1
|
Feng R, Mao K, Zhang H, Zhu H, Du W, Yang Z, Wang S. Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater. Mikrochim Acta 2024; 192:19. [PMID: 39708170 DOI: 10.1007/s00604-024-06898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater. Isothermal nucleic acid amplification and CRISPR/Cas are two commonly used identification elements for the microfluidic detection of ARGs. The former has better sensitivity due to amplification, but false positives due to inappropriate primer design and contamination; the latter has better specificity. The combination of the two can achieve complementarity to a certain extent. Compared with traditional microfluidic chips, low-cost and biocompatible paper-based microfluidics is a very attractive test for ARGs, whose fluid flow in paper does not require external force, but it is weaker in terms of repeatability and high-throughput detection. Due to that only a handful of portable microfluidics detect ARGs in wastewater, fabricating high-throughput microfluidic chips, developing and optimizing recognition techniques for the highly selective and sensitive identification and quantification of a wide range of ARGs in complex wastewater matrices are needed.
Collapse
Affiliation(s)
- Rida Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hongxiang Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Shuangfei Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
2
|
Kang W, Luan T, Zhou W, Yin Y, Liu L, Wang S, Li Z, Yang J, Ho HP, Shou Q, Xing X. Coupled photothermal vortices for capture, sorting, and transportation of particles. OPTICS LETTERS 2024; 49:3974-3977. [PMID: 39008754 DOI: 10.1364/ol.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Optofluidic techniques have evolved as a prospering strategy for microparticle manipulation via fluid. Unfortunately, there is still a lack of manipulation with simple preparation, easy operation, and multifunctional integration. In this Letter, we present an optofluidic device based on a graphite oxide (GO)-coated dual-fiber structure for multifunctional particle manipulation. By changing the optical power and the relative distance of the fibers, the system can excite thermal fluidic vortices with three inter-coupled states, namely uncoupled, partially coupled and completely coupled states, and therefore can realize capture, sorting, and transportation of the target particles. We conduct a numerical analysis of the whole system, and the results are consistent with the experimental phenomena. This versatile device can be utilized to manipulate target particles in complex microscopic material populations with the advantages of flexible operation, user-friendly control, and low cost.
Collapse
|
3
|
Sano T, Sampad MJN, Gonzalez-Ferrer J, Hernandez S, Vera-Choqqueccota S, Vargas PA, Urcuyo R, Montellano Duran N, Teodorescu M, Haussler D, Schmidt H, Mostajo-Radji MA. Internet-enabled lab-on-a-chip technology for education. Sci Rep 2024; 14:14364. [PMID: 38906940 PMCID: PMC11192768 DOI: 10.1038/s41598-024-65346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students' fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.
Collapse
Affiliation(s)
- Tyler Sano
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mohammad Julker Neyen Sampad
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jesus Gonzalez-Ferrer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sebastian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | - Samira Vera-Choqqueccota
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Paola A Vargas
- Biotechnology, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra, Bolivia
| | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | | | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Holger Schmidt
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
4
|
Wang H, Chen Z, Li T, Xie H, Yin B, Wong SHD, Shi Y, Zhang AP. Optofluidic chip with directly printed polymer optical waveguide Mach-Zehnder interferometer sensors for label-free biodetection. BIOMEDICAL OPTICS EXPRESS 2024; 15:3240-3250. [PMID: 38855677 PMCID: PMC11161367 DOI: 10.1364/boe.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
Optofluidic devices hold great promise in biomedical diagnostics and testing because of their advantages of miniaturization, high sensitivity, high throughput, and high scalability. However, conventional silicon-based photonic chips suffer from complicated fabrication processes and less flexibility in functionalization, thus hindering their development of cost-effective biomedical diagnostic devices for daily tests and massive applications in responding to public health crises. In this paper, we present an optofluidic chip based on directly printed polymer optical waveguide Mach-Zehnder interferometer (MZI) sensors for label-free biomarker detection. With digital ultraviolet lithography technology, high-sensitivity asymmetric MZI microsensors based on a width-tailored optical waveguide are directly printed and vertically integrated with a microfluidic layer to make an optofluidic chip. Experimental results show that the sensitivity of the directly printed polymer optical waveguide MZI sensor is about 1695.95 nm/RIU. After being modified with capture molecules, i.e., goat anti-human immunoglobulin G (IgG), the polymer optical waveguide MZI sensors can on-chip detect human IgG at the concentration level of 1.78 pM. Such a polymer optical waveguide-based optofluidic chip has the advantages of miniaturization, cost-effectiveness, high sensitivity, and ease in functionalization and thus has great potential in the development of daily available point-of-care diagnostic and testing devices.
Collapse
Affiliation(s)
- Han Wang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zhituo Chen
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Taige Li
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Huimin Xie
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yaocheng Shi
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - A. Ping Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Sampad MJN, Saiduzzaman SM, Walker ZJ, Wells TN, Wayment JX, Ong EM, Mdaki SD, Tamhankar MA, Yuzvinsky TD, Patterson JL, Hawkins AR, Schmidt H. Label-free and amplification-free viral RNA quantification from primate biofluids using a trapping-assisted optofluidic nanopore platform. Proc Natl Acad Sci U S A 2024; 121:e2400203121. [PMID: 38598338 PMCID: PMC11032468 DOI: 10.1073/pnas.2400203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.
Collapse
Affiliation(s)
| | - S. M. Saiduzzaman
- School of Engineering, University of California, Santa Cruz, CA95064
| | - Zach J. Walker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Tanner N. Wells
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Jesse X. Wayment
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Ephraim M. Ong
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | | | | | | | | | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, CA95064
| |
Collapse
|
6
|
Sano T, Losakul R, Schmidt H. Dual optofluidic distributed feedback dye lasers for multiplexed biosensing applications. Sci Rep 2023; 13:16824. [PMID: 37803034 PMCID: PMC10558432 DOI: 10.1038/s41598-023-42671-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Integrated optofluidic devices have become subjects of high interest for rapid biosensor devices due to their unique ability to combine the fluidic processing of small volumes of microfluidics with the analysis capabilities of photonic structures. By integrating dynamically reconfigurable optofluidic lasers on-chip, complex coupling can be eliminated while further increasing the capabilities of sensors to detect an increasing number of target biomarkers. Here, we report a polydimethylsiloxane-based device with two on-chip fluidic distributed feedback (DFB) laser cavities that are integrated with an orthogonal analyte channel for multiplexed fluorescence excitation. One DFB grating is filled with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dissolved in dimethyl sulfoxide. The second grating is filled with rhodamine 6G dissolved in a diluted ethylene glycol solution. We present characterization of both lasers through analysis of the lasing spectra for spectral narrowing along with a power series to observe threshold behavior. We then demonstrate simultaneous detection of two different fluorescent microbeads as a proof of concept for scalable, single biomarker analysis using on-chip optofluidic lasers.
Collapse
Affiliation(s)
- Tyler Sano
- Department of Electrical and Computer Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Ravipa Losakul
- Department of Electrical and Computer Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Holger Schmidt
- Department of Electrical and Computer Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
7
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Ganjalizadeh V, Hawkins AR, Schmidt H. Adaptive time modulation technique for multiplexed on-chip particle detection across scales. OPTICA 2023; 10:812-818. [PMID: 38818330 PMCID: PMC11138143 DOI: 10.1364/optica.489068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Integrated optofluidic biosensors have demonstrated ultrasensitivity down to single particle detection and attomolar target concentrations. However, a wide dynamic range is highly desirable in practice and can usually only be achieved by using multiple detection modalities or sacrificing linearity. Here, we demonstrate an analysis technique that uses temporal excitation at two different time scales to simultaneously enable digital and analog detection of fluorescent targets. We demonstrated the seamless detection of nanobeads across eight orders of magnitude from attomolar to nanomolar concentration. Furthermore, a combination of spectrally varying modulation frequencies and a closed-loop feedback system that provides rapid adjustment of excitation laser powers enables multiplex analysis in the presence of vastly different concentrations. We demonstrated this ability to detect across scales via an analysis of a mixture of fluorescent nanobeads at femtomolar and picomolar concentrations. This technique advances the performance and versatility of integrated biosensors, especially toward point-of-use applications.
Collapse
Affiliation(s)
- Vahid Ganjalizadeh
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
9
|
Sano T, Sampad MJN, Gonzalez-Ferrer J, Hernandez S, Vera-Choqqueccota S, Vargas PA, Urcuyo R, Duran NM, Teodorescu M, Haussler D, Schmidt H, Mostajo-Radji MA. Open-loop lab-on-a-chip technology enables remote computer science training in Latinx life sciences students. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538776. [PMID: 37205466 PMCID: PMC10187215 DOI: 10.1101/2023.04.28.538776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite many interventions, science education remains highly inequitable throughout the world. Among all life sciences fields, Bioinformatics and Computational Biology suffer from the strongest underrepresentation of racial and gender minorities. Internet-enabled project-based learning (PBL) has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to train Latinx life science undergraduate students in concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8,000 km from the experimental site. We showed that this approach was sufficient to develop programming skills and increase the interest of students in continuing careers in Bioinformatics. Altogether, we conclude that LoC-based Internet-enabled PBL can become a powerful tool to train Latinx students and increase the diversity in STEM.
Collapse
Affiliation(s)
- Tyler Sano
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064
| | | | - Jesus Gonzalez-Ferrer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
| | - Sebastian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | - Samira Vera-Choqqueccota
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
| | - Paola A Vargas
- Biotechnology, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra, Bolivia
| | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | | | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
| | - Holger Schmidt
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060
| |
Collapse
|
10
|
Huang T, Zhang R, Li J. CRISPR-Cas-based techniques for pathogen detection: Retrospect, recent advances, and future perspectives. J Adv Res 2022:S2090-1232(22)00240-5. [PMID: 36367481 PMCID: PMC10403697 DOI: 10.1016/j.jare.2022.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Early detection of pathogen-associated diseases are critical for effective treatment. Rapid, specific, sensitive, and cost-effective diagnostic technologies continue to be challenging to develop. The current gold standard for pathogen detection, polymerase chain reaction technology, has limitations such as long operational cycles, high cost, and high technician and instrumentation requirements. AIM OF REVIEW This review examines and highlights the technical advancements of CRISPR-Cas in pathogen detection and provides an outlook for future development, multi-application scenarios, and clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW Approaches enabling clinical detection of pathogen nucleic acids that are highly sensitive, specific, cheap, and portable are necessary. CRISPR-Cas9 specificity in targeting nucleic acids and "collateral cleavage" activity of CRISPR-Cas12/Cas13/Cas14 show significant promise in nucleic acid detection technology. These methods have a high specificity, versatility, and rapid detection cycle. In this paper, CRISPR-Cas-based detection methods are discussed in depth. Although CRISPR-Cas-mediated pathogen diagnostic solutions face challenges, their powerful capabilities will pave the way for ideal diagnostic tools.
Collapse
|
11
|
All-in-One Optofluidic Chip for Molecular Biosensing Assays. BIOSENSORS 2022; 12:bios12070501. [PMID: 35884304 PMCID: PMC9313335 DOI: 10.3390/bios12070501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Integrated biosensor platforms have become subjects of high interest for consolidated assay preparation and analysis to reduce sample-to-answer response times. By compactly combining as many biosensor processes and functions as possible into a single lab-on-chip device, all-in-one point-of-care devices can aid in the accessibility and speed of deployment due to their compact size and portability. Biomarker assay preparation and sensing are functionalities that are often carried out on separate devices, thus increasing opportunity of contamination, loss of sample volume, and other forms of error. Here, we demonstrate a complete lab-on-chip system combining sample preparation, on-chip optofluidic dye laser, and optical detection. We first show the integration of an on-chip distributed feedback dye laser for alignment-free optical excitation of particles moving through a fluidic channel. This capability is demonstrated by using Rhodamine 6G as the gain medium to excite single fluorescent microspheres at 575 nm. Next, we present an optofluidic PDMS platform combining a microvalve network (automaton) for sample preparation of nanoliter volumes, on-chip distributed feedback dye laser for target excitation, and optical detection. We conduct concurrent capture and fluorescence tagging of Zika virus nucleic acid on magnetic beads in 30 min. Target-carrying beads are then optically excited using the on-chip laser as they flow through an analysis channel, followed by highly specific fluorescence detection. This demonstration of a complete all-in-one biosensor is a tangible step in the development of a rapid, point-of-care device that can assist in limiting the severity of future outbreaks.
Collapse
|
12
|
Sampad MJN, Amin MN, Hawkins AR, Schmidt H. FPGA Integrated Optofluidic Biosensor for Real-Time Single Biomarker Analysis. IEEE PHOTONICS JOURNAL 2022; 14:10.1109/jphot.2021.3127484. [PMID: 34900090 PMCID: PMC8658630 DOI: 10.1109/jphot.2021.3127484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Integrated optofluidic biosensors can fill the need for sensitive, amplification-free, multiplex single molecule detection which is relevant for containing the spread of infectious diseases such as COVID-19. Here, we demonstrate a rapid sample-to-answer scheme that uses a field programmable gate array (FPGA) to enable live monitoring of single particle fluorescence analysis on an optofluidic chip. Fluorescent nanobeads flowing through a micro channel are detected with 99% accuracy and particle concentrations in clinically relevant ranges from 3.4×104 to 3.4 × 106/ml are determined within seconds to a few minutes without the need for post-experiment data extraction and analysis. In addition, other extract salient experimental parameters such as dynamic flow rate changes can be monitored in real time. The sensor is validated with real-time fluorescence detection of single bacterial plasmid DNA at attomolar concentrations, showing excellent promise for implementation as a point of care (POC) diagnostic tool.
Collapse
Affiliation(s)
| | - Md Nafiz Amin
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Aaron R Hawkins
- ECEn Department, Brigham Young University, Provo, UT 84602 USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| |
Collapse
|
13
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
14
|
Sampad MJN, Zhang H, Yuzvinsky TD, Stott MA, Hawkins AR, Schmidt H. Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor. Biosens Bioelectron 2021; 194:113588. [PMID: 34474277 PMCID: PMC8400458 DOI: 10.1016/j.bios.2021.113588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Ultrasensitive, versatile sensors for molecular biomarkers are a critical component of disease diagnostics and personalized medicine as the COVID-19 pandemic has revealed in dramatic fashion. Integrated electrical nanopore sensors can fill this need via label-free, direct detection of individual biomolecules, but a fully functional device for clinical sample analysis has yet to be developed. Here, we report amplification-free detection of SARS-CoV-2 RNAs with single molecule sensitivity from clinical nasopharyngeal swab samples on an electro-optofluidic chip. The device relies on optically assisted delivery of target carrying microbeads to the nanopore for single RNA detection after release. A sensing rate enhancement of over 2,000x with favorable scaling towards lower concentrations is demonstrated. The combination of target specificity, chip-scale integration and rapid detection ensures the practicality of this approach for COVID-19 diagnosis over the entire clinically relevant concentration range from 104-109 copies/mL.
Collapse
Affiliation(s)
| | - Han Zhang
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Thomas D Yuzvinsky
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Matthew A Stott
- ECEn Department, Brigham Young University, 450 Engineering Building, Provo, UT, 84602, USA
| | - Aaron R Hawkins
- ECEn Department, Brigham Young University, 450 Engineering Building, Provo, UT, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
15
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
16
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
17
|
Gao N, Chang J, Dai P, Zhu Z, You H. One-sampling and Rapid Analysis of Cancer Biomarker on A Power-free and Low-cost Microfluidic Chip. ANAL SCI 2021; 37:1695-1700. [PMID: 34024865 DOI: 10.2116/analsci.21p098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alpha-fetoprotein (AFP) is an important disease biomarker, relating to cancers such as hepatocarcinomas and gastric cancer. However, traditional methods are time-consuming, relied on bulky instruments and trained professionals, cannot satisfy the demand for low cost and point-of-care testing (POCT). In this study, a power-free POCT device was developed for the rapid and low-cost detection of AFP via one-sampling. Based on the principle of sandwich immunofluorescence, the chip is capable of automatically accomplishing on-chip mixing, labeling and capturing procedures, which only require that operator add 40 μL sample into the chip one time. The proposed device is capable of sensitively detecting human AFP in FBS with a dynamic range of 10 - 1000 ng/mL and LOD (1.88 ng/mL) within a short time of 3 min. Predictably, our method holds a great potential to be applied in the POC diagnostics of proteins, especially for some regions that are resource-limited.
Collapse
Affiliation(s)
- Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China.,Institute of Intelligent Machines, Chinese Academy of Sciences
| | - Jianguo Chang
- Institute of Intelligent Machines, Chinese Academy of Sciences
| | - Peng Dai
- School of Mechanical Engineering, Guangxi University
| | - Ziming Zhu
- School of Mechanical Engineering, Guangxi University
| | - Hui You
- School of Mechanical Engineering, Guangxi University
| |
Collapse
|
18
|
Optofluidic multiplex detection of single SARS-CoV-2 and influenza A antigens using a novel bright fluorescent probe assay. Proc Natl Acad Sci U S A 2021; 118:2103480118. [PMID: 33947795 PMCID: PMC8158013 DOI: 10.1073/pnas.2103480118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work introduces an ultrasensitive single protein capture and detection technique based on a bright fluorescent reporter probe that is sensed on a photonic chip with integrated microfluidics. We perform differentiated detection of single SARS-CoV-2 and influenza A antigens at clinically relevant concentrations from clinical nasal swab materials. This ultrasensitive capture and detection technique could one day be realized as a tool for molecular diagnostics at the point of care. The urgency for the development of a sensitive, specific, and rapid point-of-care diagnostic test has deepened during the ongoing COVID-19 pandemic. Here, we introduce an ultrasensitive chip-based antigen test with single protein biomarker sensitivity for the differentiated detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A antigens in nasopharyngeal swab samples at diagnostically relevant concentrations. The single-antigen assay is enabled by synthesizing a brightly fluorescent reporter probe, which is incorporated into a bead-based solid-phase extraction assay centered on an antibody sandwich protocol for the capture of target antigens. After optimization of the probe release for detection using ultraviolet light, the full assay is validated with both SARS-CoV-2 and influenza A antigens from clinical nasopharyngeal swab samples (PCR-negative spiked with target antigens). Spectrally multiplexed detection of both targets is implemented by multispot excitation on a multimode interference waveguide platform, and detection at 30 ng/mL with single-antigen sensitivity is reported.
Collapse
|
19
|
Shi Y, Li Z, Liu PY, Nguyen BTT, Wu W, Zhao Q, Chin LK, Wei M, Yap PH, Zhou X, Zhao H, Yu D, Tsai DP, Liu AQ. On-Chip Optical Detection of Viruses: A Review. ADVANCED PHOTONICS RESEARCH 2021; 2:2000150. [PMID: 33786535 PMCID: PMC7994989 DOI: 10.1002/adpr.202000150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Indexed: 05/17/2023]
Abstract
The current outbreak of the coronavirus disease-19 (COVID-19) pandemic worldwide has caused millions of fatalities and imposed a severe impact on our daily lives. Thus, the global healthcare system urgently calls for rapid, affordable, and reliable detection toolkits. Although the gold-standard nucleic acid amplification tests have been widely accepted and utilized, they are time-consuming and labor-intensive, which exceedingly hinder the mass detection in low-income populations, especially in developing countries. Recently, due to the blooming development of photonics, various optical chips have been developed to detect single viruses with the advantages of fast, label-free, affordable, and point of care deployment. Herein, optical approaches especially in three perspectives, e.g., flow-free optical methods, optofluidics, and surface-modification-assisted approaches, are summarized. The future development of on-chip optical-detection methods in the wave of emerging new ideas in nanophotonics is also briefly discussed.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Zhenyu Li
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- National Key Laboratory of Science and Technology on Micro/Nano FabricationInstitute of MicroelectronicsPeking UniversityBeijing100871China
| | - Patricia Yang Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Binh Thi Thanh Nguyen
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Wenshuai Wu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Qianbin Zhao
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- Center for Systems BiologyMassachusetts General HospitalBostonMA02141USA
| | - Minggui Wei
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPCSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization of South China SeaHainan UniversityHaikou570228China
| | - Dan Yu
- Beijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing100045China
| | - Din Ping Tsai
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Ai Qun Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
20
|
Sano T, Black J, Mitchell S, Zhang H, Schmidt H. Pneumatically tunable optofluidic DFB dye laser using corrugated sidewalls. OPTICS LETTERS 2020; 45:5978-5981. [PMID: 33137048 DOI: 10.1364/ol.404303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Polydimethylsiloxane-based optofluidics provides a powerful platform for a complete analytical lab-on-chip. Here, we report on a novel on-chip laser source that can be integrated with sample preparation and analysis functions. A corrugated sidewall structure is integrated into a microfluidic channel to form a distributed feedback (DFB) laser using rhodamine 6G dissolved in an ethylene glycol and water solution. Lasing is demonstrated with a threshold pump power of 87.9 µW, corresponding to a pump intensity of 52.7mW/cm2. Laser threshold and output power are optimized with respect to rhodamine 6G concentration and core index and found to be in good agreement with a rate equation model. Additionally, the laser can be switched on and off mechanically using a pneumatic cell inducing positive pressure on the grating.
Collapse
|
21
|
Zhuang J, Yin J, Lv S, Wang B, Mu Y. Advanced "lab-on-a-chip" to detect viruses - Current challenges and future perspectives. Biosens Bioelectron 2020; 163:112291. [PMID: 32421630 PMCID: PMC7215165 DOI: 10.1016/j.bios.2020.112291] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Massive viral outbreaks draw attention to viruses that have not been thoroughly studied or understood. In recent decades, microfluidic chips, known as "lab-on-a-chip", appears as a promising tool for the detection of viruses. Here, we review the development of microfluidic chips that could be used in response to viral detection, specifically for viruses involved in more recent outbreaks. The advantages as well as the disadvantages of microfluidic systems are discussed and analyzed. We also propose ideas for future development of these microfluidic chips and we expect this advanced technology to be used in the future for viral outbreaks.
Collapse
Affiliation(s)
- Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130000, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
22
|
Nucleic acid amplification free biosensors for pathogen detection. Biosens Bioelectron 2020; 153:112049. [DOI: 10.1016/j.bios.2020.112049] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
23
|
Hengoju S, Wohlfeil S, Munser AS, Boehme S, Beckert E, Shvydkiv O, Tovar M, Roth M, Rosenbaum MA. Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets. BIOMICROFLUIDICS 2020; 14:024109. [PMID: 32547676 PMCID: PMC7148121 DOI: 10.1063/1.5139603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/27/2020] [Indexed: 05/03/2023]
Abstract
High-throughput microbiological experimentation using droplet microfluidics is limited due to the complexity and restricted versatility of the available detection techniques. Current detection setups are bulky, complicated, expensive, and require tedious optical alignment procedures while still mostly limited to fluorescence. In this work, we demonstrate an optofluidic detection setup for multi-parametric analyses of droplet samples by easily integrating micro-lenses and embedding optical fibers for guiding light in and out of the microfluidic chip. The optofluidic setup was validated for detection of absorbance, fluorescence, and scattered light. The developed platform was used for simultaneous detection of multiple parameters in different microbiological applications like cell density determination, growth kinetics, and antibiotic inhibition assays. Combining the high-throughput potential of droplet microfluidics with the ease, flexibility, and simplicity of optical fibers results in a powerful platform for microbiological experiments.
Collapse
Affiliation(s)
| | - S. Wohlfeil
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - A. S. Munser
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - S. Boehme
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - E. Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - O. Shvydkiv
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Tovar
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | |
Collapse
|
24
|
Dai B, Jiao Z, Zheng L, Bachman H, Fu Y, Wan X, Zhang Y, Huang Y, Han X, Zhao C, Huang TJ, Zhuang S, Zhang D. Colour compound lenses for a portable fluorescence microscope. LIGHT, SCIENCE & APPLICATIONS 2019; 8:75. [PMID: 31645921 PMCID: PMC6804733 DOI: 10.1038/s41377-019-0187-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 05/25/2023]
Abstract
In this article, we demonstrated a handheld smartphone fluorescence microscope (HSFM) that integrates dual-functional polymer lenses with a smartphone. The HSFM consists of a smartphone, a field-portable illumination source, and a dual-functional polymer lens that performs both optical imaging and filtering. Therefore, compared with the existing smartphone fluorescence microscope, the HSFM does not need any additional optical filters. Although fluorescence imaging has traditionally played an indispensable role in biomedical and clinical applications due to its high specificity and sensitivity for detecting cells, proteins, DNAs/RNAs, etc., the bulky elements of conventional fluorescence microscopes make them inconvenient for use in point-of-care diagnosis. The HSFM demonstrated in this article solves this problem by providing a multifunctional, miniature, small-form-factor fluorescence module. This multifunctional fluorescence module can be seamlessly attached to any smartphone camera for both bright-field and fluorescence imaging at cellular-scale resolutions without the use of additional bulky lenses/filters; in fact, the HSFM achieves magnification and light filtration using a single lens. Cell and tissue observation, cell counting, plasmid transfection evaluation, and superoxide production analysis were performed using this device. Notably, this lens system has the unique capability of functioning with numerous smartphones, irrespective of the smartphone model and the camera technology housed within each device. As such, this HSFM has the potential to pave the way for real-time point-of-care diagnosis and opens up countless possibilities for personalized medicine.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Ziao Jiao
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709 USA
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Xinjun Wan
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Yu Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Xiaodian Han
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, 200032 Shanghai, China
| | - Chenglong Zhao
- Department of Physics, University of Dayton, Dayton, OH 45469 USA
- Department of Electro-Optics and Photonics, University of Dayton, Dayton, OH 45469 USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709 USA
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, 200093 Shanghai, China
| |
Collapse
|
25
|
Ali Khan W, Yamini Y, Baharfar M, Balal Arain M. A new microfluidic-chip device for selective and simultaneous extraction of drugs with various properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj01104h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, a newly designed microfluidic-chip device was used for the selective and simultaneous electromembrane extraction (EME) of drugs with different properties.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Yadollah Yamini
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Mahroo Baharfar
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | | |
Collapse
|