sahu
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Kumari Rupashi
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dharamvir S Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
El-Senduny FF, Hegazi NM, Abd Elghani GE, Farag MA. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, Fadl SE, Soliman A, Aboubakr M. Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep 2021; 11:13979. [PMID: 34234176 PMCID: PMC8263713 DOI: 10.1038/s41598-021-93196-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin (CP) is one of the most frequently used chemotherapy agents. The objective of this design was to determine the ameliorative effect of lycopene (LP) and/or N-acetylcysteine (NAC) in rats with hepatic and renal toxicity induced by CP. Rats were divided randomly into 7 groups (7 rats/group): control vehicle group (saline only), the LP group (10 mg/kg, orally), the NAC group (150 mg/kg, orally), the CP group (7.5 mg/kg, IP on day 27), the LP-CP group, the NAC-CP group, and the LP-NAC-CP group. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (APK), and levels of urea, creatinine, and lipids (cholesterol, triglycerides, and low-density lipoprotein-cholesterol) increased after CP injection in the serum. Moreover, CP decreased levels of protein, albumin, and HDL cholesterol. Meanwhile, malondialdehyde significantly increased with a decrease in reduced glutathione, superoxide dismutase, and catalase in the liver and kidney tissues. CP also induced some pathological lesions and increased the expression of caspase-3 in the liver and kidney tissues. Administration of LP and NAC alone or in combinations ameliorated hepatorenal toxicity and apoptosis induced by CP.
Collapse
Affiliation(s)
- Asmaa Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Reda Elkammar
- Department of Histology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Gehan Youssef
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt.
| |
Collapse
|
37
|
Eltamany EE, Elhady SS, Nafie MS, Ahmed HA, Abo-Elmatty DM, Ahmed SA, Badr JM, Abdel-Hamed AR. The Antioxidant Carrichtera annua DC. Ethanolic Extract Counteracts Cisplatin Triggered Hepatic and Renal Toxicities. Antioxidants (Basel) 2021; 10:825. [PMID: 34064100 PMCID: PMC8224350 DOI: 10.3390/antiox10060825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a powerful anti-neoplastic drug that displays multi-organ toxicity, especially to the liver and kidneys. Consumption of phytomedicines is a promising strategy to overcome the side effects of chemotherapy. Carrichtera annua extract proved to possess potent antioxidant activity. Its protective potential against cisplatin-induced hepato-nephrotoxicity was scrutinized. Moreover, a phytochemical study was conducted on C. annua ethyl acetate fraction which led to the isolation of five known phenolic compounds. Structure determination was achieved utilizing 1H- and 13C-NMR spectral analyses. The isolated phytochemicals were trans-ferulic acid (1), kaempferol (2), p-coumaric acid (3), luteolin (4) and quercetin (5). Regarding our biological study, C. annua has improved liver and kidney deteriorated functions caused by cisplatin administration and attenuated the histopathological injury in their tissues. Serum levels of ALT, AST, blood urea nitrogen and creatinine were significantly decreased. C. annua has modulated the oxidative stress mediated by cisplatin as it lowered MDA levels while enhanced reduced-GSH concentrations. More importantly, the plant has alleviated cisplatin triggered inflammation, apoptosis via reduction of INFγ, IL-1β and caspase-3 production. Moreover, mitochondrial injury has been ameliorated as remarkable increase of mtDNA was noted. Furthermore, the MTT assay proved the combination of cisplatin-C. annua extract led to growth inhibition of MCF-7 cells in a notable additive way. Additionally, we have investigated the binding affinity of C. annua constituents with caspase-3 and IFN-γ proteins using molecular simulation. All the isolated compounds exhibited good binding affinities toward the target proteins where quercetin possessed the most auspicious caspase-3 and IFN-γ inhibition activities. Our results put forward that C. annua is a promising candidate to counteract chemotherapy side effects and the observed activity could be attributed to the synergism between its phytochemicals.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Haidy A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
- Ismailia Health Affairs Directorate, Ismailia 41525, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
38
|
Taghizadeh F, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Mirzaei M, Talebpour Amiri F. Alleviation of cisplatin-induced hepatotoxicity by gliclazide: Involvement of oxidative stress and caspase-3 activity. Pharmacol Res Perspect 2021; 9:e00788. [PMID: 34003600 PMCID: PMC8130655 DOI: 10.1002/prp2.788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS Cisplatin (CP), as an effective alkylating agent, is widely used in cancer treatment, while hepatotoxicity is one of its side effects. Gliclazide (GLZ), as an oral hypoglycemic drug, has antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of GLZ against CP-induced hepatotoxicity in mice. METHODS In this experimental study, 64 adult male mice randomly were allocated into eight groups (8 mice/group). Control, GLZ (5, 10, and 25 mg/kg, orally), CP (10 mg/kg, single dose, intraperitoneally), and CP+GLZ (in three doses). GLZ was administrated for 10 consecutive days. CP was injected on the 7th day of the study. At the end of the experiment, hepatotoxicity was evaluated by serum and tissue biochemical, histopathological, and immunohistochemical assessments. RESULTS The data were revealed that CP increased oxidative stress (increased MDA and reduced GSH), liver damage enzymes (ALT, AST, and ALP), and immunoreactivity of caspase-3 in liver tissue of CP-injected mice. Also, CP induced histopathological changes such as eosinophilic of hepatocytes, dilatation of sinusoids, congestion, and proliferation of Kupffer cells. GLZ administration significantly ameliorated serum functional enzyme and hepatic oxidative stress markers in CP-injected mice. In addition, the histological and immunohistochemical alterations were ameliorated in GLZ-treated mice. Of the three doses, 10 and 25 mg/kg were more effective. CONCLUSIONS In conclusion, GLZ with its antioxidant, anti-inflammatory, and anti-apoptotic activities, can be suggested as a promising drug in the treatment of CP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | | | - Mehryar Zargari
- Department of BiochemistryFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Abbasali Karimpour Malekshah
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| | - Mansoureh Mirzaei
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| | - Fereshteh Talebpour Amiri
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| |
Collapse
|
39
|
Eid BG, El-Shitany NA. Captopril downregulates expression of Bax/cytochrome C/caspase-3 apoptotic pathway, reduces inflammation, and oxidative stress in cisplatin-induced acute hepatic injury. Biomed Pharmacother 2021; 139:111670. [PMID: 33945910 DOI: 10.1016/j.biopha.2021.111670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cisplatin (Cis) is an effective cancer therapy commonly employed in many therapeutic regimens. However, treatment regimens that contain either a high dose or cumulative doses of Cis could trigger liver damage. A unique study demonstrated that captopril (Cap) protects against Cis-induced liver toxicity, but only some liver function enzymes and some antioxidant enzymes were investigated in that study. Our study aims to elucidate the protective mechanism of Cap against Cis liver toxicity. Acute liver toxicity was induced in rats by injecting a single Cis dose (7.5 mg/kg) in three groups (n = 6). Two groups were pre-treated with low (50 mg/kg) and high (100 mg/kg) Cap doses for one week before Cis injection, and the third group was injected with Cis only. The high Cap dose significantly improved liver function markers (ALT, AST, and ALP) and hepatic tissue pathology. The low Cap dose significantly improved ALP and, to a lesser extent, hepatic tissue pathology. Both Cap doses significantly decreased liver contents of MDA, IL-1β, and cleaved caspase-3; and liver protein expression of TNF-α, Bax, and caspase-3. The high Cap dose significantly increased liver contents of GSH, GPx, CAT, and SOD, and the liver protein expression of Bcl2. Moreover, only the high Cap dose significantly decreased liver IL-6 content and cytochrome C protein expression. Cap did not inhibit the antitumor impact of Cis against HCT116 cancer cells. Therefore, Cap restricts Cis-induced liver toxicity by reducing inflammation and apoptosis and augmenting the antioxidant system.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagla A El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
40
|
Yuan L, Yuan Y, Liu F, Li L, Liu J, Chen Y, Cheng J, Lu Y. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury. Aging (Albany NY) 2021; 13:8421-8439. [PMID: 33714196 PMCID: PMC8034953 DOI: 10.18632/aging.202653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Because of the key role of impaired mitochondria in the progression of acute kidney injury (AKI), it is striking that peroxisome proliferator γ coactivator 1-α (PGC-1α), a transcriptional coactivator of genes involved in mitochondrial biogenesis and autophagy, protects from kidney injury. However, the specific mechanism involved in PGC-1α-mediated autophagy remains elusive. In vivo, along with the severe kidney damage, the expression of PGC-1α was decreased in cisplatin-induced AKI mice. Conversely, PGC-1α activator (ZLN005) administration could alleviate kidney injury. Consistently, in vitro overexpression of PGC-1α or ZLN005 treatment inhibited cell apoptosis and mitochondrial dysfunction induced by cisplatin. Moreover, ZLN005 treatment increased the expression of LC3-II and co-localization between LC3 and mitochondria, suggesting that the mitophagy was activated. Furthermore, PGC-1α-mediated the activation of mitophagy was reliant on the increased expression of TFEB, and the protective effects were abrogated in TFEB-knockdown cells. These data suggest that the activation of PGC-1α could alleviate mitochondrial dysfunction and kidney injury in AKI mice via TFEB-mediated autophagy.
Collapse
Affiliation(s)
- Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Sherif IO. Hepatoprotective effect of arjunolic acid against cisplatin-induced hepatotoxicity: Targeting oxidative stress, inflammation, and apoptosis. J Biochem Mol Toxicol 2021; 35:e22714. [PMID: 33491850 DOI: 10.1002/jbt.22714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Minimizing the adverse effects of chemotherapeutic agents remains a therapeutic challenge. Cisplatin (CP) induces hepatotoxicity through activation of oxidative stress, inflammation, and apoptosis cascades which is considered a significant drawback. Thus, this study aimed to highlight the possible hepatoprotective role of arjunolic acid (Arj) in a rat model of CP-induced hepatotoxicity. Four groups of rats were included; the normal control group, Arj control group, CP group which was injected with 7.5 mg/kg CP intraperitoneally to induce hepatotoxicity, and the treated group (Arj + CP), which was orally administered 20 mg/kg Arj for 10 days with a CP hepatotoxic dose on day 5. Blood and liver tissues were assembled for analysis at the end of the study. Pretreatment with Arj exhibited a marked improvement in liver function as well as histopathology when compared with the CP group. Moreover, Arj suppressed the oxidative stress in hepatic tissue by significantly decreasing malondialdehyde and nitric oxide contents along with markedly elevating the levels of superoxide dismutase, catalase, and reduced glutathione when compared with CP injected rats. Attenuation of hepatic inflammation and apoptosis was also reported with Arj treatment through the marked reduction in the proinflammatory cytokine tumor necrosis factor α level as well as the apoptotic marker caspase-3 protein expression in comparison to the CP group. This study explored for the first time the Arj hepatoprotective effect against CP-induced hepatotoxicity through its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
Man Q, Deng Y, Li P, Ma J, Yang Z, Yang X, Zhou Y, Yan X. Licorice Ameliorates Cisplatin-Induced Hepatotoxicity Through Antiapoptosis, Antioxidative Stress, Anti-Inflammation, and Acceleration of Metabolism. Front Pharmacol 2020; 11:563750. [PMID: 33240085 PMCID: PMC7683576 DOI: 10.3389/fphar.2020.563750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CP) is one of the most effective antitumor drugs in the clinic, but has serious adverse reactions, and its hepatotoxicity has not been fully investigated. Licorice (GC), a traditional herbal medicine, has been commonly used as a detoxifier for poisons and drugs, and may be an effective drug for CP-induced hepatotoxicity. However, its mechanism and the effector molecules remain ambiguous. Therefore, in this study, a network pharmacology and proteomics-based approach was established, and a panoramic view of the detoxification of GC on CP-induced hepatotoxicity was provided. The experimental results indicated that GC can recover functional indices and pathological liver injury, inhibit hepatocyte apoptosis, upregulate B-cell lymphoma/leukemia 2 (Bcl-2) and superoxide dismutase (SOD) levels, and downregulate cellular tumor antigen p53 (p53), caspase-3, malondialdehyde high mobility group protein B1 (HMGB1), tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β) levels. Proteomics indicated that GC regulates phosphatidylcholine translocator ABCB1 (ABCB1B), canalicular multispecific organic anion transporter 1 (ABCC2), cytochrome P450 4A2 (CYP4A2), cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2), estrogen receptor (ESR1), and DNA topoisomerase 2-alpha (TOP2A), inhibits oxidative stress, apoptosis, and inflammatory responses, and accelerates drug metabolism. In this study, we provide the investigation of the efficacy of GC against CP-induced hepatotoxicity, and offer a promising alternative for the clinic.
Collapse
Affiliation(s)
- Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou, China
| | - Pengjie Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Zhou
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Yan
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
43
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
44
|
Elkomy A, Abdelhiee EY, Fadl SE, Emam MA, Gad FAM, Sallam A, Alarifi S, Abdel-Daim MM, Aboubakr M. L-Carnitine Mitigates Oxidative Stress and Disorganization of Cytoskeleton Intermediate Filaments in Cisplatin-Induced Hepato-Renal Toxicity in Rats. Front Pharmacol 2020; 11:574441. [PMID: 33117167 PMCID: PMC7552923 DOI: 10.3389/fphar.2020.574441] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (CP) is one of the most active medications in cancer treatment and has some adverse effects such as hepatotoxicity and nephrotoxicity. The present research was planned to determine the protective effects of L-carnitine (LC) against CP-induced hepato-renal oxidative stress in rats, via investigating of some serum biochemical and tissue oxidative/antioxidant parameters, histological alterations, and immunohistochemical expressions of two different intermediate filaments (IFs) proteins; vimentin (VIM) and cytokeratin 18 (CK18). Twenty-eight rats were divided into four groups (7 rats each). Groups I and II were orally administered saline and LC (100 mg/kg body weight), respectively, once daily for 30 consecutive days. Group III received saline orally once daily and a single dose of CP on the 27th day of the experiment [7.5 mg/kg, intraperitoneal (IP)]. Group IV received both LC and CP. Injection of CP significantly (P ≤ 0.05) increased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities and creatinine and urea levels, while serum total protein, albumin, and globulin concentrations significantly (P ≤ 0.05) decreased. In addition, CP induced a dramatic increase in the Malondialdehyde (MDA) level along with a substantial decrease in reduced glutathione (GSH) and catalase (CAT) in the hepato-renal tissues. Histologically, both liver and kidney of the CP treated group revealed marked degenerative changes. Moreover, overexpression of both VIM and CK18 in hepato-renal tissues were noted after CP injection. On the other hand, the administration of LC in the CP injected group (Group IV) restored the biochemical parameters, histological, and immunohistochemical pictures toward the normalcy. In conclusion, LC may be supplemented for chemotherapy with CP to ameliorate its oxidative stress and restore the normal organization of IFs, especially VIM and CK18 within the CP intoxicated hepato-renal cells.
Collapse
Affiliation(s)
- Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ehab Yahya Abdelhiee
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Sabreen Ezzat Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | | | - Fatma Abdel-Monem Gad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Adham Sallam
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
45
|
Zhang YZ, Zhou ZC, Song CY, Chen X. The Protective Effect and Mechanism of Dexmedetomidine on Diabetic Peripheral Neuropathy in Rats. Front Pharmacol 2020; 11:1139. [PMID: 32848754 PMCID: PMC7406656 DOI: 10.3389/fphar.2020.01139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate the role of dexmedetomidine (DEX) in the inhibition of diabetic peripheral neuropathy (DPN) and the protection in the nerve damage. Methods Eighty male Sprague-Dawley (SD) rats were randomly allocated to four groups: the control group (C group), DPN model group (DPN group), DEX-treated group (DEX group), and the yohimbine treated group (YOH group). DPN was induced by intraperitoneal administration of streptozocin (STZ) (35 mg/kg). The body weights, blood glucose level, mechanical withdrawal threshold (MWT), thermal withdrawal latency (TWL), the motor, and sensory nerve conduction velocities (MNCV and SNCV) of sciatic nerve were measured. Then the sciatic nerve was isolated for H&E staining and immunohistochemical staining. The oxidative stress makers such as malondialdehyde (MDA), superoxide-dismutase (SOD), and glutathione peroxidase (GSH-Px) and apoptosis related cytokines such as Bax, Bcl-2, and caspase-3 were estimated. Results There was no significant difference of the blood glucose and body weight among the DPN group, DEX group, and YOH group. H&E staining showed that DEX treatment can ameliorate the damage of sciatic nerve cells. In the DPN group, MWT, TWL, MNCV, and SNCV were significantly reduced compared with the C group (P < 0.05). In DEX group rats, MWT, TWL, MNCV, and SNCV were increased significantly (P < 0.05) compared with the DPN group and YOH group rats. Lower SOD and GSH-Px, and higher MDA were found in the DPN group compared with the C group (P < 0.01), and DEX treatment restored SOD, GSH-px, and MDA activity significantly (P < 0.01). The expression levels of Bax and caspase-3 were increased, while that of Bcl-2 was decreased significantly in the DPN group compared with the C group (P < 0.05). In the DEX group, the expression levels of Bax and caspase-3 were decreased significantly (P < 0.05), while that of Bcl-2 was increased significantly (P < 0.05) compared with the DPN group and the YOH group. Conclusion The results of this study demonstrated that DEX has the inhibitory and protective effects on DPN of rats. This may be associated with its antioxidative and anti-apoptosis responses.
Collapse
Affiliation(s)
- Yan-Zhuo Zhang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou, China.,Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhong-Cheng Zhou
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Yu Song
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xia Chen
- Department of Anesthesiology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou, China
| |
Collapse
|
46
|
Neamatallah T, El-Shitany N, Abbas A, Eid BG, Harakeh S, Ali S, Mousa S. Nano Ellagic Acid Counteracts Cisplatin-Induced Upregulation in OAT1 and OAT3: A Possible Nephroprotection Mechanism. Molecules 2020; 25:E3031. [PMID: 32630784 PMCID: PMC7411712 DOI: 10.3390/molecules25133031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an anticancer drug commonly used for solid tumors. However, it causes nephrotoxicity. OAT1 and OAT3 are organic anion transporters known to contribute to the uptake of cisplatin into renal tubular cells. The present study was designed to examine the protective role of ellagic acid nanoformulation (ellagic acid nano) on cisplatin-induced nephrotoxicity in rats, and the role of OAT1/OAT3 in this effect. Four groups of male Wistar rats were used (n = 6): (1) control, (2) cisplatin (7.5 mg/kg single dose, intraperitoneal), (3) cisplatin + ellagic acid nano (1 mg/kg), and (4) cisplatin + ellagic acid nano (2 mg/kg). Nephrotoxic rats treated with ellagic acid nano exhibited a significant reduction in elevated serum creatinine, urea, and oxidative stress marker, malondialdehyde (MDA). Additionally, ellagic acid nano restored renal glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Ellagic acid nano improved the histopathological changes induced by cisplatin, such as tubular dilatation, necrosis, and degeneration. Interestingly, OAT1 and OAT3 showed significantly lower expression at both mRNA and protein levels following ellagic acid nano treatment relative to the cisplatin-exposed group. These findings reveal a potential inhibitory role of ellagic acid antioxidant on OAT1 and OAT3 expression and thus explains its nephroprotective effect against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Nagla El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Aymn Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Biotechnology Research Laboratories, Gastroenterology Surgery Center, Mansoura University, Mansoura 35511, Egypt
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Soad Ali
- Anatomy Department of Cytology and Histology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker Mousa
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
47
|
Abstract
To investigate combined effect of the anticancer drug cisplatin (CP) and the opiate analgesic morphine (MOR) on liver, rats were administered MOR (10 mg/kg/day i.p. for 10 days), with or without CP (7.5 mg/kg i.p. once at day 5 of the study). MOR or CP alone caused deterioration of liver function tests and induced damage to histological architecture of liver. In addition, each drug alone caused hepatic oxidative stress, as evident by significant increase of malondialdehyde and nitric oxide, as well as the significant decrease in GSH, catalase and SOD compared to control. Administration of either MOR or CP also caused liver inflammation, evident by the increase in the pro-inflammatory cytokines; TNF-α and IL-6. In addition, either MOR or CP induced liver apoptosis, as shown by significant increase in expression of the pro-apoptotic marker; caspase 3 compared to control. Either MOR or CP also caused up-regulation of the efflux transporter P-glycoprotein (P-gp). Combining MOR with CP caused deterioration in all parameters tested compared to CP alone. Thus, treatment with MOR worsened CP-induced hepatotoxicity through oxidative stress, inflammation and apoptosis mechanisms. In addition, both drugs contributed to the up-regulation of P-gp, which might be a new mechanism for their hepatotoxic effects.
Collapse
|
48
|
Abdel-Razek EAN, Abo-Youssef AM, Azouz AA. Benzbromarone mitigates cisplatin nephrotoxicity involving enhanced peroxisome proliferator-activated receptor-alpha (PPAR-α) expression. Life Sci 2020; 243:117272. [PMID: 31926251 DOI: 10.1016/j.lfs.2020.117272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
AIM Despite the great efficacy reported for cisplatin as a widely used chemotherapeutic agent, its clinical use is limited by the challenge of facing its serious side effect; nephrotoxicity. In this study, the effect of the benzbromarone on peroxisome proliferator-activated receptor-alpha (PPAR-α) was investigated against cisplatin nephrotoxicity. MAIN METHODS Rats were administered benzbromarone (10 mg/kg/day; p.o.) for 14 days, and cisplatin (6.5 mg/kg; i.p.) as a single dose on the 10th day. Blood and kidney tissue samples were collected for determination of kidney function, biochemical and molecular markers, as well as histopathological investigation. KEY FINDINGS Benzbromarone improved kidney function, that was evidenced by reduced serum creatinine and blood urea nitrogen to nearly the half, compared to the group administered cisplatin alone. The protein expression of PPAR-α was enhanced with benzbromarone treatment, along with a considerable suppression of oxidative stress as benzbromarone reduced mRNA expression of NADPH oxidase, while increased the anti-oxidant HO-1 protein expression associated with enhancing Nrf2. Besides, it displayed a marked anti-inflammatory effect involved suppression of p38 MAPK/NF-κB p65 signaling pathway and its downstream targets. Moreover, benzbromarone retarded apoptosis associated with reducing the pro-apoptotic (Bax) and enhancing the anti-apoptotic (Bcl-2) protein expressions. The protective effects of benzbromarone were also confirmed by histopathological results. SIGNIFICANCE Our data confirm the relation between PPAR-α, and the deleterious effects induced by cisplatin. It can also be suggested that enhancing PPAR-α expression by benzbromarone is a promising therapeutic approach that overcomes cisplatin nephrotoxicity, involving regulation of different signaling pathways: Nrf2/HO-1, p38 MAPK/NF-κB p65, and Bax/Bcl-2.
Collapse
Affiliation(s)
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
49
|
Alahmadi AA, Alzahrani AA, Ali SS, Alahmadi BA, Arab RA, El-Shitany NAEA. Both Matricaria chamomilla and Metformin Extract Improved the Function and Histological Structure of Thyroid Gland in Polycystic Ovary Syndrome Rats through Antioxidant Mechanism. Biomolecules 2020; 10:E88. [PMID: 31948119 PMCID: PMC7022237 DOI: 10.3390/biom10010088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing proof that polycystic ovary syndrome (PCOS) is associated with the increased frequency of thyroid disturbances. Chamomile (Matricaria chamomilla L.) herb and metformin showed therapeutic efficacy against polycystic ovary syndrome (PCOS). This study aimed to investigate the possible therapeutic effect of both chamomile flower extract and metformin against thyroid damage associated with PCOS in rats. The PCOS model was developed in rats by injecting estradiol valerate, and it was confirmed to be associated with thyroid hypofunction biochemically and pathologically. Treatment of PCOS rats with both chamomile extract and metformin resulted in an improvement in serum level of thyroid hormones (TSH, p < 0.01; T3 and T4, p < 0.05) and the disappearance of most thyroid gland pathological changes demonstrated by light and electron microscopes. They also reduced the level of serum estrogen (p < 0.01). Both chamomile extract and metformin decreased MDA (p < 0.05) and increased GPx and CAT (p < 0.01). Only chamomile extract increased GSH (p < 0.01). Both treatments reduced the apoptotic death of thyroid cells as noted by the reduction of caspase-3 immunoexpression (p < 0.01). In conclusion, both Matricariachamomilla extract and metformin ameliorated hypothyroidism associated with PCOS through an antioxidant and antiapoptotic mechanism.
Collapse
Affiliation(s)
- Ahlam Abdulaziz Alahmadi
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.A.A.)
| | - Areej Ali Alzahrani
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.A.A.)
| | - Soad Shaker Ali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Histology, College of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Rana Ali Arab
- Medicine Program, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
50
|
Shi HH, Wang CC, Guo Y, Xue CH, Zhang TT, Wang YM. DHA-PC protects kidneys against cisplatin-induced toxicity and its underlying mechanisms in mice. Food Funct 2019; 10:1571-1581. [DOI: 10.1039/c8fo02386g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DHA-PC protected the kidney against cisplatin-induced toxicity through sirtuin 1 activation, the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|