1
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
2
|
Han W, Li H, Jiang H, Xu H, Lin Y, Chen J, Bi C, Liu Z. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in alcohol-related liver disease. PeerJ 2023; 11:e15977. [PMID: 37727691 PMCID: PMC10506582 DOI: 10.7717/peerj.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.
Collapse
Affiliation(s)
- Wenwen Han
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Haiyu Li
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hanqi Jiang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yifeng Lin
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jiahuan Chen
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| |
Collapse
|
3
|
Wang X, Cong P, Wang X, Wang Z, Liu B, Xue C, Xu J. Docosahexaenoic acid-acylated astaxanthin monoester ameliorates chronic high-fat diet-induced autophagy dysfunction via ULK1 pathway in the hypothalamus of mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2378-2388. [PMID: 36606564 DOI: 10.1002/jsfa.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/21/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dietary astaxanthin (AST) exhibits the ability to resist lipid accumulation and stimulate hepatic autophagy. Natural AST predominantly exists in stable esterified forms. More importantly, in our previous study, docosahexaenoic acid-acylated AST monoester (AST-DHA) possessed better stability, bioavailability, and neuroprotective ability than AST in free and diester form. However, the AST-DHA mechanisms of action in regulating the obese phenotype and autophagy of the central nervous system remain unclear. RESULTS High-fat diet (HFD)-fed C57BL/6J mice were orally administered AST-DHA (50 mg/kg body weight/d) for 3 days or 8 weeks. AST-DHA supplementation alleviated HFD-induced abnormal body weight gain, significantly enhanced autophagy with an increased microtubule-associated protein light chain 3 II/I (LC3II/I) ratio, and reduced the accumulation of p62/sequestosome 1 (SQSTM1) in the hypothalamus rather than in the hippocampus. Mechanistically, AST-DHA effectively promoted autophagy and autophagosome formation, and most notably rescued the HFD-impaired autophagosome-lysosome fusion (indicated by the colocalization of LC3 and LAMP1) by regulating mTOR- and AMPK-induced phosphorylation of ULK1. Consequently, AST-DHA enhanced hypothalamic autophagy, leading to pro-opiomelanocortin (POMC) cleavage to produce alpha-melanocyte-stimulating hormone (α-MSH). CONCLUSIONS This study identified AST-DHA as an enhancer of autophagy that plays a beneficial role in restoring hypothalamic autophagy, and as a new potential therapeutic agent against HFD-induced obesity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Bin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
5
|
Zhang Y, Chen Y. Roles of organelle-specific autophagy in hepatocytes in the development and treatment of non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1673-1681. [PMID: 35950774 PMCID: PMC9509094 DOI: 10.1097/cm9.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is a disorder of lipid metabolism. The lipotoxic intermediates of lipid metabolism cause mitochondrial dysfunction and endoplasmic reticulum stress. Organelle-specific autophagy is responsible for the removal of dysfunctional organelles to maintain intracellular homeostasis. Lipophagy contributes to lipid turnover by degrading lipid droplets. The level of autophagy changes during the course of NAFLD, and the activation of hepatocyte autophagy might represent a method of treating NAFLD.
Collapse
Affiliation(s)
- Yizhi Zhang
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
6
|
Bai J, Zhu Y, He L, Zhang J, Li J, Pan R, Zhang J, Zhao Y, Cui L, Lu H, Jiang Y, Xiao X. Saponins from bitter melon reduce lipid accumulation via induction of autophagy in C. elegans and HepG2 cell line. Curr Res Food Sci 2022; 5:1167-1175. [PMID: 35936825 PMCID: PMC9352806 DOI: 10.1016/j.crfs.2022.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022] Open
Abstract
Saponins from bitter melon (BMS) are well-known to have various biological activities, especially in the field of fat-lowering. However, many gaps remain in our knowledge of BMS-induced fat reduction and health benefits. Here, we aimed to investigate the precise mechanism of BMS in alleviating fat accumulation in C. elegans and HepG2 cell line. Results indicated that BMS showed strong fat-lowering and lifespan-extension properties. Lipidomic analysis illustrated that BMS could alter the lipid profile, especially represented by phosphatidylethanolamine (PE) increase, which plays an essential role in autophagy. Furthermore, we applied gene-deficient mutants and RNAi technology to confirm that BMS largely depended on daf-16/FoxO1 and hlh-30/TFEB mediated lipophagy to reduce fat deposition. In addition, BMS could ameliorate oil acid (OA)-induced fat accumulation in HepG2 cells by induction of autophagy-related proteins, such as the phosphorylated AMPK and LC3B. In conclusion, our results elucidated the underlying mechanism of bitter melon saponins interfering with lipid metabolism from the autophagy point of view, which provide new insights into a nutraceutical to mitigate obesity. Bitter melon saponin (BMS) could inhibit fat accumulation and extended the lifespan of C. elegans. Lipidomics analysis predicted autophagy may be a key pathway involved in the fat-lowering effects of BMS. BMS induced daf-16/hlh-30 mediated lipophagy to confer fat-lowering benefit. BMS regulated autophagy via activating AMPK phosphorylation and LC3B expressions in HepG2 cells.
Collapse
|
7
|
Ramos VDM, Kowaltowski AJ, Kakimoto PA. Autophagy in Hepatic Steatosis: A Structured Review. Front Cell Dev Biol 2021; 9:657389. [PMID: 33937257 PMCID: PMC8081956 DOI: 10.3389/fcell.2021.657389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Dietary Polyphenols in Metabolic and Neurodegenerative Diseases: Molecular Targets in Autophagy and Biological Effects. Antioxidants (Basel) 2021; 10:antiox10020142. [PMID: 33498216 PMCID: PMC7908992 DOI: 10.3390/antiox10020142] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols represent a group of secondary metabolites of plants which have been analyzed as potent regulators of multiple biological processes, including cell proliferation, apoptosis, and autophagy, among others. These natural compounds exhibit beneficial effects and protection against inflammation, oxidative stress, and related injuries including metabolic diseases, such as cardiovascular damage, obesity and diabetes, and neurodegeneration. This review aims to summarize the mechanisms of action of polyphenols in relation to the activation of autophagy, stimulation of mitochondrial function and antioxidant defenses, attenuation of oxidative stress, and reduction in cell apoptosis, which may be responsible of the health promoting properties of these compounds.
Collapse
|
9
|
Baiges-Gaya G, Fernández-Arroyo S, Luciano-Mateo F, Cabré N, Rodríguez-Tomàs E, Hernández-Aguilera A, Castañé H, Romeu M, Nogués MR, Camps J, Joven J. Hepatic metabolic adaptation and adipose tissue expansion are altered in mice with steatohepatitis induced by high-fat high sucrose diet. J Nutr Biochem 2020; 89:108559. [PMID: 33264665 DOI: 10.1016/j.jnutbio.2020.108559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a chronic progressive disease with several metabolic alterations. Nonalcoholic fatty liver disease (NAFLD) is an important comorbidity of obesity that can progress to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocarcinoma. This study aimed at clarifying the molecular mechanisms underlying the metabolic alterations in hepatic and adipose tissue during high-fat high-sucrose diet-induced NAFLD development in mice. METHODS Twenty-four male mice (C57BL/6J) were randomly allocated into 3 groups (n = 8 mice per group) to receive a chow diet, a high-fat diet (HFD), or a high-fat high-sucrose diet (HF-HSD) for 20 weeks. At sacrifice, liver and adipose tissue were obtained for histopathological, metabolomic, and protein expression analyses. RESULTS HF-HSD (but not HFD) was associated with NASH and increased oxidative stress. These animals presented an inhibition of hepatic autophagy and alterations in AMP-activated protein kinase/mammalian target of rapamycin activity. We also observed that the ability of metabolic adaptation was adversely affected by the increase of damaged mitochondria. NASH development was associated with changes in adipose tissue dynamics and increased amounts of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids in visceral adipose tissue. CONCLUSION HF-HSD led to a metabolic blockage and impaired hepatic mitochondria turnover. In addition, the continuous accumulation of fatty acids produced adipose tissue dysfunction and hepatic fat accumulation that favored the progression to NASH.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Noemí Cabré
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Helena Castañé
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta Romeu
- Universitat Rovira i Virgili, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Unitat de Farmacologia, Reus, Spain
| | - Maria-Rosa Nogués
- Universitat Rovira i Virgili, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Unitat de Farmacologia, Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain.
| | - Jorge Joven
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain; Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
10
|
Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. J Nutr Biochem 2020; 81:108363. [PMID: 32388250 DOI: 10.1016/j.jnutbio.2020.108363] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.
Collapse
|
11
|
Lee DE, Bareja A, Bartlett DB, White JP. Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 2019; 8:cells8020183. [PMID: 30791569 PMCID: PMC6406986 DOI: 10.3390/cells8020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.
Collapse
Affiliation(s)
- David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|