1
|
Xiong L, Sun S, Lu X, Wang X, Yu Q, Qian X. Detecting the therapeutic drugs in blood samples through PDMS-printed paper spray mass spectrometry. Talanta 2024; 278:126476. [PMID: 38950501 DOI: 10.1016/j.talanta.2024.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
In this paper, paper microfluidic channel fabricated by directly screen-printing of polydimethylsiloxane (PDMS) is proposed for paper spray mass spectrometry analysis of therapeutic drugs in the blood samples. Compared with traditional paper spray, PDMS-printed paper spray (PP-PS) allows fluid to flow to the tip of paper with less sample loss which significantly improved the signal intensity of target compounds in blood samples. As paper can reduce the matrix effect, PP-PS also has a greater advantage than electro-spray Ionization (ESI) when directly analyzing complex biological sample in terms of the detection efficiency. Linearity and limits of detection (LOD) were evaluated for five psychotropic drugs: olanzapine, quetiapine, 9-hydroxyrisperidone, clozapine, risperidone. As a result, PP-PS improved the signal intensity of the psychotropic drugs at a concentration of 250 ng/ml in blood samples by a factor of 2-5 times and lowered the relative standard deviation (RSD) by a factor of 2-5.6 times compared with traditional paper spray. And PP-PS also improved signal intensity by a factor of 9-33 times compared with ESI. Quantitative experiments of PP-PS mass spectrometry indicated that the linear range was 5-500 ng/ml and the LOD were improved by a factor of 5-71 times for all these drugs compared with traditional paper spray. In addition, PP-PS was applied to the home-made miniaturized mass spectrometer and the precursor ions of all five psychotropic drugs (250 ng/ml) in the mass spectrometry results were obtained as well. These could prove that PP-PS has the potential to analyze complex biological samples in application on the miniaturized mass spectrometer which can be used outside the laboratory.
Collapse
Affiliation(s)
- Lian Xiong
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuang Sun
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinqiong Lu
- Shenzhen Chin Instrument Co. Ltd., Shenzhen, 518055, China
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Quan Yu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Meng X, Wen K, Zhao J, Han Y, Ghandhi SA, Kaur SP, Brenner DJ, Turner HC, Amundson SA, Lin Q. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. SENSORS & DIAGNOSTICS 2024; 3:1344-1352. [PMID: 39129862 PMCID: PMC11308381 DOI: 10.1039/d4sd00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Jingyang Zhao
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Yaru Han
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
3
|
Adedokun G, Alipanah M, Fan ZH. Sample preparation and detection methods in point-of-care devices towards future at-home testing. LAB ON A CHIP 2024; 24:3626-3650. [PMID: 38952234 PMCID: PMC11270053 DOI: 10.1039/d3lc00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.
Collapse
Affiliation(s)
- George Adedokun
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Liu D, Yu X, Li C, Wang Y, Huang C, Li M, Huang Y, Yang C. Au-Pt Coating Improved Catalytic Stability of Au@AuPt Nanoparticles for Pressure-Based Point-of-Care Detection of Escherichia coli O157:H7. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34632-34640. [PMID: 38916478 DOI: 10.1021/acsami.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Point-of-care testing (POCT) technologies facilitate onsite detection of pathogens in minutes to hours. Among various POCT approaches, pressure-based sensors that utilize gas-generating reactions, particularly those catalyzed by nanozymes (e.g., platinum nanoparticles, PtNPs, or platinum-coated gold nanoparticles, and Au@PtNPs) have been shown to provide rapid and sensitive detection capabilities. The current study introduces Au-Pt alloy-coated gold nanoparticles (Au@AuPtNPs), an innovative nanozyme with enhanced catalytic activity and relatively high stability. For pathogen detection, Au@AuPtNPs are modified with H1 or H2 hairpin DNAs that can be triggered to undergo a hybridization chain reaction (HCR) that leads to their aggregation upon recognition by an initiator strand (Ini) with H1-/H2-complementary aptamers tethered to magnetic beads (MBs). Pathogen binding to the aptamer exposes Ini, which then binds Au@AuPtNPs and initiates a HCR, resulting in Au@AuPtNP aggregation on MBs. These Au@AuPtNP aggregates exhibit strong catalysis of O2 from the H2O2 substrate, which is measured by a pressure meter, enabling detection of Escherichia coli (E. coli) O157:H7 at concentrations as low as 3 CFU/mL with high specificity. Additionally, E. coli O157:H7 could also be detected in simulated water and tea samples. This method eliminates the need for costly, labor- and training-intensive instruments, supporting its further testing and validation for deployment as a rapid-response POCT application in the detection of bacterial contaminants.
Collapse
Affiliation(s)
- Dan Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Xingbo Yu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Congying Li
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Ying Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Chenyi Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Mengmeng Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Yishun Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
5
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
6
|
Wang Z, Zhang Z, Luo W, Wang L, Han X, Zhao R, Liu X, Zhang J, Yu W, Li J, Yang Y, Zuo C, Xie G. Universal probe-based SNP genotyping with visual readout: a robust and versatile method. NANOSCALE 2023. [PMID: 37464941 DOI: 10.1039/d3nr01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is critical for personalized clinical diagnosis, treatment, and medication. Current clinical detection methods suffer from primer dimerization and require the redesigning of reaction systems for different targets, resulting in a time-consuming and laborious process. Here, we present a robust and versatile method for SNP typing by using tailed primers and universal small molecule probes in combination with a visualized lateral flow assay (LFA). This approach enables not only rapid typing of different targets, but also eliminates the interference of primer dimers and enhances the accuracy and reliability of the results. Our proposed universal assay has been successfully applied to the typing of four SNP loci of clinical samples to verify the accuracy and universality, and the results are consistent with those obtained by Sanger sequencing. Therefore, our study establishes a new universal "typing formula" using nucleic acid tags and small molecule probes that provides a powerful genotyping platform for genetic analysis and molecular diagnostics.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Xin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Jianhong Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wen Yu
- Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Chen Zuo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| |
Collapse
|
7
|
Xue J, Yang H, Li J, Ouyang H, Fu Z. Smartphone-Based Pressure Signal Readout Device Combined with Bidirectional Immunochromatographic Test Strip for Dual-Analyte Detection. Anal Chem 2023; 95:1359-1365. [PMID: 36575992 DOI: 10.1021/acs.analchem.2c04322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pressure has been a facile signal readout mode for developing point-of-care testing devices due to the attractive features of portability, accessibility, rapidity, and affordability. Herein, a pressure signal readout device was designed by integrating two homemade needle-type piezoresistive transducers, a controller for a thin-film piezoresistive sensor and a smartphone. Meanwhile, a bidirectional immunochromatographic test strip was designed as an immunoreaction platform for dual-analyte detection. Using PdCuPt nanoparticles with catalase-mimic activity as signal tags, the pressure signals triggered by catalyzed aerogenous reaction were monitored by the pressure signal readout device and read on a smartphone with the Bluetooth module. In this proof-of-principle work, imidacloprid and carbendazim were detected as model analytes. The dynamic ranges for quantitating imidacloprid and carbendazim are 20 pg mL-1 to 50 ng mL-1 and 50 pg mL-1 to 50 ng mL-1, respectively. The whole immunoassay process was completed within 16 min. The recovery values for imidacloprid and carbendazim spiked into herbal medicines are 82.0-110.0 and 84.0-116.0%, respectively, verifying its reliability for real sample detection. As the smartphone APP and controller for a thin-film piezoresistive sensor contain 12 signal channels, the system can be easily extended to meet the demand for high-throughput screening.
Collapse
Affiliation(s)
- Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Honglin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
8
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Li J, Xue J, Zhang Y, He Y, Fu Z. Shape-Encoded Functional Hydrogel Pellets for Multiplexed Detection of Pathogenic Bacteria Using a Gas Pressure Sensor. ACS Sens 2022; 7:2438-2445. [PMID: 35916836 DOI: 10.1021/acssensors.2c01186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas pressure is a promising signal readout mode in point-of-care testing for its merits such as rapidity, simplicity, affordability, and no need for sophisticated instrumentation. Herein, a gas pressure sensor for multiplexed detection of pathogenic bacteria was developed on a hydrogel platform. Spherical and square hydrogel pellets prepared by cross-linking of sodium alginate were functionalized with nisin and ConA for the capture of Staphylococcus aureus and Escherichia coli O157:H7, respectively. By using the shape-encoded functional hydrogel pellets and aptamer-modified platinum-coated gold nanoparticles (Au@PtNPs), a dual-molecule recognition mode was established for rapid and specific detection of the two pathogenic bacteria. Au@PtNPs were applied as signal probes to efficiently catalyze the decomposition of H2O2 for generating abundant O2, which was converted into an amplified gas pressure signal. In two closed containers, the significant gas pressure signals were monitored with a portable pressure meter to quantitate the two pathogenic bacteria. The sensor was successfully applied to detect the pathogenic bacteria in various environmental, biological, and food samples. Thus, the proof-of-principle work paves a new avenue for multiplexed detection of pathogenic bacteria with shape-encoded hydrogel pellets combined with gas pressure signal readout.
Collapse
Affiliation(s)
- Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yong He
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563000, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Ahirwar R, Bhattacharya A, Kumar S. Unveiling the underpinnings of various non-conventional ELISA variants: a review article. Expert Rev Mol Diagn 2022; 22:761-774. [PMID: 36004453 DOI: 10.1080/14737159.2022.2117615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Enzyme-linked immunosorbent assay (ELISA) is a key bio-analytical technique used for the detection of a large array of antigenic substances of scientific, clinical, food safety, and environmental importance. The assay primarily involves capturing and detecting target analytes using specific antigen-antibody interactions. The wide usage of ELISA shoulders on its high specificity and reproducibility. Notwithstanding, the conventional microwell plate-based format of ELISA has some major drawbacks, such as long assay time (4 - 18 h), large sample volumes requirement (100 - 200 μL), lack of multiplicity, and burdensome procedures that limit its utility in rapid and affordable diagnostics. AREAS COVERED Here, we reviewed microfluidic-ELISA, paper-ELISA, aptamer-ELISA, and those based on novel incubation such as heat-ELISA, pressure-ELISA, microwave-ELISA, and sound-ELISA. Further, the current trends and future prospects of these ELISA protocols in clinical diagnostics are discussed. EXPERT OPINION The reviewed non-conventional ELISA formats are relatively rapid, require low reagent volumes, are multiplexable, and could be performed in a low-cost setup. In our opinion, these non-conventional variants of ELISA are on a par with the conventional format for clinical diagnostics and fundamental biological research and hold added clinical translational potential for quick, inexpensive, and convenient measurements.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Akanksha Bhattacharya
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon- 122103, India
| |
Collapse
|
11
|
Li G, Ge S, Niu P, Zhang J, Mao Y, Wang Y, Sun A. Simultaneous detection of circulating tumor DNAs using a SERS-based lateral flow assay biosensor for point-of-care diagnostics of head and neck cancer. BIOMEDICAL OPTICS EXPRESS 2022; 13:4102-4117. [PMID: 36032568 PMCID: PMC9408245 DOI: 10.1364/boe.463612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor DNA (ctDNA) has recently emerged as an ideal target for biomarker analytes. Thus, the development of rapid and ultrasensitive ctDNA detection methods is essential. In this study, a high-throughput surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) strip is proposed. The aim of this method is to achieve accurate quantification of TP53 and PIK3CA E545K, two types of ctDNAs associated with head and neck squamous cell carcinoma (HNSCC), particularly for point-of-care testing (POCT). Raman reporters and hairpin DNAs are used to functionalize the Pd-Au core-shell nanorods (Pd-AuNRs), which serve as the SERS probes. During the detection process, the existence of targets could open the hairpins on the surface of Pd-AuNRs and trigger the first step of catalytic hairpin assembly (CHA) amplification. The next stage of CHA amplification is initiated by the hairpins prefixed on the test lines, generating numerous "hot spots" to enhance the SERS signal significantly. By the combination of high-performing SERS probes and a target-specific signal amplification strategy, TP53 and PIK3CA E545K are directly quantified in the range of 100 aM-1 nM, with the respective limits of detection (LOD) calculated as 33.1 aM and 20.0 aM in the PBS buffer and 37.8 aM and 23.1 aM in human serum, which are significantly lower than for traditional colorimetric LFA methods. The entire detection process is completed within 45 min, and the multichannel design realizes the parallel detection of multiple groups of samples. Moreover, the analytical performance is validated, including reproducibility, uniformity, and specificity. Finally, the SERS-LFA biosensor is employed to analyze the expression levels of TP53 and PIK3CA E545K in the serum of patients with HNSCC. The results are verified as consistent with those of qRT-PCR. Thus, the SERS-LFA biosensor can be considered as a noninvasive liquid biopsy assay for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, P. R., China
| | - Shengjie Ge
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, P. R., China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R., China
| | - Ping Niu
- Departments of Otolaryngology, Qingzhou People's Hospital, Qingzhou, 262500, P. R., China
| | - Jianyou Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, P. R., China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R., China
| | - Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, P. R., China
| | - Aidong Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, P. R., China
| |
Collapse
|
12
|
Qi L, Du Y. Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. J Mater Chem B 2022; 10:3959-3973. [PMID: 35575030 DOI: 10.1039/d2tb00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.
Collapse
Affiliation(s)
- Lijuan Qi
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| | - Yan Du
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
13
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials,
CSIR-Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026,
India
| | - Udwesh Panda
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
14
|
A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal Chim Acta 2022; 1205:339756. [DOI: 10.1016/j.aca.2022.339756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
|
15
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
16
|
Wilson S, Steele S, Adeli K. Innovative technological advancements in laboratory medicine: Predicting the lab of the future. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2011413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- Siobhan Wilson
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shannon Steele
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Song E, Tao Y, Shen H, Yang C, Tian T, Yang L, Zhu Z. A polypyrrole-mediated photothermal biosensor with a temperature and pressure dual readout for the detection of protein biomarkers. Analyst 2022; 147:2671-2677. [DOI: 10.1039/d2an00370h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photothermal biosensor with a temperature and pressure dual readout was developed for CRP detection. The in situ synthesized polypyrrole exhibits photothermal effect under NIR light to increase temperature and pressure for portable readout.
Collapse
Affiliation(s)
- Eunyeong Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingzhou Tao
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Haicong Shen
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian Tian
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liu Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
19
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
20
|
Shu T, Hunter H, Zhou Z, Sun Y, Cheng X, Ma J, Su L, Zhang X, Serpe MJ. Portable point-of-care diagnostic devices: an updated review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5418-5435. [PMID: 34787609 DOI: 10.1039/d1ay01643a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The global pandemic caused by the SARS-CoV-2 (COVID) virus indiscriminately impacted people worldwide with unquantifiable and severe impacts on all aspects of our lives, regardless of socioeconomic status. The pandemic brought to light the very real possibility of pathogens changing and shaping the way we live, and our lack of preparedness to deal with viral/bacterial outbreaks. Importantly, the quick detection of pathogens can help prevent and control the spread of disease, making the importance of diagnostic techniques undeniable. Point-of-care diagnostics started as a supplement to standard lab-based diagnostics, and are gradually becoming mainstream. Because of this, and their importance in detecting pathogens (especially in the developing world), their development has accelerated at an unprecedented rate. In this review, we highlight some important and recent examples of point-of-care diagnostics for detecting nucleic acids, proteins, bacteria, and other biomarkers, with the intent of making apparent their positive impact on society and human health.
Collapse
Affiliation(s)
- Tong Shu
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haley Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Ziping Zhou
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaojun Cheng
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| |
Collapse
|
21
|
Li Y, Liu X, Guo J, Zhang Y, Guo J, Wu X, Wang B, Ma X. Simultaneous Detection of Inflammatory Biomarkers by SERS Nanotag-Based Lateral Flow Assay with Portable Cloud Raman Spectrometer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1496. [PMID: 34198765 PMCID: PMC8226521 DOI: 10.3390/nano11061496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
Inflammatory biomarkers are closely related to infectious diseases. However, traditional clinical tests of laboratory inspection are unable to achieve rapid and accurate detection of these biomarkers on-site due to shortcomings such as complex experimental operation, expensive equipment, and long test time. Herein, we proposed a lateral flow assay (LFA) strip based on surface-enhanced Raman scattering (SERS) nanotags (SERS-LFA strips) for the simultaneous and quantitative detection of dual infection biomarkers, serum amyloid A (SAA) and C-reactive protein (CRP), respectively. In practice, mesoporous silica (mSiO2)-coated Au nanoparticles (Au NPs) were used as the SERS substrate. Mercaptobenzoic acid (MBA) was embedded in the internal gap between Au NPs and the mSiO2 shell to prepare AuMBA@mSiO2 NPs, onto which SAA and CRP antibodies were modified to prepare two AuMBA@mSiO2 SERS nanotags. The Raman intensities of the test and control lines were simultaneously identified for the qualitative detection of SAA and CRP, with limits of detection (LODs) as low as 0.1 and 0.05 ng/mL for SAA and CRP, respectively. Finally, aiming at point-of-care testing (POCT) applications, we used a smartphone-based portable Raman spectrometer to quantitatively analyze the SERS-LFA strips. The Raman signal could still be accurately detected when the concentration of SAA and CRP was 10 ng/mL, which is lower than the LOD required in clinical practice for most diseases. Therefore, taking into account its simple operation and short analysis time, by using a portable Raman spectrometer which can be equipped with a 5G cloud-based healthcare management system, the current strategy based on SERS-LFA provides the potential for the quick and on-site diagnosis of infectious diseases such as sepsis, which is of great significance for medical guidance on the treatment of widely spread infection-related diseases in remote areas that lack well-developed medical resources.
Collapse
Affiliation(s)
- Yang Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.); (Y.Z.)
| | - Xiaojia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Jiuchuan Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (J.G.); (J.G.)
| | - Yueting Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.); (Y.Z.)
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (J.G.); (J.G.)
| | - Xinggui Wu
- CloudMinds Inc., Shenzhen Bay Science and Technology Ecological Park, Shenzhen 100022, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.); (Y.Z.)
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
22
|
Shi L, Liu W, Li B, Yang CJ, Jin Y. Multichannel Paper Chip-Based Gas Pressure Bioassay for Simultaneous Detection of Multiple MicroRNAs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15008-15016. [PMID: 33757287 DOI: 10.1021/acsami.1c01568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simultaneous detection of multi-biomarkers not only enhances the accuracy of disease diagnosis but also improves detection efficiency and reduces cost. It is vital to achieve portable, simple, low-cost, and simultaneous detection of biomarkers for point-of-care (POC) diagnostics in a low-resource setting. Herein, a multichannel paper chip-based gas pressure bioassay was developed for the simultaneous detection of multiple biomarkers by combining multichannel paper chips with a portable gas pressure meter. Four DNA tetrahedral probes (DTPs) were used as capture probes and were immobilized in different detection zones of the paper chips to improve hybridization efficiency and reduce nonspecific adsorption. The formation of a sandwich structure between target microRNAs (miRNAs), the capture probe, and platinum nanoparticles (PtNPs)-modified complementary DNA (PtNPs-cDNA) transformed biomolecular recognition into quantitative detection of gas pressure. Four lung cancer-related miRNAs were detected simultaneously by a portable gas pressure meter. There is a good linear relationship between gas pressure and the logarithm of miRNA concentration in the range of 10 pM to 100 nM. Compared with single-stranded DNA capture probe, the signal-to-noise (S/N) of DNA tetrahedral probes improved more than 3 times. Using ring-oven washing, the unbound reagents in all channels of the paper chip were simultaneously and continuously washed away, leading to a more cheap, simple, and fast separation than magnetic separation. Therefore, it offers a promising multichannel paper chip-based gas pressure bioassay for portable and simultaneous detection of multiple biomarkers.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
23
|
Hao Z, Lin X, Li J, Yin Y, Gao X, Wang S, Liu Y. Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosens Bioelectron 2020; 173:112789. [PMID: 33220533 DOI: 10.1016/j.bios.2020.112789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Bacterial infection is a growing public health concern and causes a huge medical and financial burden. It is of significance to efficiently construct multifunctional platforms for bacterial point-of-care testing (POCT) and elimination. Herein, near-infrared (NIR) light-responded vancomycin-doped prussian blue nanoparticles (PB-VANNPs) with high efficient photothermal conversion was synthesized for binding, dual-mode portable detection, and elimination of bacteria. The PB-VANNPs can bind to the surface of Gram-positive bacteria such as Staphylococcus aureus (S. aureus), forming complex of PB-VANNPs/S. aureus. After being centrifugated, the suspension solution of PB-VANNPs can stimulate perfluorohexane (PFH) to rapidly release oxygen (O2) under NIR irradiation. Thus, the bacteria can be sensitively detected with portable pressure meter as signal reader, reporting a limit of detection (LOD) of 1.0 CFU mL-1. On the other side, the sediment of PB-VANNPs/S. aureus can be detected via thermal camera, reporting a LOD of 1.0 CFU mL-1. Interestingly, the bacteria can be effectively inactivated with the local temperature elevation during temperature-based detection. The antibacterial efficiency reaches as high as 99.8%. The developed multifunctional nanoplatform not only provides a straightforward "mix-then-test" way for portable detection of bacteria with high sensitivity, also realizes high efficiency elimination of bacteria simultaneously. The developed strategy was further applied for promoting wound healing of bacteria-infected mice.
Collapse
Affiliation(s)
- Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jinjie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yanliang Yin
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100037, PR China.
| |
Collapse
|
24
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
25
|
Lin H, Fang F, Zang J, Su J, Tian Q, Kumar Kankala R, Lin X. A Fluorescent Sensor-Assisted Paper-Based Competitive Lateral Flow Immunoassay for the Rapid and Sensitive Detection of Ampicillin in Hospital Wastewater. MICROMACHINES 2020; 11:mi11040431. [PMID: 32326021 PMCID: PMC7231327 DOI: 10.3390/mi11040431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
In this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP. The accuracy of detection was improved by optimizing the tunable AMP probes. Under the optimal conditions, the linear concentration of AMP detection is ranged from 10 to 200 ng/L with a limit of quantitation (LOQ) value of 2.71 ng/L, and the recovery is higher than 80.5 %. Moreover, the developed method shows the potential application for AMP detection in the hospital wastewater.
Collapse
Affiliation(s)
- Honggui Lin
- Fujian Province Key Laboratory of Ship and Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (H.L.); (Q.T.)
| | - Feixiang Fang
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (F.F.); (J.Z.); (J.S.); (R.K.K.)
| | - Jiahui Zang
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (F.F.); (J.Z.); (J.S.); (R.K.K.)
| | - Jianlong Su
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (F.F.); (J.Z.); (J.S.); (R.K.K.)
| | - Qingyuan Tian
- Fujian Province Key Laboratory of Ship and Ocean Engineering, Marine Engineering College, Jimei University, Xiamen 361021, China; (H.L.); (Q.T.)
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Ranjith Kumar Kankala
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (F.F.); (J.Z.); (J.S.); (R.K.K.)
| | - Xuexia Lin
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (F.F.); (J.Z.); (J.S.); (R.K.K.)
- Correspondence:
| |
Collapse
|
26
|
Terminal-conjugated non-aggregated constraints of gold nanoparticles on lateral flow strips for mobile phone readouts of enrofloxacin. Biosens Bioelectron 2020; 160:112218. [PMID: 32339154 DOI: 10.1016/j.bios.2020.112218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Antibiotics abuse now poses a global threat to public health. Monitoring their residual levels as well as metabolites are of great importance, still challenges remain in in situ tracing during the circulation. Herein, taking the typical antibacterial Enrofloxacin (ENR) as a subject, a paper-based aptasensor was tailored by manipulating a duo of aptameric moieties to "sandwich" the target in a lateral-flow regime. To visualize the tight-binding sandwich motif more vividly, an irregular yet robust DNA-bridged gold nanoparticles (AuNPs) proximity strategy was developed with recourse to terminal deoxynucleotidyl transferase, of which the nonaggregate constraining feature was unveiled via optical absorption and scanning probe topography. This complex performed exceptionally better in the test strip context than single-particle tags, leading to an enhanced on-chip focusing. Rather than qualitative color developing, further efforts were taken to visualize the readouts in a quantitative manner by exploiting the smartphone camera for pattern recognition along with data processing in a professional App. Overall, this prototyped contraption realized a rapid and ultrasensitive quantification of ENR down to 0.1 μg/L along with a broad linear range over 5 orders of magnitude, plus excellent selectivity and precision even for real samples. Such innovative fusion across DNA-structured nanomanufacturing and intelligent perception provides a prospective and invigorating solution to point-of-care inspection.
Collapse
|
27
|
Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4104-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Liu L, Zhao G, Dou W. An unplugged and quantitative foam based immunochromatographic assay for Escherichia coli O157:H7 using nanozymes to catalyze hydrogen peroxide decomposition reaction. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, Wang Y, Zhu Z, Yang C. Trends in miniaturized biosensors for point-of-care testing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115701] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Wang L, Zhu F, Zhu Y, Xie S, Chen M, Xiong Y, Liu Q, Yang H, Chen X. Intelligent Platform for Simultaneous Detection of Multiple Aminoglycosides Based on a Ratiometric Paper-Based Device with Digital Fluorescence Detector Readout. ACS Sens 2019; 4:3283-3290. [PMID: 31736294 DOI: 10.1021/acssensors.9b01845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A digital fluorescence detector (DFD), a handheld fluorescence detection device, can convert the fluorescence signal of samples into the corresponding fluorescer concentration. Herein, by adopting a DFD as the readout, a novel intelligent platform was developed based on a ratiometric paper-based device (RPD) for multiple aminoglycoside detection. There are five layers and four parallel channels contained in the designed RPD, functioning as reagent storage, fluidic path control and signal processing, respectively. The rationale of this design lies in the fact that aptamer/graphitic carbon nitride nanosheet (Apt/g-C3N4 NS) modified layers can catalyze o-phenylenediamine to fluorescent 2,3-diaminophenazine (DAP) in the presence of H2O2. When Apt was removed from nanosheets via the Apt-target reaction, the peroxidase-like activity would be decreased, thus decreasing the production of DAP. All the changes of the fluorescence DAP signal can be read out using a portable DFD. Based on the DFD signal change related to the concentration of the target, a quantitative reaction platform was established. Furthermore, the sample flow and Apt-target reaction time can be reasonably regulated using the H2O2-cleavable hydrophobic compound modified layer placed between the target recognition region and detection region. Then, the practicality of this platform was verified through realizing sensitive analysis of streptomycin, tobramycin, and kanamycin simultaneously. Overall, with merits including portability and ease of operation, the platform shows great potential in on-site simultaneous detection of multiple targets, especially in resource-limited settings.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- School of Life Science, Central South University, Changsha 410013, China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
31
|
Hu S, Tong L, Wang J, Yi X, Liu J. NIR Light-Responsive Hollow Porous Gold Nanospheres for Controllable Pressure-Based Sensing and Photothermal Therapy of Cancer Cells. Anal Chem 2019; 91:15418-15424. [DOI: 10.1021/acs.analchem.9b02871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liujuan Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
32
|
|
33
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
34
|
A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim Acta 2019; 186:521. [DOI: 10.1007/s00604-019-3626-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
35
|
Zhang J, Yu Q, Qiu W, Li K, Qian L, Zhang X, Liu G. Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: application to detection of rabbit IgG. Mikrochim Acta 2019; 186:357. [PMID: 31098826 DOI: 10.1007/s00604-019-3464-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/29/2019] [Indexed: 11/27/2022]
Abstract
The authors describe the preparation of gold-platinum nanoflower (AuPt NFs) and show that they can be simultaneously used as a label and as an enzyme mimic in lateral flow immunoassays (LFIs). The AuPt NFs were prepared by growing Pt nanowires on the surface of gold nanoparticle. The assay involves the capture of target proteins (here: rabbit IgG as a model analyte) by the immobilized capture antibody, and by using AuPt NF-labeled secondary antibody. The AuPt NFs are thus captured by the test zone and produce a characteristic black band for visual detection of the antigen (IgG). The coloration of the test line can be further enhanced by addition of the chromogenic substrate 3-amino-9-ethyl-carbazole which is catalytically oxidized by the captured Pt nanowires on the AuPt NF and produce a red coloration. Quantitative results were obtained by reading the test line intensities with a portable strip reader. The LFI has a 5 pg mL-1 detection limit for IgG under optimized experimental conditions. This is 100 times lower than that of the conventional AuNP-based LFI. Conceivably, this assay has a wide scope in that it may be applied to numerous other targets for which appropriate antibodies are available. Graphical abstract Gold-platinum nanoflowers are used as a label and as an enzyme mimic in a highly sensitive lateral flow immunoassay for IgG. The detection limit of gold-platinum nanoflower-based lateral flow assay is 100 times lower than that of the conventional gold nanopaticle-based lateral flow assay.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Qingcai Yu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Wanwei Qiu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Kun Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| | - Xueji Zhang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
36
|
Li Z, Chen H, Wang P. Lateral flow assay ruler for quantitative and rapid point-of-care testing. Analyst 2019; 144:3314-3322. [PMID: 30968883 DOI: 10.1039/c9an00374f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lateral flow assay (LFA) is a well-established platform for point-of-care (POC) testing due to its low cost and user friendliness. Conventional LFAs provide qualitative or semi-quantitative results and require dedicated instruments for quantitative detection. Here, we developed an "LFA ruler" for quantitative and rapid readout of LFA results, using a 3D printed strip cassette and a simple, inexpensive microfluidic chip. Platinum nanoparticles are used as signal amplification reporters, which catalyze the generation of oxygen to push ink advancement in the microfluidic channel. The concentration of the target is linearly correlated with the ink advancement distance. The entire assay can be completed within 30 minutes without external instruments and complicated operations. We demonstrated quantitative prostate specific antigen testing using the LFA ruler, with a limit of detection of 0.54 ng mL-1, linear range of 0-12 ng mL-1, and high correlation with a clinical gold standard assay. The LFA ruler achieves low cost, quantitative, sensitive and rapid detection, which has great potential in POC testing and can be extended to quantify other disease biomarkers.
Collapse
Affiliation(s)
- Zhao Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | - Ping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
37
|
Hong G, Rui G, Zhang D, Lian M, Yang Y, Chen P, Yang H, Guan Z, Chen W, Wang Y. A smartphone-assisted pressure-measuring-based diagnosis system for acute myocardial infarction diagnosis. Int J Nanomedicine 2019; 14:2451-2464. [PMID: 31040668 PMCID: PMC6459154 DOI: 10.2147/ijn.s197541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Acute myocardial infarction (AMI), usually caused by atherosclerosis of coronary artery, is the most severe manifestation of coronary artery disease which results in a large amount of death annually. A new diagnosis approach with high accuracy, reliability and low measuring-time-consuming is essential for AMI quick diagnosis. Purpose The objective of this study was to develop a new point-of-care testing system with high accuracy and reliability for AMI quick diagnosis. Patients and methods 50 plasma samples of acute myocardial infarction patients were analyzed by developed Smartphone-Assisted Pressure-Measuring-Based Diagnosis System (SPDS). The concentration of substrate was firstly optimized. The effect of antibody labeling and matrix solution on measuring result were then evaluated. And standard curves for cTnI, CK-MB and Myo were built for clinical sample analysis. The measuring results of 50 clinical samples were finally evaluated by comparing with the measuring result obtained by CLIA. Results The concentration of substrate H2O2 was firstly optimized as 30% to increase measuring signal. A commercial serum matrix was chosen as the matrix solution to dilute biomarkers for standard curve building to minimize matrix effect on the accuracy of clinical plasma sample measuring. The standard curves for cTnI, CK-MB and Myo were built, with measuring dynamic range of 0–25 ng/mL, 0–33 ng/mL and 0–250 ng/mL, and limit of detection of 0.014 ng/mL, 0.16 ng/mL and 0.85 ng/mL respectively. The measuring results obtained by the developed system of 50 clinical plasma samples for three biomarkers matched well with the results obtained by chemiluminescent immunoassay. Conclusion Due to its small device size, high sensitivity and accuracy, SPDS showed a bright potential for point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Gang Rui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongdong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingjian Lian
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Ping Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361005, People's Republic of China
| | - Huijing Yang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350108, People's Republic of China
| | - Zhichao Guan
- Department of Research and development, Xiamen Passtech Co.,Ltd., Xiamen 361101, People's Republic of China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, People's Republic of China,
| | - Yan Wang
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, People's Republic of China,
| |
Collapse
|
38
|
Kong FZ, Jahan S, Zhong R, Cao XY, Li WL, Wang YX, Xiao H, Liu WW, Cao CX. Electrophoresis Titration Model of a Moving Redox Boundary Chip for a Point-of-Care Test of an Enzyme-Linked Immunosorbent Assay. ACS Sens 2019; 4:126-133. [PMID: 30604605 DOI: 10.1021/acssensors.8b01017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) have been widely used in clinical examination, food safety, and environmental analyses. However, they still face a great challenge in designing a device for a point-of-care test (POCT) due to its bulk optical detector and complexity. Herein an electrophoresis titration (ET) model of a moving redox boundary (MRB) was proposed for constructing an ET-ELISA chip of a POCT just with sextuplet electrode pairs and laminated cells. The chip had an anodic well, middle well, and cathode well which were connected by microchannels. The ELISA process was conducted in the bottom of the middle well, where horseradish peroxidase (HRP) catalyzed 3,3',5,5'-tetra-methyl benzidine (TMB) as a blue TMB dimer with two positive charges. Under an electrical field of 29 V, the TMB dimer migrated into the titration channel and reacted with the ascorbic acid, creating an MRB. The MRB motion was a function of antigen content, indicating a visual distance-based assay. As a proof of concept, a C-reactive protein was chosen as a model antigen. The experiments systemically validated the ET-ELISA model and method. Particularly, the chip was smartphone-detected, traditional power supply free, and did not use sulfuric acid used in typical ELISA, making the ET-ELISA method extremely simple, portable, and safe. The ET-ELISA has great potential to visual and portable ELISA in clinical medicine, the environment, and food safety immunoassay.
Collapse
|
39
|
Huang D, Lin B, Song Y, Guan Z, Cheng J, Zhu Z, Yang C. Staining Traditional Colloidal Gold Test Strips with Pt Nanoshell Enables Quantitative Point-of-Care Testing with Simple and Portable Pressure Meter Readout. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1800-1806. [PMID: 30571083 DOI: 10.1021/acsami.8b15562] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Traditional immunochromatographic test strips based on colloidal gold are effective devices for portable and low-cost point-of-care (POC) testing. Nevertheless, they still suffer from the limitation of qualitative or semiquantitative tests via naked-eye detection. Replacement of gold with other signal entities, such as magnetic particles or fluorescent particles, requires professional instrumentation to obtain quantitative results. A pressure-based assay with platinum nanoparticles (PtNPs) can provide quantitative results using a portable pressure meter but is also hampered by the long-term instability of PtNPs. Consequently, we developed a Pt-staining method based on test strips to create platinum nanoshells on the surface of colloidal gold. This method not only preserves the original advantages of colloidal gold with easy synthesis and decoration but also introduces PtNPs with excellent catalytic activity as signal labels to achieve sensitive quantitative detection. Myoglobin was tested as a model target, and the limit of detection was 5.47 ng/mL in 20% diluted serum samples, which satisfies the requirements for clinical monitoring of acute myocardial infarction. In addition, the two most common colloidal gold strips available in the marketplace were applied to demonstrate the compatibility of Pt-staining. Taking advantage of low cost, user-friendliness, compatibility, simplicity, and stability, colloidal gold test strips with Pt-staining are expected to satisfy the need for quantitative POC testing of biomarkers, especially in resource-limited regions.
Collapse
Affiliation(s)
- Di Huang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | | | - Jie Cheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
40
|
Sensitive detection of telomerase activity in cancer cells using portable pH meter as readout. Biosens Bioelectron 2018; 121:153-158. [DOI: 10.1016/j.bios.2018.08.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
|
41
|
Evans D, Papadimitriou KI, Vasilakis N, Pantelidis P, Kelleher P, Morgan H, Prodromakis T. A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4011. [PMID: 30453609 PMCID: PMC6264023 DOI: 10.3390/s18114011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes.
Collapse
Affiliation(s)
- Daniel Evans
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Konstantinos I Papadimitriou
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Nikolaos Vasilakis
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Panagiotis Pantelidis
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Peter Kelleher
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Hywel Morgan
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Themistoklis Prodromakis
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
42
|
Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2018; 91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingyu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
43
|
Huang R, Zhang K, Zhu G, Sun Z, He S, Chen W. Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3537. [PMID: 30347684 PMCID: PMC6210089 DOI: 10.3390/s18103537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISA) show extensive application in immunoassays, to detect and monitor protein biomarkers in clinical diagnosis. Nevertheless, the time required and its multiple steps limit its application. We take advantage of a polyethyleneimine (PEI) gold nanoparticle (GNP) coated microwell plate to perform blocking-free ELISA, in which no nonspecific protein adsorption appears on the GNP layer. If the PEI-GNP coated microwell plate and immobilization of captured antibodies on the plate are prepared in advance, such as using an ELISA kit, the whole ELISA process can be finished in less than 2 h. Meanwhile, we have ensured that the GNP layer can preserve the precision and good linearity of ELISA without causing negative effects on the plate.
Collapse
Affiliation(s)
- Ruijia Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Ke Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Guoshuai Zhu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhencheng Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Songliang He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
44
|
Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int J Mol Sci 2018; 19:E2731. [PMID: 30213089 PMCID: PMC6164778 DOI: 10.3390/ijms19092731] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in microfluidic devices, nanoparticle chemistry, fluorescent microscopy, and biochemical techniques such as genetic identification and antibody capture have provided easier and more sensitive platforms for detecting and diagnosing diseases as well as providing new fundamental insight into disease progression. These advancements have led to the development of new technology and assays capable of easy and early detection of pathogenicity as well as the enhancement of the drug discovery and development pipeline. While some studies have focused on treatment, many of these technologies have found initial success in laboratories as a precursor for clinical applications. This review highlights the current and future progress of microfluidic techniques geared toward the timely and inexpensive diagnosis of disease including technologies aimed at high-throughput single cell analysis for drug development. It also summarizes novel microfluidic approaches to characterize fundamental cellular behavior and heterogeneity.
Collapse
Affiliation(s)
- Joshua M Campbell
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Joseph B Balhoff
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grant M Landwehr
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
45
|
Thurgood P, Zhu JY, Nguyen N, Nahavandi S, Jex AR, Pirogova E, Baratchi S, Khoshmanesh K. A self-sufficient pressure pump using latex balloons for microfluidic applications. LAB ON A CHIP 2018; 18:2730-2740. [PMID: 30063234 DOI: 10.1039/c8lc00471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, we demonstrate a self-sufficient, inexpensive and disposable pressure pump using commercially available latex balloons. The versatility of the pump is demonstrated against various microfluidic structures, liquid viscosities, and ambient temperatures. The flow rate of the pump can be controlled by varying the size and thickness of the balloon. Importantly, the soft structure of the balloon allows for almost instantaneous change of the flow rate upon manual squeezing of the balloon. This feature has been used for dynamically changing the flow ratio of parallel streams in a T-shaped channel or varying the size of droplets in a droplet generation system. The self-sufficiency, simplicity of fabrication and operation, along with the low-cost of the balloon pump facilitate the widespread application of microfluidic technologies for various research, education, and in situ monitoring purposes.
Collapse
Affiliation(s)
- Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|