1
|
Leandri R, Buonocore S, Power K. Transferrin Receptor 2 in Canine Testicular Tumors: An Emerging Key Role in Seminomas. Animals (Basel) 2025; 15:264. [PMID: 39858264 PMCID: PMC11758335 DOI: 10.3390/ani15020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Transferrin Receptor 2 (TfR2) is a homolog of Transferrin Receptor 1 (TfR1), involved in regulating intra and extracellular iron levels. Altered iron pathways have been associated with cancer onset and progression; however, their role in canine tumors remains poorly explored. This study investigated TfR2 immunohistochemical expression in non-neoplastic canine testis for the first time and in the most common types of canine testicular tumors: intratubular seminomas (ITSEMs), diffuse seminomas (DSEMs), Leydig cell tumors (LCTs), and Sertoli cell tumors (SCTs). Immunohistochemical analysis revealed a differential pattern of TfR2 expression according to tumor type, with high expression observed in ITSEMs and DSEMs, occasional expression in LCTs, and absence in SCTs. These results suggest that TfR2 may play a relevant role in canine seminoma development. Furthermore, the specific expression of TfR2 in seminomas highlights its potential as a therapeutic target, where its role in iron regulation and possible compensatory mechanisms warrant further investigation.
Collapse
Affiliation(s)
| | | | - Karen Power
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.L.); (S.B.)
| |
Collapse
|
2
|
Li S, Ma S, Wang L, Zhan D, Jiang S, Zhang Z, Xiong M, Jiang Y, Huang Q, Zhang J, Li X. ATF3 as a response factor to regulate Cd-induced reproductive damage by activating the NRF2/HO-1 ferroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117114. [PMID: 39357374 DOI: 10.1016/j.ecoenv.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) has garnered significant attention due to reproductive toxicity in inducing ferroptosis. However, the specific mechanisms underlying Cd-induced germ cell ferroptosis remain poorly understood. This study aimed to systematically explore the molecular mechanisms of germ cell ferroptosis by investigating differential changes in transcription factors and proteins in male mice treated orally with CdCl2 (0.5 g/L) reaching postnatal day 60, alongside Leydig cell (TM3) and Sertoli cell (TM4) lines. Results demonstrated that Cd exposure led to increased iron overload and oxidative stress in mouse testes, disrupted intracellular mitochondrial morphology characteristic of ferroptosis. RNA sequencing revealed significant upregulation of Atf3 and Hmox1 in Cd-exposed germ cells, along with increased expression of ATF3 and HO-1. Intervention in ferroptosis or HO-1 effectively rescued cells from Cd-induced mortality by breaking the detrimental cycle between lipid peroxidation and HO-1 activation. Further findings showed that NRF2 and HO-1 expression was notably elevated upon ATF3 overexpression in TM3 and TM4 cells, activating the Keap1-Nrf2 pathway and triggering ferroptosis in testes, whereas NRF2 and HO-1 expression levels were reversed when ATF3 was silenced. This study provides novel insights into ATF3-mediated NRF2/HO-1 signaling in Cd-induced mitochondrial ferroptosis in testes, shedding light on the mechanisms underlying Cd-induced ferroptosis and testicular injury.
Collapse
Affiliation(s)
- Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Jian Zhang
- Department of Agriculture, Hetao College, Bayannur 015000, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China.
| |
Collapse
|
3
|
Cheng J, Yang L, Zhang Z, Xu D, Hua R, Chen H, Li X, Duan J, Li Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116562. [PMID: 38850704 DOI: 10.1016/j.ecoenv.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Collapse
Affiliation(s)
- Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xiaoya Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Pavlova E, Gluhcheva Y, Mihaylova V, Petrova E, Vladov I, Tinkov AA, Skalny AV, Atanassova N. Developmental exposure to cobalt chloride affected mouse testis via altered iron metabolism in adulthood. J Trace Elem Med Biol 2024; 83:127372. [PMID: 38176318 DOI: 10.1016/j.jtemb.2023.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
INRODUCTION Cobalt (Co) is known to interfere with iron (Fe) metabolism that is essential for differentiating male germ cells. Our aim was to study the effect of developmental chronic cobalt exposure on mouse testis through changes in iron homeostasis in adulthood. METHODS Pregnant ICR mice were exposed to 75 mg (low dose) or 125 mg (high dose)/kg b.w. cobalt chloride (CoCl2) with drinking water for 3 days before delivery and treatment continued until postnatal day 90 of the pups. Age-matched control animals obtained regular tap water. Testes of control and Co-treated mice were processed for immunohistochemistry and inductively coupled plasma mass spectrometry. Sperm count was performed. RESULTS Chronic CoCl2 administration resulted in significant dose-dependent Co accumulation in sera and testes of the exposed mice. Fe content also showed a significant increase in sera and testes compared to the untreated controls. Surprisingly, testes of low dose-treated mice had ∼ 2.7-fold higher Fe content compared to those exposed to the high dose. A significant dose-dependent reduction in relative testis weight by 18.8% and by 37.7% was found after treatment with low and high dose CoCl2, respectively was found. Our study demonstrated that developmental chronic exposure to CoCl2 affected cellular composition of the testis manifested by germ cell loss and low sperm count, accompanied by altered androgen response in Sertoli cells (loss of stage-specific expression of androgen receptor). A possible mechanism involved is iron accumulation in the testis that was associated with altered ferroportin-hepcidin localization in seminiferous tubules depleted in germ cells. As a protective mechanism for germ cells in condition of iron excess, ferroportin was distributed in Sertoli cells around elongating spermatids. Similar changes in expression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) implied that both factors of testicular Fe homeostasis are closely related. Outside the seminiferous tubules, Leydig cells localized ferroportin, hepcidin, DMT1 and TfR1 thus they could be considered as a main site for iron metabolism. CONCLUSION Our data suggest that Co exerts its effects on the testis by indirect mechanism possibly through alteration in Fe homeostasis.
Collapse
Affiliation(s)
- Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113 Sofia, Bulgaria.
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Veronika Mihaylova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier blvd., 1164 Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Yin T, Ji D, Su X, Zhou X, Wang X, He S, Jiang T, Yue X, Zhang H, Zhang Y, Peng J, Zou W, Liang D, Liu Y, Du Y, Zhang Z, Liang C, Cao Y. Using Bayesian and weighted regression to evaluate the association of idiopathic oligoastenoteratozoospermia with seminal plasma metal mixtures. CHEMOSPHERE 2024; 351:141202. [PMID: 38237779 DOI: 10.1016/j.chemosphere.2024.141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Idiopathic oligoastenoteratozoospermia (iOAT) affects 30% of infertile men of reproductive age. However, the associations between Cr, Fe, Cu, Se or Co levels and iOAT risk have not been determined. This research aimed to assess the associations between Cr, Fe, Cu, Se and Co levels as well as their mixtures in seminal plasma and the risk of iOAT and severe iOAT. Therefore, a case‒control study including 823 participants (416 iOAT patients and 407 controls) recruited from October 2021 to August 2022 at the reproductive medicine center of the First Affiliated Hospital of Anhui Medical University was conducted in Anhui, China. The concentrations of Cr, Fe, Cu, Se and Co in seminal plasma were detected via inductively coupled plasma‒mass spectrometry. Binary logistic regression models were used to assess the associations between the levels of Cr, Fe, Cu, Se and Co and the risk of iOAT and severe iOAT; additionally, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regressions were performed to evaluate the joint effect of seminal plasma levels of Cr, Fe, Cu, Se and Co on the risk of iOAT and explore which elements contributed most to the relationship. We found significant associations between the concentrations of Fe, Cu and Se in seminal plasma and iOAT risk after adjusting for covariates (Fe, lowest tertile vs. second tertile: aOR = 1.86, 95% CI = 1.31, 2.64; Cu, lowest tertile vs. second tertile: aOR = 1.95, 95% CI = 1.37, 2.76; Se, lowest tertile vs. second tertile: aOR = 1.65, 95% CI = 1.17, 2.35). A lower Se concentration in seminal plasma (lowest tertile vs. second tertile: aOR = 1.84, 95% CI = 1.10, 3.10) was positively associated with the risk of severe iOAT. Additionally, we also observed an association between the concentration of Cr in seminal plasma and the risk of iOAT before adjusting for covariates (Cr, third tertile vs. lowest tertile: OR=1.44, 95% CI: 1.03, 2.02). According to the BKMR analyses, the risk of iOAT increased when the overall concentrations were less than the 25th percentile. The results from the WQS regression indicated that a negative WQS index was significantly associated with the iOAT risk, while a positive WQS index was not. Se and Fe had significant weights in the negative direction. In conclusion, lower Cu, Fe and Se levels in seminal plasma were positively associated with iOAT risk, while higher Cr levels in seminal plasma were positively associated with iOAT risk according to the single element model, and lower levels of Se were related to a greater risk of severe iOAT; when comprehensively considering all the results from BKMR and WQS regression, Fe, Se and Cr levels contributed most to this relationship.
Collapse
Affiliation(s)
- Tao Yin
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Zhou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Peng
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Wang J, Zhang S, Hu L, Wang Y, Liu K, Le J, Tan Y, Li T, Xue H, Wei Y, Zhong O, He J, Zi D, Lei X, Deng R, Luo Y, Tang M, Su M, Cao Y, Liu Q, Tang Z, Lei X. Pyrroloquinoline quinone inhibits PCSK9-NLRP3 mediated pyroptosis of Leydig cells in obese mice. Cell Death Dis 2023; 14:723. [PMID: 37935689 PMCID: PMC10630350 DOI: 10.1038/s41419-023-06162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.
Collapse
Affiliation(s)
- Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Ke Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tianlong Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanhong Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junhui He
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Zi
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Renhe Deng
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yafei Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Masong Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingxuan Su
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yichang Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zhihan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Yuan W, Sun Z, Ji G, Hu H. Emerging roles of ferroptosis in male reproductive diseases. Cell Death Discov 2023; 9:358. [PMID: 37770442 PMCID: PMC10539319 DOI: 10.1038/s41420-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation that leads to excessive lipid peroxidation in different cells. Ferroptosis is distinct from other forms of cell death and is associated with various diseases. Iron is essential for spermatogenesis and male reproductive function. Therefore, it is not surprising that new evidence supports the role of ferroptosis in testicular injury. Although the molecular mechanism by which ferroptosis induces disease is unknown, several genes and pathways associated with ferroptosis have been linked to testicular dysfunction. In this review, we discuss iron metabolism, ferroptosis, and related regulatory pathways. In addition, we analyze the endogenous and exogenous factors of ferroptosis in terms of iron metabolism and testicular dysfunction, as well as summarize the relationship between ferroptosis and male reproductive dysfunction. Finally, we discuss potential strategies to target ferroptosis for treating male reproductive diseases and provide new directions for preventing male reproductive diseases.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institute of Life Sciences, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
8
|
Wang Y, Wu J, Zhang M, OuYang H, Li M, Jia D, Wang R, Zhou W, Liu H, Hu Y, Yao Y, Liu Y, Ji Y. Cadmium exposure during puberty damages testicular development and spermatogenesis via ferroptosis caused by intracellular iron overload and oxidative stress in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121434. [PMID: 36907243 DOI: 10.1016/j.envpol.2023.121434] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a widespread environmental pollutant and a reproductive toxicant. It has been proved that Cd can reduce male fertility, however, the molecular mechanisms remain unveiled. This study aims to explore the effects and mechanisms of pubertal Cd exposure on testicular development and spermatogenesis. The results showed that Cd exposure during puberty could cause pathological damage to testes and reduce sperm counts in mice in adulthood. Moreover, Cd exposure during puberty reduced GSH content, induced iron overload and ROS production in testes, suggesting that Cd exposure during puberty may induce testicular ferroptosis. The results in vitro experiments further strengthened that Cd caused iron overload and oxidative stress, and decreased MMP in GC-1 spg cells. In addition, Cd disturbed intracellular iron homeostasis and peroxidation signal pathway based on transcriptomics analysis. Interestingly, these changes induced by Cd could be partially suppressed by pretreated with ferroptotic inhibitors, Ferrostatin-1 and Deferoxamine mesylate. In conclusion, the study demonstrated that Cd exposure during puberty maybe disrupted intracellular iron metabolism and peroxidation signal pathway, triggered ferroptosis in spermatogonia, and ultimately damaged testicular development and spermatogenesis in mice in adulthood.
Collapse
Affiliation(s)
- Yi Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan OuYang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Didi Jia
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Weiyi Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Hu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyou Yao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - YanLi Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Yang X, Huang T, Chen Y, Chen F, Liu Y, Wang Y, Song W, Zhang J, Jiang Y, Wang F, Zhang C. Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc -/GPX4 axis. Food Chem Toxicol 2023; 175:113730. [PMID: 36925038 DOI: 10.1016/j.fct.2023.113730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant in food and feed. DON accumulation in food chain severely threatens human and animal health due to the toxic effects on the reproduction system. However, the underlying mechanism of DON on male reproductive dysfunction is still in debate and there is little information about whether DON triggers testicular ferroptosis. In this study, male C57BL/6 mice were divided into 4 groups and treated by oral gavage with 0, 0.5, 1.0, 2.0 mg/kg BW DON for 28 days. Firstly, we proved that male reproduction dysfunction was induced by DON through assessing testicular histopathology, serum testosterone level as well as blood-testis barrier integrity. Then, we verified ferroptosis occurred in DON-induced testicular dysfunction model through disrupting iron homeostasis, increasing lipid peroxidation and inhibiting system Xc-/Gpx4 axis. Notably, the present data showed DON reduced antioxidant capacity via blocking Nrf2 pathway to lead to the further weakness of ferroptosis resistance. Altogether, these results indicated that DON caused mice testicular ferroptosis associated with inhibiting Nrf2/System Xc-/GPx4 axis, which provided that maintaining testicular iron homeostasis and activating Nrf2 pathway may be a potential target for alleviating testicular toxicity of DON in the future.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Juntao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
10
|
Su Y, Liu Z, Xie K, Ren Y, Li C, Chen W. Ferroptosis: A Novel Type of Cell Death in Male Reproduction. Genes (Basel) 2022; 14:genes14010043. [PMID: 36672785 PMCID: PMC9858973 DOI: 10.3390/genes14010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ferroptosis, an iron-dependent type of regulated cell death, is triggered by the accumulation of lethal lipid peroxides. Due to its potential in exploring disease progression and highly targeted therapies, it is still a widely discussed topic nowadays. In recent studies, it was found that ferroptosis was induced when testicular tissue was exposed to some high-risk factors, such as cadmium (Cd), busulfan, and smoking accompanied by a variety of reproductive damage characteristics, including changes in the specific morphology and ferroptosis-related features. In this literature-based review, we summarize the related mechanisms of ferroptosis and elaborate upon its relationship network in the male reproductive system in terms of three significant events: the abnormal iron metabolism, dysregulation of the Cyst(e)ine/GSH/GPX4 axis, and lipid peroxidation. It is meaningful to deeply explore the relationship between ferroptosis and the male reproductive system, which may provide suggestions regarding pristine therapeutic targets and novel drugs.
Collapse
Affiliation(s)
- Yanjing Su
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zelan Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Keyu Xie
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yingxin Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Clinical Medicine, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Nursing, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| |
Collapse
|
11
|
Yang X, Chen Y, Song W, Huang T, Wang Y, Chen Z, Chen F, Liu Y, Wang X, Jiang Y, Zhang C. Review of the Role of Ferroptosis in Testicular Function. Nutrients 2022; 14:5268. [PMID: 36558426 PMCID: PMC9785324 DOI: 10.3390/nu14245268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Iron is an important metal element involved in the regulation of male reproductive functions and has dual effects on testicular tissue. A moderate iron content is necessary to maintain testosterone synthesis and spermatogenesis. Iron overload can lead to male reproductive dysfunction by triggering testicular oxidative stress, lipid peroxidation, and even testicular ferroptosis. Ferroptosis is an iron-dependent form of cell death that is characterized by iron overload, lipid peroxidation, mitochondrial damage, and glutathione peroxidase depletion. This review summarizes the regulatory mechanism of ferroptosis and the research progress on testicular ferroptosis caused by endogenous and exogenous toxicants. The purpose of the present review is to provide a theoretical basis for the relationship between ferroptosis and male reproductive function. Some toxic substances or danger signals can cause male reproductive dysfunction by inducing testicular ferroptosis. It is crucial to deeply explore the testicular ferroptosis mechanism, which will help further elucidate the molecular mechanism of male reproductive dysfunction. It is worth noting that ferroptosis does not exist alone but rather coexists with other forms of cell death (such as apoptosis, necrosis, and autophagic death). Alleviating ferroptosis alone may not completely reverse male reproductive dysfunction caused by various risk factors.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhong Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Abstract
In the absence of obesity, adverse lifestyle behaviours, and use of medication such as opioids serum testosterone concentrations decrease by only a minimal amount at least until very advanced age in most men. Obesity is heterogeneous in its phenotype, and it is the accumulation of excess adipose tissue viscerally associated with insulin resistance, dyslipidaemia, inflammation, hypothalamic leptin resistance and gliosis that underpins the functional hypogonadism of obesity. Both central (hypothalamic) and peripheral mechanisms are involved resulting in a low serum total testosterone concentration, while LH and FSH are typically in the normal range. Peripherally a decrease in serum sex hormone binding globulin (SHBG) concentration only partially explains the decrease in testosterone and there is increasing evidence for direct effects in the testis. Men with obesity associated functional hypogonadism and serum testosterone concentrations below 16 nmol/L are at increased risk of incident type 2 diabetes (T2D); high testosterone concentrations are protective. The magnitude of weight loss is linearly associated with an increase in serum testosterone concentration and with the likelihood of preventing T2D or reverting newly diagnosed disease; treatment with testosterone for 2 years increases the probability of a positive outcome from a lifestyle intervention alone by approximately 40%. Whether the additional favourable benefits of testosterone treatment on muscle mass and strength and bone density and quality in the long-term remains to be determined.
Collapse
Affiliation(s)
- Gary Wittert
- University of Adelaide, Adelaide, Australia.
- Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia.
- South Australian Health and Medical Research Institute North Terrace Adelaide, 5000, SA, Adelaide, Australia.
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria4, Germany
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Germany
| |
Collapse
|
13
|
Abstract
Type 2 diabetes (T2D) and obesity are common and associated with increased morbidity and mortality. Cross-sectional and longitudinal studies have demonstrated a clear association between T2D, obesity and reduced total testosterone concentration. This relationship becomes less significant or absent with correction for changes in body composition, supporting the notion that changes in body composition are mediating these effects. Moreover, this mediating effect of body composition changes is bi-directional, as evidenced by interventional studies of weight loss and testosterone treatment. On the one hand, in obese men, serum testosterone increases markedly with weight loss. On the other hand, testosterone improves body composition. This relationship is driven by multiple complex interaction between obesity and insulin resistance and the hypothalamic-pituitary-testicular axis, at all levels. Data from randomised control trials have demonstrated that intervention with testosterone therapy increases muscle mass and reduces adiposity. Most recently it has been shown that treatment with testosterone prevents progression of impaired glucose tolerance to T2D, or reverses newly diagnosed T2D beyond lifestyle intervention alone. At present there are insufficient safety data to support the use of testosterone for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Mahesh Umapathysivam
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Gary A Wittert
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia; Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute.
| |
Collapse
|
14
|
Zhang T, He H, Wei Y, Geng W, Zhai J. Vitamin C supplementation rescued meiotic arrest of spermatocytes in Balb/c mice exposed to BDE-209. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113846. [PMID: 35853364 DOI: 10.1016/j.ecoenv.2022.113846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Deca-brominated diphenyl ether (BDE-209) is a ubiquitous industrial chemical as brominated flame retardant (BFRs). Exposure to BDE-209 has been clearly associated with male reproductive disorders. However, the meiotic arrest mechanism of spermatocytes exposed to BDE-209 is still unclear. The present work aimed to explore the protective effect of vitamin C on BDE-209-induced meiotic arrest of spermatocytes and its possible mechanism. Vitamin C (100 mg/kg BW) was administered to BDE-209-exposed (80 mg/kg BW) male Balb/c mice once daily by intraperitoneal injection for 2 weeks. Our results showed that vitamin C played male reproductive protection effects as showed by attenuated BDE-209-induced testicular damage, and reduced sperm abnormality rate. Vitamin C also attenuated BDE-209-induced increase in SOD and MDA in testes and GC-2 spd cells. Moreover, vitamin C promoted meiotic prophase in BDE-209-induced mice, with suppressed γ-H2AX, restored DMC1, RAD51, and crossover marker MLH1 levels, and prevented BDE-209-induced DNA impairment. In addition, vitamin C supplementation also interfered with BDE-209-induced upregulation of testicular H3K4me3 through inhibition of KDM5s capacity and decreasing ferrous ion concentration. Furthermore, ferrous sulfate pretreatment could partially restore the expression of H3K4me3 via maintaining the concentration of ferrous ions. Taken together, vitamin C exerts a potential therapeutic agent for preventing BDE-209-induced reproductive toxicity with meiotic arrest, which is attributed to its antioxidant and electron donor properties, as well as, modulation of ferrous ion levels and demethylation of H3K4me3.
Collapse
Affiliation(s)
- Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
15
|
Liu Y, Cao X, He C, Guo X, Cai H, Aierken A, Hua J, Peng S. Effects of Ferroptosis on Male Reproduction. Int J Mol Sci 2022; 23:ijms23137139. [PMID: 35806144 PMCID: PMC9267104 DOI: 10.3390/ijms23137139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a relatively novel form of regulated cell death that was discovered in 2012. With the increasing research related to the mechanisms of ferroptosis, previous studies have demonstrated that the inactive of the intracellular antioxidant system and iron overload can result in the accumulation of reactive oxygen species (ROS), which can ultimately cause lipid peroxidation in the various cell types of the body. ROS accumulation can cause sperm damage by attacking the plasma membrane and damaging DNA. Acute ferroptosis causes oxidative damage to sperm DNA and testicular oxidative stress, thereby causing male reproductive dysfunction. This review aims to discuss the metabolic network of ferroptosis, summarize and analyze the relationship between male reproductive diseases caused by iron overload as well as lipid peroxidation, and provide a novel direction for the research and prevention of various male reproductive diseases.
Collapse
|
16
|
Sun MH, Li XH, Xu Y, Xu Y, Sun SC. Exposure to PBDE47 affects mouse oocyte quality via mitochondria dysfunction-induced oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110662. [PMID: 32339927 DOI: 10.1016/j.ecoenv.2020.110662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 05/15/2023]
Abstract
2, 2', 4, 4'-Tetrabrominated diphenyl ether (PBDE47) is the most abundant homologues in polybrominated diphenyl ethers (PBDEs) and is used widely in daily life as a brominated flame retardant. It has been shown that PBDE47 has neurotoxicity, thyroid toxicity, and also is reported to have reproductive toxicity, which can impair the follicular function of female rats and activate ovarian endoplasmic reticulum stress, leading to ovarian damage. However, the toxicity of PBDE47 to the quality of mammalian oocyte has not been reported. In this study, we reported that PBDE47 exposure affected the mouse ovarian and uterine. We also showed that oocyte number reduced and meiotic maturation competence decreased. Moreover, PBDE47 exposure disrupted actin filaments distribution, and also changed the level of histone methylation. Based on the genome-wide sequencing we showed that PBDE47 altered multiple gene expression in mouse oocytes. PBDE47 exposure caused mitochondria dysfunction, showing with aberrant distribution and mitochondrial membrane potential. In addition, our results suggested that PBDE47 induced early apoptosis, which was caused by oxidative stress, showing with increased ROS level and positive Annexin-V signal. In conclusion, our results indicated that PBDE47 exposure affected the maturation of mouse oocyte via its effects on mitochondria function, ROS level and its related apoptosis.
Collapse
Affiliation(s)
- Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Iron and Advanced Glycation End Products: Emerging Role of Iron in Androgen Deficiency in Obesity. Antioxidants (Basel) 2020; 9:antiox9030261. [PMID: 32235809 PMCID: PMC7139764 DOI: 10.3390/antiox9030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
The literature suggests a bidirectional relationship between testosterone (T) and iron, but mechanisms underlying this relationship remain unclear. We investigated effects of iron on advanced glycation end products (AGEs) in obesity-related androgen deficiency. In total, 111 men were recruited, and iron biomarkers and N(ɛ)-(carboxymethyl)lysine (CML) were measured. In an animal study, rats were fed a 50% high-fat diet (HFD) with (0.25, 1, and 2 g ferric iron/kg diet) or without ferric citrate for 12 weeks. Obese rats supplemented with >1 g iron/kg diet had decreased testicular total T compared to HFD alone. Immunohistochemical staining showed that >1 g of ferric iron increased iron and AGE retention in testicular interstitial tissues, which is associated with increased expression of the receptor for AGEs (RAGE), tumor necrosis factor-α, and nitric oxide. Compared with normal weight, overweight/obese men had lower T levels and higher rates of hypogonadism (19% vs. 11.3%) and iron overload (29.8% vs.15.9%). A correlation analysis showed serum total T was positively correlated with transferrin saturation (r = 0.242, p = 0.007) and cathepsin D (r = 0.330, p = 0.001), but negatively correlated with red blood cell aggregation (r = −0.419, p<0.0001) and CML (r = −0.209, p < 0.05). In conclusion, AGEs may partially explain the underlying relationship between dysregulated iron and T deficiency.
Collapse
|
18
|
Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, Romero N, Vargas R, Videla LA. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102058. [PMID: 32007744 DOI: 10.1016/j.plefa.2020.102058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
The administration of iron induces liver oxidative stress and depletion of long-chain polyunsaturated fatty acids (LCPUFAs), n-6/n-3 LCPUFA ratio enhancement and fat accumulation, which may be prevented by antioxidant-rich extra virgin olive oil (AR-EVOO) supplementation. Male Wistar rats were subjected to a control diet (50 mg iron/kg diet) or iron-rich diet (IRD; 200 mg/kg diet) with alternate AR-EVOO for 21 days. Liver fatty acid (FA) analysis was performed by gas-liquid chromatography (GLC) after lipid extraction and fractionation, besides Δ-5 desaturase (Δ-5 D) and Δ6-D mRNA expression (qPCR) and activity (GLC) measurements. The IRD significantly (p < 0.05) increased hepatic total fat, triacylglycerols, free FA contents and serum transaminases levels, with diminution in those of n-6 and n-3 LCPUFAs, higher n-6/n-3 ratios, lower unsaturation index and Δ5-D and Δ6-D activities, whereas the mRNA expression of both desaturases was enhanced over control values, changes that were prevented by concomitant AR-EVOO supplementation. N-6 and n-3 LCPUFAs were also decreased by IRD in extrahepatic tissues and normalized by AR-EVOO. In conclusion, AR-EVOO supplementation prevents IRD-induced changes in parameters related to liver FA metabolism and steatosis, an effect that may have a significant impact in the treatment of iron-related pathologies or metabolic disorders such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile.
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | | | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|