1
|
Yang M, Yang Z, Everett DW, Gilbert EP, Singh H, Ye A. Digestion of food proteins: the role of pepsin. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39836113 DOI: 10.1080/10408398.2025.2453096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2025]
Abstract
The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins. The interaction between pepsin and proteins from different food sources is highly dependent on the protein species, composition, processing treatment, and the presence of other food components. Coagulation of milk proteins under gastric conditions to form a coagulum is a unique behavior that affects gastric emptying and further hydrolysis of proteins. The processing treatment of proteins, either from milk or other sources, may change their structure, interactions with pepsin, and allergenicity. For example, the heat treatment of milk proteins results in the formation of a looser curd in the gastric phase and facilitates protein digestion by pepsin. Heated meat proteins undergo denaturation and conformational changes that enhance the rate of pepsin digestion. This review provides new ideas for the design of food products containing high protein concentrations that optimize nutrition while facilitating low allergenicity for consumers.
Collapse
Affiliation(s)
- Mengxiao Yang
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Zhi Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - David W Everett
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Sydney, New South Wales, Australia
- Centre for Nutrition and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Stephenson L, Van Den Heuvel C, Scott T, Byard RW. Difficulties associated with the interpretation of postmortem toxicology. J Anal Toxicol 2024; 48:405-412. [PMID: 38850225 PMCID: PMC11245884 DOI: 10.1093/jat/bkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
While postmortem (PM) toxicology results provide valuable information towards ascertaining both the cause and manner of death in coronial cases, there are also significant difficulties associated with the interpretation of PM drug levels. Such difficulties are influenced by several pharmacokinetic and pharmacodynamic factors including PM redistribution, diffusion, site-to-site variability in drug levels, different drug properties and metabolism, bacterial activity, genetic polymorphisms, tolerance, resuscitation efforts, underlying conditions, and the toxicity profile of cases (i.e. single- or mixed-drug toxicity). A large body of research has been dedicated for better understanding and even quantifying the influence of these factors on PM drug levels. For example, several investigative matrices have been developed as potential indicators of PM redistribution, but they have limited practical value. Reference tables of clinically relevant therapeutic, toxic, and potentially fatal drug concentrations have also been compiled, but these unfortunately do not provide reliable reference values for PM toxicology. More recent research has focused on developing databases of peripheral PM drug levels for a variety of case-types to increase transferability to real-life cases and improve interpretations. Changes to drug levels after death are inevitable and unavoidable. As such, guidelines and practices will continue to evolve as we further our understanding of such phenomena.
Collapse
Affiliation(s)
- Lilli Stephenson
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Timothy Scott
- Forensic Science SA (FSSA), Adelaide, SA 5000, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Roger W Byard
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Forensic Science SA (FSSA), Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Yu Q, Hong H, Liu Y, Monto AR, Gao R, Bao Y. Oxidation affects pH buffering capacity of myofibrillar proteins via modification of histidine residue and structure of myofibrillar proteins. Int J Biol Macromol 2024; 260:129532. [PMID: 38246447 DOI: 10.1016/j.ijbiomac.2024.129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The pH buffering capacity is an important functionality of muscle proteins, and muscle foods are susceptible to being oxidized during storage and processing. In order to study the effect of oxidation on the pH buffering capacity of myofibrillar proteins, myofibrils extracted from snakehead fish (Channa argus) were oxidized with H2O2. Results showed that increased oxidation led to loss of free sulfhydryl groups, formation of carbonyl groups, increased surface hydrophobicity, and aggregation of myofibrillar proteins. In addition, there was a significant reduction in the content of histidine in oxidized myofibrillar proteins. The pH buffering capacity of myofibrillar proteins significantly decreased from 3.14 ± 0.03 mM H+/(mL × ΔpH) down to 2.55 ± 0.03 mM H+/(mL × ΔpH) after oxidation with 50 mM H2O2. Both oxidized myofibrillar proteins and histidine showed a high pH buffering capacity at pH near 5.8, which is the histidine pKa value. Here, we hypothesize that oxidation-induced changes in the pH buffering capacity of myofibrillar proteins were driven by oxidative modification of histidine and structural changes of myofibrillar proteins. The significance of this study to food industry may be the awareness that protein oxidation may affect pH through changes in buffering capacity. And the use of antioxidants, especially those targeting at histidine will be promising in addressing this issue.
Collapse
Affiliation(s)
- Qingqing Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
4
|
Li S, Dixit Y, Reis MM, Singh H, Ye A. Movements of moisture and acid in gastric milk clots during gastric digestion: Spatiotemporal mapping using hyperspectral imaging. Food Chem 2024; 431:137094. [PMID: 37586231 DOI: 10.1016/j.foodchem.2023.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Ruminant milk is known to coagulate into structured clots during gastric digestion. This study investigated the movements of moisture and acid in skim milk clots formed during dynamic gastric digestion and the effects of milk type (regular or calcium-rich) and the presence/absence of pepsin. We conducted hyperspectral imaging analysis and successfully modelled the moisture contents based on the spectral information using partial least squares regression. We generated prediction maps of the spatiotemporal distribution of moisture within the samples at different stages of gastric digestion. Simultaneously to acid uptake, the moisture in the milk clots tended to decrease over the digestion time; this was significantly promoted by pepsin. Moisture mapping by hyperspectral imaging demonstrated that the high and low moisture zones were centralized within the clot and at the surface respectively. A structural compaction process promoted by pepsinolysis and acidification probably contributed to the water expulsion from the clots during digestion.
Collapse
Affiliation(s)
- Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Yash Dixit
- AgResearch Ltd, Te Ohu Rangahau Kai, Private Bag 11 008, Palmerston North, New Zealand
| | - Marlon M Reis
- AgResearch Ltd, Te Ohu Rangahau Kai, Private Bag 11 008, Palmerston North, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
5
|
Kar A, Olenskyj AG, Garcia Guerrero M, Graham R, Bornhorst GM. Interplay of egg white gel pH and intragastric pH: Impact on breakdown kinetics and mass transport processes. Food Res Int 2023; 173:113290. [PMID: 37803603 DOI: 10.1016/j.foodres.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Egg white gels have been utilized as a model system to study protein breakdown kinetics based on physical and biochemical breakdown processes during in vitro gastric digestion. Additionally, the impact of regulating intragastric pH on the breakdown kinetic processes was investigated. The present study evaluated the impact of gel pH (based on the pH of protein dispersion prepared at pH 3, 5 and 7.5) and intragastric pH regulation (with or without adjustment to pH 2 during in vitro gastric digestion) on the effective diffusion of gastric juice components (water and HCl), gel softening kinetics during gastric digestion, microstructural analysis using micro- computed tomography and protein hydrolysis in the liquid and solid fraction of egg white gel digesta. Egg white gels were subjected to 30 s oral digestion and 15, 30, 60, 120, 180 or 240 min gastric digestion in a static in vitro gastric digestion model, with or without gastric pH adjustment to pH 2. The gel pH affected all the properties measured during gastric digestion and each gel pH represented a specific driving mechanism for protein breakdown. A lower gel pH (pH 3) demonstrated a higher diffusion of moisture and acid, resulting in faster softening (p < 0.05). An intermediate pH (pH 5) showed greater protein-protein interactions due to the proximity to the isoelectric point of egg white proteins, resulting in very slow softening during digestion (p < 0.05), and a higher pH (pH 7) resulted in higher acid diffusion, intermediate gel hardness and very slow softening kinetics (p < 0.05). The gastric pH adjustment during digestion of egg protein gels affected (p < 0.05) the equilibrium moisture and acid contents as well as protein hydrolysis. The study confirmed that there is an interplay between initial gel pH and the intragastric pH which affected the breakdown kinetics of egg white gels during the gastric digestion process.
Collapse
Affiliation(s)
| | | | | | | | - Gail M Bornhorst
- University of California, Davis, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
6
|
Lechien JR, Bobin F. Variability and accuracy of multiple saliva pepsin measurements in laryngopharyngeal reflux patients. J Otolaryngol Head Neck Surg 2023; 52:66. [PMID: 37794462 PMCID: PMC10548621 DOI: 10.1186/s40463-023-00670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVE To study the variability and diagnostic value of multiple salivary pepsin measurements in the detection of laryngopharyngeal reflux (LPR). METHODS Patients with LPR symptoms were consecutively recruited from December 2019 to Augustus 2022. Twenty-one asymptomatic individuals completed the study. The diagnostic was confirmed with hypopharyngeal-esophageal impedance-pH monitoring (HEMII-pH). Patients collected three saliva samples during the 24-h testing period. Symptoms and findings were studied with reflux symptom score-12 and reflux sign assessment. Sensitivity, specificity, positive (PPV) and negative (NPV) predictive values of pepsin measurements were calculated considering morning, post-lunch and post-dinner samples. The consistency and relationship between HEMII-pH, pepsin measurements, and clinical features were investigated. RESULTS Morning, post-lunch and post-dinner saliva pepsin concentrations were measured in 42 patients. Pepsin measurements were 64.9%, 59.5%, and 59.0% sensitive for morning, post-lunch and post-dinner collections at cutoff ≥ 16 ng/mL. Considering the highest concentration of the three pepsin saliva collections, the accuracy, sensitivity, specificity and PPV were 70.5%, 73.0%; 66.7% and 78.9%, respectively. Morning pepsin measurements reported higher consistency, sensitivity, and specificity than post-dinner and post-lunch pepsin measurements. CONCLUSION The collection of several saliva pepsin samples improves the detection rate of LPR. In case of high clinical LPR suspicion and negative pepsin test, a HEMII-pH study could provide further diagnostic information.
Collapse
Affiliation(s)
- Jerome R Lechien
- Division of Laryngology and Broncho-Esophagology, Department of Otolaryngology-Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium.
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Avenue du Champ de Mars, 6, 7000, Mons, Belgium.
- Department of Otorhinolaryngology and Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France.
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
- Polyclinique Elsan de Poitiers, Poitiers, France.
- Research Committee of Young Otolaryngologists of the International Federation of Oto-Rhinolaryngological Societies (YO-IFOS), Paris, France.
| | - Francois Bobin
- Polyclinique Elsan de Poitiers, Poitiers, France
- Research Committee of Young Otolaryngologists of the International Federation of Oto-Rhinolaryngological Societies (YO-IFOS), Paris, France
| |
Collapse
|
7
|
Bayrak M, Mata J, Conn C, Floury J, Logan A. Application of small angle scattering (SAS) in structural characterisation of casein and casein-based products during digestion. Food Res Int 2023; 169:112810. [PMID: 37254386 DOI: 10.1016/j.foodres.2023.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent years, small and ultra-small angle scattering techniques, collectively known as small angle scattering (SAS) have been used to study various food structures during the digestion process. These techniques play an important role in structural characterisation due to the non-destructive nature (especially when using neutrons), various in situ capabilities and a large length scale (of 1 nm to ∼20 μm) they cover. The application of these techniques in the structural characterisation of dairy products has expanded significantly in recent years. Casein, a major dairy protein, forms the basis of a wide range of gel structures at different length scales. These gel structures have been extensively researched utilising scattering techniques to obtain structural information at the nano and micron scale that complements electron and confocal microscopy. Especially, neutrons have provided opportunity to study these gels in their natural environment by using various in situ options. One such example is understanding changes in casein gel structures during digestion in the gastrointestinal tract, which is essential for designing personalised food structures for a wide range of food-related diseases and improve health outcomes. In this review, we present an overview of casein gels investigated using small angle and ultra-small angle scattering techniques. We also reviewed their digestion using newly built setups recently employed in various research. To gain a greater understanding of micro and nano-scale structural changes during digestion, such as the effect of digestive juices and mechanical breakdown on structure, new setups for semi-solid food materials are needed to be optimised.
Collapse
Affiliation(s)
- Meltem Bayrak
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Charlotte Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
8
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
9
|
Zaeim D, Liu W, Han J, Wilde PJ. Effect of non-starch polysaccharides on the in vitro gastric digestion of soy-based milk alternatives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
|
10
|
Rathod G, Boyle DL, Amamcharla J. Acid gelation properties of fibrillated model milk protein concentrate dispersions. J Dairy Sci 2022; 105:4925-4937. [DOI: 10.3168/jds.2021-20695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
|
11
|
Deng R, Seimys A, Mars M, Janssen AE, Smeets PA. Monitoring pH and whey protein digestion by TD-NMR and MRI in a novel semi-dynamic in vitro gastric simulator (MR-GAS). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
12
|
Salelles L, Floury J, Le Feunteun S. Pepsin activity as a function of pH and digestion time on caseins and egg white proteins under static in vitro conditions. Food Funct 2021; 12:12468-12478. [PMID: 34788782 DOI: 10.1039/d1fo02453a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The activity of pepsin, the gastric protease, is generally considered to be negligible for pH ≥ 4, based on the results obtained with a few purified globular proteins. The present study aimed at studying the activity of porcine pepsin on egg white proteins (EWP) and casein micelle micro-aggregates (CA) over a broad range of pH (from 1 to 7) for short (3 min) and long (2 h) digestion times. For a short time, the results confirmed a tendency for a higher rate of hydrolysis with decreasing pH, but with different pH activity profiles for both the substrates. More remarkably, the degree of hydrolysis of CA after 2 h of digestion was constant from pH 1 to pH 5, and was only reduced by half at pH 6. This finding demonstrates that pepsin can hydrolyse caseins from the very beginning of gastric digestion. Interestingly, the trend of the reaction kinetics over 2 h appeared to be rather characteristic of the type of the substrate and was largely independent in terms of pH. Most hydrolysis profiles could be accurately fitted by a power law, an empirical model that was then successfully applied to the static in vitro gastric proteolysis of 6 other food matrices. Overall, our results support the idea that pepsin activity under weakly acidic conditions (pH ≥ 4) should not always be neglected, in particular, for milk caseins, and that pepsin reaction kinetics during static in vitro gastric digestion seems to evolve proportionally to the power of the digestion time.
Collapse
Affiliation(s)
- Léa Salelles
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Juliane Floury
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
13
|
Ebert S, Baune MC, Broucke K, Royen GV, Terjung N, Gibis M, Weiss J. Buffering capacity of wet texturized plant proteins in comparison to pork meat. Food Res Int 2021; 150:110803. [PMID: 34863495 DOI: 10.1016/j.foodres.2021.110803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
There is an increasing demand to develop and characterize high moisture extrudates from alternative plant proteins due to their increased use in various foods. In this study, wet texturized proteins from two pea isolates and four oilseed flours from pumpkin and sunflower were subjected to an acid titration to gain insights into their buffering capacity. Results were compared to pork meat with a special emphasis on compositional differences. Wet texturized pumpkin and sunflower proteins had the highest buffering capacity, especially in between pH7.0 and pH4.5, while pea protein extrudates and pork meat were more prone to acidification and similar in buffering capacity. A multiple linear regression model further revealed that ash and select minerals and amino acids are key influencing factors on the overall buffering capacity, while the effect of protein and non-protein nitrogen depends on the evaluated pH-regime. The obtained results underline the importance for a more in-depth physicochemical characterization of texturized plant proteins and their raw materials and suggest a need for recipe and process adjustment to achieve stable pH values.
Collapse
Affiliation(s)
- Sandra Ebert
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Marie-Christin Baune
- German Institute for Food Technology, Product Innovation, Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Keshia Broucke
- ILVO Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - Geert Van Royen
- ILVO Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - Nino Terjung
- German Institute for Food Technology, Product Innovation, Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany.
| |
Collapse
|
14
|
Baek KH, Heo YS, Yim DG, Lee YE, Kang T, Kim HJ, Jo C. Influence of atmospheric-pressure cold plasma-induced oxidation on the structure and functional properties of egg white protein. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
15
|
Le Feunteun S, Verkempinck S, Floury J, Janssen A, Kondjoyan A, Marze S, Mirade PS, Pluschke A, Sicard J, van Aken G, Grauwet T. Mathematical modelling of food hydrolysis during in vitro digestion: From single nutrient to complex foods in static and dynamic conditions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
16
|
Keppler S, Mannara G, Marra F, Bornhorst GM. Characterization of raft-forming alginate suspensions formed in HCl or model food systems at varying pH levels to better simulate gastric postprandial conditions. Drug Dev Ind Pharm 2021; 47:1079-1089. [PMID: 34254865 DOI: 10.1080/03639045.2021.1954940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Elucidate properties of raft-forming alginates in vitro with varying composition, a system in which the raft was formed (HCl solution; tomato soup; protein-rich beverage), and pH levels for a more accurate representation of postprandial gastric conditions. SIGNIFICANCE Knowledge of the impact of the food system and pH on properties of raft-forming alginates may aid in formulation optimization. Recommendations may be made on food that is consumed prior to their consumption to optimize efficacy as a therapeutic agent. METHODS Dispersions of sodium alginate, calcium carbonate, and sodium bicarbonate were prepared with levels similar to commercial formulations. Rafts were formed in HCl solution, tomato soup, and a protein-rich beverage at pH 1-4 to assess raft properties. RESULTS Significant differences (p < 0.05) in raft mass, strength, resilience, and ability to buffer acid were observed depending on the system in which the rafts were formed. The highest mass was obtained in tomato soup (48.5 ± 9.8 g) compared to the protein-rich beverage and HCl solution (32.5 ± 4.5 g and 23.4 ± 4.8 g, respectively) at pH 1. Rafts formed in the protein-rich beverage exhibited the highest strength. Rafts formed in both food systems had a greater ability to buffer added acid compared to rafts formed in HCl solution. CONCLUSIONS In vitro testing of raft forming alginates in HCl solution at low pH may not be sufficient to describe in vivo events, as a strong matrix effect was observed when rafts were formed in model meal systems at representative postprandial pH levels.
Collapse
Affiliation(s)
- S Keppler
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA, USA
| | - G Mannara
- Department of Industrial Engineering, University of Salerno, Fisciano SA, Italy
| | - F Marra
- Department of Industrial Engineering, University of Salerno, Fisciano SA, Italy
| | - G M Bornhorst
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
17
|
Using Nutritional Strategies to Shape the Gastro-Intestinal Tracts of Suckling and Weaned Piglets. Animals (Basel) 2021; 11:ani11020402. [PMID: 33562533 PMCID: PMC7914898 DOI: 10.3390/ani11020402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
This is a comprehensive review on the use of nutritional strategies to shape the functioning of the gastro-intestinal tract in suckling and weaned piglets. The progressive development of a piglet's gut and the associated microbiota and immune system offers a unique window of opportunity for supporting gut health through dietary modulation. This is particularly relevant for large litters, for which sow colostrum and milk are insufficient. The authors have therefore proposed the use of supplemental milk and creep feed with a dual purpose. In addition to providing nutrients to piglets, supplemental milk can also serve as a gut modulator in early life by incorporating functional ingredients with potential long-term benefits. To prepare piglets for weaning, it is important to stimulate the intake of solid feed before weaning, in addition to stimulating the number of piglets eating. The use of functional ingredients in creep feed and a transition diet around the time of weaning helps to habituate piglets to solid feed in general, while also preparing the gut for the digestion and fermentation of specific ingredients. In the first days after weaning (i.e., the acute phase), it is important to maintain high levels of feed intake and focus on nutritional strategies that support good gastric (barrier) function and that avoid overloading the impaired digestion and fermentation capacity of the piglets. In the subsequent maturation phase, the ratio of lysine to energy can be increased gradually in order to stimulate piglet growth. This is because the digestive and fermentation capacity of the piglets is more mature at this stage, thus allowing the inclusion of more fermentable fibres. Taken together, the nutritional strategies addressed in this review provide a structured approach to preparing piglets for success during weaning and the period that follows. The implementation of this approach and the insights to be developed through future research can help to achieve some of the most important goals in pig production: reducing piglet mortality, morbidity and antimicrobial use.
Collapse
|
18
|
Le Feunteun S, Al-Razaz A, Dekker M, George E, Laroche B, van Aken G. Physiologically Based Modeling of Food Digestion and Intestinal Microbiota: State of the Art and Future Challenges. An INFOGEST Review. Annu Rev Food Sci Technol 2021; 12:149-167. [PMID: 33400557 DOI: 10.1146/annurev-food-070620-124140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
This review focuses on modeling methodologies of the gastrointestinal tract during digestion that have adopted a systems-view approach and, more particularly, on physiologically based compartmental models of food digestion and host-diet-microbiota interactions. This type of modeling appears very promising for integrating the complex stream of mechanisms that must be considered and retrieving a full picture of the digestion process from mouth to colon. We may expect these approaches to become more and more accurate in the future and to serve as a useful means of understanding the physicochemical processes occurring in the gastrointestinaltract, interpreting postprandial in vivo data, making relevant predictions, and designing healthier foods. This review intends to provide a scientific and historical background of this field of research, before discussing the future challenges and potential benefits of the establishment of such a model to study and predict food digestion and absorption in humans.
Collapse
Affiliation(s)
| | - Ahmed Al-Razaz
- Essex Pathways, University of Essex, CO4 3SQ Colchester, United Kingdom;
| | - Matthijs Dekker
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Erwin George
- School of Computing and Mathematical Sciences, University of Greenwich, SE10 9LS London, United Kingdom;
| | - Beatrice Laroche
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France;
| | - George van Aken
- Cosun Innovation Center, Royal Cosun, 4670 VA Dinteloord, The Netherlands;
| |
Collapse
|
19
|
Kim JW, Lee HJ, Shin DJ, Baek KH, Yong HI, Jung S, Jo C. Enrichment of nitrite in onion powder using atmospheric pressure plasma and egg whites for meat curing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
|
20
|
Mennah-Govela YA, Bornhorst GM. Breakdown mechanisms of whey protein gels during dynamic in vitro gastric digestion. Food Funct 2021; 12:2112-2125. [DOI: 10.1039/d0fo03325a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Particle geometry influenced the breakdown mechanisms impacting the pH, pepsin activity, and protein hydrolysis of whey protein gels during dynamic in vitro gastric digestion.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| | - Gail M. Bornhorst
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| |
Collapse
|
21
|
Mennah-Govela YA, Bornhorst GM. Food buffering capacity: quantification methods and its importance in digestion and health. Food Funct 2021; 12:543-563. [DOI: 10.1039/d0fo02415e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Understanding the influence of food properties on buffering capacity will have an impact on gastric secretions and breakdown during digestion.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| | - Gail M. Bornhorst
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| |
Collapse
|
22
|
The importance of swelling for in vitro gastric digestion of whey protein gels. Food Chem 2020; 330:127182. [DOI: 10.1016/j.foodchem.2020.127182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
|
23
|
Guo Q, Ye A, Singh H, Rousseau D. Destructuring and restructuring of foods during gastric digestion. Compr Rev Food Sci Food Saf 2020; 19:1658-1679. [PMID: 33337100 DOI: 10.1111/1541-4337.12558] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
All foods harbor unique length scale-dependent structural features that can influence the release, transport, and utilization of macro- or micronutrients in the human gastrointestinal tract. In this regard, food destructuring and restructuring processes during gastric passage significantly influence downstream nutrient assimilation and feelings of satiety. This review begins with a synopsis of the effects of oral processing on food structure. Then, stomach-centric factors that contribute to the efficacy of gastric digestion are discussed, and exemplified by comparing the intragastric de- and restructuring of a number of common foods. The mechanisms of how intragastric structuring influences gastric emptying and its relationship to human satiety are then discussed. Finally, recently developed, non-destructive instrumental approaches used to quantitively and qualitatively characterize food behavior during gastric destructuring and restructuring are described.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing, 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, 225700, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
24
|
Le Feunteun S, Mackie AR, Dupont D. In silico trials of food digestion and absorption: how far are we? Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
|
25
|
|
26
|
Mennah-Govela YA, Cai H, Chu J, Kim K, Maborang MK, Sun W, Bornhorst GM. Buffering capacity of commercially available foods is influenced by composition and initial properties in the context of gastric digestion. Food Funct 2020; 11:2255-2267. [DOI: 10.1039/c9fo03033f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Buffering capacity in commercially available food products is mainly influenced by protein content, and by the interaction of protein and fat content, initial pH, and particle size distribution.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Hongchang Cai
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Joseph Chu
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Kaela Kim
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Mycalia-Keila Maborang
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Weiyi Sun
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| | - Gail M. Bornhorst
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- Davis
- USA
| |
Collapse
|
27
|
Duque-Estrada P, Berton-Carabin CC, Nieuwkoop M, Dekkers BL, Janssen AEM, van der Goot AJ. Protein Oxidation and In Vitro Gastric Digestion of Processed Soy-Based Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9591-9600. [PMID: 31414795 PMCID: PMC6716211 DOI: 10.1021/acs.jafc.9b02423] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 05/31/2023]
Abstract
Process conditions that are applied to make structured soy-protein-based food commonly include high temperatures. Those conditions can induce protein oxidation, leading to a decrease in their susceptibility to proteolysis by digestive enzymes. We aimed to investigate the effects of thermomechanical processing on oxidation and in vitro gastric digestion of commercial soy protein ingredients. Samples were sheared at 100 to 140 °C and characterized for acid uptake, carbonyl content, electrophoresis, and surface hydrophobicity. The enzymatic hydrolysis was determined in simulated gastric conditions. Protein ingredients were already oxidized and showed higher surface hydrophobicity and hydrolysis rate compared with those of the processed matrices. However, no clear correlation between the level of carbonyls and the hydrolysis rate was found. Therefore, we conclude that gastric digestion is mostly driven by the matrix structure and composition and the available contact area between the substrate and proteolytic enzymes.
Collapse
|
28
|
Mennah-Govela YA, Singh RP, Bornhorst GM. Buffering capacity of protein-based model food systems in the context of gastric digestion. Food Funct 2019; 10:6074-6087. [DOI: 10.1039/c9fo01160a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
A standardized method to measure and quantify buffering capacity in the context of gastric digestion is proposed and the impact of protein content and surface area on buffering capacity was observed.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- USA
| | - R. Paul Singh
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- USA
- Riddet Institute
| | - Gail M. Bornhorst
- Dept. of Biological and Agricultural Engineering
- 1308 Bainer Hall University of California
- Davis
- USA
- Riddet Institute
| |
Collapse
|