1
|
Moniruzzaman M, Bezerra AB, Mohibullah M, Judd RL, Granneman JG, Easley CJ. Dynamic sampling from ex vivo adipose tissue using droplet-based microfluidics supports separate mechanisms for glycerol and fatty acid secretion. LAB ON A CHIP 2024; 24:5020-5031. [PMID: 39344798 DOI: 10.1039/d4lc00664j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pathologies in adipose (fat) tissue function are linked with human diseases such as diabetes, obesity, metabolic syndrome, and cancer. Dynamic, rapid release of metabolites has been observed in adipocyte cells and tissue, yet higher temporal resolution is needed to adequately study this process. In this work, a microfluidic device with precise and regular valve-automated droplet sampling, termed a microfluidic analog-to-digital converter (μADC), was used to sample secretions from ∼0.75 mm diameter adipose explants from mice, and on-chip salt water electrodes were used to merge sampled droplets with reagent droplets from two different fluorometric coupled enzyme assays. By integrating sampling and assays on-chip, either glycerol or non-esterified fatty acids (NEFA), or both, were quantified optically within merged 12 nanoliter droplets using a fluorescence microscope with as high as 20 second temporal resolution. Limits of detection were 6 μM for glycerol (70 fmol) and 0.9 μM for NEFA (10 fmol). Multiple ex vivo adipose tissue explants were analyzed with this system, all showing clear increases in lipolytic function after switching from feeding to fasting conditions. Enabled by high temporal resolution, lipolytic oscillations of both glycerol and NEFA were observed for the first time in the range of 0.2 to 1.6 min-1. Continuous wavelet transform (CWT) spectrograms and burst analyses (0.1 to 4.0 pmol bursts) revealed complex dynamics, with multiplexed assays (duplex for glycerol and NEFA) from the same explants showing mostly discordant bursts. These data support separate mechanisms of NEFA and glycerol release, although the connection to intracellular metabolic oscillations remains unknown. Overall, this device allowed automated and highly precise temporal sampling of tissue explants at high resolution and programmable downstream merging with multiple assay reagents, revealing unique biological information. Such device features should be applicable to various other tissue or spheroid types and to other assay formats.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Andresa B Bezerra
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Robert L Judd
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
2
|
Zia AB, Farrell J, Foulds IG. Automated dynamic inlet microfluidics system: 3D printer adaptation for cost-effective, low volume, on-demand multi-analyte droplet generator. LAB ON A CHIP 2024; 24:3015-3026. [PMID: 38745471 DOI: 10.1039/d4lc00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The paper demonstrates an adaptation of a 3D printer (Prusa Mini+) with novel modules to develop a droplet generation system that generates combinatorial droplets from a standard 96 well plate. The calibration methodology developed would allow any fused deposition modeling (FDM) printer to generate monodisperse droplets (coefficient of variance (CV%) < 5%) from well plates or vials of any geometry. The system maintains precision across various volumes while maintaining a C.V. range of 0.81% to 3.61%, with an increased precision for larger volumes. The cost of the system developed is 70% less than commercially available droplet generation packages. Successful droplet library storage is accomplished via 3D printed cartridge connectors. The implemented system has been calibrated for Tygon® and PTFE at different velocities and volumetric configurations.
Collapse
Affiliation(s)
- Abdul Basit Zia
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Justin Farrell
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Ian G Foulds
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Besanjideh M, Rezaeian M, Shamloo A, Hannani SK. Simple Method for On-Demand Droplet Trapping in a Microfluidic Device Based on the Concept of Hydrodynamic Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9406-9413. [PMID: 38652798 DOI: 10.1021/acs.langmuir.3c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We demonstrate an innovative method to catch the desired droplets from a train of droplets and immobilize them in traps located in an integrated microfluidic device. To this end, water-in-oil droplets are generated in a flow-focusing junction and then guided to a channel connected to chambers designated for on-demand droplet trapping. Each chamber is connected to a side channel through a batch of microposts. The side channels are also connected to the flexible poly(vinyl chloride) tubes, which can be closed by attaching binder clips. The hydrodynamic resistance of the routes in the device can be changed by opening and closing the binder clips. In this way, droplets are easily guided into individual traps based on the user's demand. A set of numerical simulations was also conducted to investigate the authenticity of the employed idea and to find the optimal geometry for implementing our strategy. This simple method can be easily employed for on-demand droplet trapping without using on-chip valves or complex off-chip actuators proposed in previous studies.
Collapse
Affiliation(s)
- Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Masoud Rezaeian
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | | |
Collapse
|
4
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Nan L, Zhang H, Weitz DA, Shum HC. Development and future of droplet microfluidics. LAB ON A CHIP 2024; 24:1135-1153. [PMID: 38165829 DOI: 10.1039/d3lc00729d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Huidan Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
6
|
Yeh M, Salazar-Cavazos E, Krishnan A, Altan-Bonnet G, DeVoe DL. Probing T-cell activation in nanoliter tumor co-cultures using membrane displacement trap arrays. Integr Biol (Camb) 2024; 16:zyae014. [PMID: 39074471 PMCID: PMC11286267 DOI: 10.1093/intbio/zyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Immune responses against cancer are inherently stochastic, with small numbers of individual T cells within a larger ensemble of lymphocytes initiating the molecular cascades that lead to tumor cytotoxicity. A potential source of this intra-tumor variability is the differential ability of immune cells to respond to tumor cells. Classical microwell co-cultures of T cells and tumor cells are inadequate for reliably culturing and analyzing low cell numbers needed to probe this variability, and have failed in recapitulating the heterogeneous small domains observed in tumors. Here we leverage a membrane displacement trap array technology that overcomes limitations of conventional microwell plates for immunodynamic studies. The microfluidic platform supports on-demand formation of dense nanowell cultures under continuous perfusion reflecting the tumor microenvironment, with real-time monitoring of T cell proliferation and activation within each nanowell. The system enables selective ejection of cells for profiling by fluorescence activated cell sorting, allowing observed on-chip variability in immune response to be correlated with off-chip quantification of T cell activation. The technology offers new potential for probing the molecular origins of T cell heterogeneity and identifying specific cell phenotypes responsible for initiating and propagating immune cascades within tumors. Insight Box Variability in T cell activation plays a critical role in the immune response against cancer. New tools are needed to unravel the mechanisms that drive successful anti-tumor immune response, and to support the development of novel immunotherapies utilizing rare T cell phenotypes that promote effective immune surveillance. To this end, we present a microfluidic cell culture platform capable of probing differential T cell activation in an array of nanoliter-scale wells coupled with off-chip cell analysis, enabling a high resolution view of variable immune response within tumor / T cell co-cultures containing cell ensembles orders of magnitude smaller than conventional well plate studies.
Collapse
Affiliation(s)
- Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | | | - Anagha Krishnan
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Grégoire Altan-Bonnet
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
7
|
Harriot J, Yeh M, Pabba M, DeVoe DL. Programmable Control of Nanoliter Droplet Arrays using Membrane Displacement Traps. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300963. [PMID: 38495529 PMCID: PMC10939115 DOI: 10.1002/admt.202300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/19/2024]
Abstract
A unique droplet microfluidic technology enabling programmable deterministic control over complex droplet operations is presented. The platform provides software control over user-defined combinations of droplet generation, capture, ejection, sorting, splitting, and merging sequences to enable the design of flexible assays employing nanoliter-scale fluid volumes. The system integrates a computer vision system with an array of membrane displacement traps capable of performing selected unit operations with automated feedback control. Sequences of individual droplet handling steps are defined through a robust Python-based scripting language. Bidirectional flow control within the microfluidic chips is provided using an H-bridge channel topology, allowing droplets to be transported to arbitrary trap locations within the array for increased operational flexibility. By enabling automated software control over all droplet operations, the system significantly expands the potential of droplet microfluidics for diverse biological and biochemical applications by combining the functionality of robotic liquid handling with the advantages of droplet-based fluid manipulation.
Collapse
Affiliation(s)
- Jason Harriot
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Mani Pabba
- Department of Computer Science, University of Maryland, College Park, MD 20742
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| |
Collapse
|
8
|
Nan L, Mao T, Shum HC. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging. MICROSYSTEMS & NANOENGINEERING 2023; 9:24. [PMID: 36910256 PMCID: PMC9995457 DOI: 10.1038/s41378-023-00502-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Droplet merging serves as a powerful tool to add reagents to moving droplets for biological and chemical reactions. However, unsynchronized droplet pairing impedes high-efficiency merging. Here, we develop a microfluidic design for the self-synchronization of reinjected droplets. A periodic increase in the hydrodynamic resistance caused by droplet blocking a T-junction enables automatic pairing of droplets. After inducing spacing, the paired droplets merge downstream under an electric field. The blockage-based design can achieve a 100% synchronization efficiency even when the mismatch rate of droplet frequencies reaches 10%. Over 98% of the droplets can still be synchronized at nonuniform droplet sizes and fluctuating reinjection flow rates. Moreover, the droplet pairing ratio can be adjusted flexibly for on-demand sample addition. Using this system, we merge two groups of droplets encapsulating enzyme/substrate, demonstrating its capacity to conduct multi-step reactions. We also combine droplet sorting and merging to coencapsulate single cells and single beads, providing a basis for high-efficiency single-cell sequencing. We expect that this system can be integrated with other droplet manipulation systems for a broad range of chemical and biological applications.
Collapse
Affiliation(s)
- Lang Nan
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong China
| | - Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
9
|
Ang B, Sookram A, Devendran C, He V, Tuck K, Cadarso V, Neild A. Glass-embedded PDMS microfluidic device for enhanced concentration of nanoparticles using an ultrasonic nanosieve. LAB ON A CHIP 2023; 23:525-533. [PMID: 36633124 DOI: 10.1039/d2lc00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW) driven devices typically employ polymeric microfluidic channels of low acoustic impedance mismatch to the fluid in contact, to allow precise control of the wave field. Several of these applications, however, can benefit from the implementation of an acoustically reflective surface at the microfluidic channel's ceiling to increase energy retention within the fluid and hence, performance of the device. In this work, we embed a glass insert at the ceiling of the PDMS microfluidic channel used in a SAW activated nanosieve, which utilises a microparticle resonance for enrichment of nanoparticles. Due to the system's independence of performance on channel geometry and wave field pattern, the glass-inserted device allowed for a 30-fold increase in flow rate, from 0.05 μl min-1 to 1.5 μL min-1, whilst maintaining high capture efficiencies of >90%, when compared to its previously reported design. This effectively enables the system to process larger volume samples, which typically is a main limitation of these type of devices. This work demonstrates a simple way to increase the performance and throughput of SAW-based devices, especially within systems that can benefit from the energy retention.
Collapse
Affiliation(s)
- Bryan Ang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Ankush Sookram
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| | - Kellie Tuck
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Victor Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
10
|
Sinha N, Yang H, Janse D, Hendriks L, Rand U, Hauser H, Köster M, van de Vosse FN, de Greef TFA, Tel J. Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics. COMMUNICATIONS ENGINEERING 2022; 1:18. [PMCID: PMC10955935 DOI: 10.1038/s44172-022-00019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2024]
Abstract
Microfluidic designs are versatile examples of technology miniaturisation that find their applications in various cell biology research, especially to investigate the influence of environmental signals on cellular response dynamics. Multicellular systems operate in intricate cellular microenvironments where environmental signals govern well-orchestrated and robust responses, the understanding of which can be realized with integrated microfluidic systems. In this study, we present a fully automated and integrated microfluidic chip that can deliver input signals to single and isolated suspension or adherent cells in a precisely controlled manner. In respective analyses of different single cell types, we observe, in real-time, the temporal dynamics of caspase 3 activation during DMSO-induced apoptosis in single cancer cells (K562) and the translocation of STAT-1 triggered by interferon γ (IFNγ) in single fibroblasts (NIH3T3). Our investigations establish the employment of our versatile microfluidic system in probing temporal single cell signaling networks where alternations in outputs uncover signal processing mechanisms. Nidhi Sinha, Haowen Yang and colleagues report a microfluidic large-scale integration chip to probe temporal single-cell signalling networks via the delivery of patterns of input signalling molecules. The researchers use their device to investigate drug-induced cancer cell apoptosis and single cell transcription (STAT-1) protein signalling dynamics.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - David Janse
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Luc Hendriks
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Tom F. A. de Greef
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Computational Biology Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
11
|
Zhou X, Zhu L, Li W, Liu Q. An integrated microfluidic chip for alginate microsphere generation and 3D cell culture. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1181-1186. [PMID: 35179175 DOI: 10.1039/d1ay01820e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) hydrogel microspheres have attracted increasing attention as cell culture carriers. The system of hydrogel microspheres provides great advantages for cell growth owing to its high surface-to-volume ratio and biocompatible environment. However, an integrated system that includes microsphere generation, microsphere capture and in situ culture together has not been realized yet. Here we present a multifunctional microfluidic device to accomplish the overall process including cell-laden microsphere generation, online demulsification and dynamic-culture. The microfluidic device can produce massive monodispersed alginate microspheres and allows us to immobilize the alginate microspheres and record bacterial growth. Moreover, the microspheres provide a suitable environment through the mechanical properties of soft tissues, leading to high cell viability, proliferation, activity and biocompatibility. We believe that this versatile and biocompatible platform will provide a more reliable analysis tool for tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People's Republic of China.
| | - Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People's Republic of China.
| | - Weihao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People's Republic of China.
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People's Republic of China.
| |
Collapse
|
12
|
Yoon J, Kang Y, Kim H, Torati SR, Kim K, Lim B, Kim C. Magnetophoretic Micro-Distributor for Controlled Clustering of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103579. [PMID: 34910376 PMCID: PMC8867205 DOI: 10.1002/advs.202103579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Cell clustering techniques are important to produce artificial cell clusters for in vitro models of intercellular mechanisms at the single-cell level. The analyses considering physical variables such as the shape and size of cells have been very limited. In addition, the precise manipulation of cells and control of the physical variables are still challenging. In this paper, a magnetophoretic device consisting of a trampoline micromagnet and active elements that enable the control of individual selective jumping motion and positioning of a micro-object is proposed. Based on a numerical simulation under various conditions, automatic separation or selective clustering of micro-objects according to their sizes is performed by parallel control and programmable manipulation. This method provides efficient control of the physical variables of cells and grouping of cells with the desired size and number, which can be a milestone for a better understanding of the intercellular dynamics between clustered cells at the single-cell level for future cell-on-chip applications.
Collapse
Affiliation(s)
- Jonghwan Yoon
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Yumin Kang
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Hyeonseol Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Sri Ramulu Torati
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Keonmok Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Byeonghwa Lim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - CheolGi Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| |
Collapse
|
13
|
Pérez-Sosa C, Sanluis-Verdes A, Waisman A, Lombardi A, Rosero G, Greca AL, Bhansali S, Bourguignon N, Luzzani C, Pérez MS, Miriuka S, Lerner B. Single cell transfection of human-induced pluripotent stem cells using a droplet-based microfluidic system. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211510. [PMID: 35242349 PMCID: PMC8753139 DOI: 10.1098/rsos.211510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/03/2021] [Indexed: 06/07/2023]
Abstract
Microfluidic tools have recently made possible many advances in biological and biomedical research. Research in fields such as physics, engineering, chemistry and biology have combined to produce innovation in microfluidics which has positively impacted diverse areas such as nucleotide sequencing, functional genomics, single-cell studies, single molecules assays and biomedical diagnostics. Among these areas, regenerative medicine and stem cells have benefited from microfluidics since these tools have had a profound impact on their applications. In this study, we present a high-performance droplet-based system for transfecting individual human-induced pluripotent stem cells. We will demonstrate that this system has great efficiency in single cells and captured droplets, like other microfluidic methods but with lower cost. Moreover, this microfluidic approach can be associated with the PiggyBac transposase-based system to increase its transfection efficiency. Our results provide a starting point for subsequent applications in more complex transfection systems, single-cell differentiation interactions, cell subpopulations and cell therapy, among other potential applications.
Collapse
Affiliation(s)
- Camilo Pérez-Sosa
- National Technological University (UTN), IREN Center, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | | | - Ariel Waisman
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | - Antonella Lombardi
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | - Gustavo Rosero
- National Technological University (UTN), IREN Center, Buenos Aires, Argentina
| | - Alejandro La Greca
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Natalia Bourguignon
- National Technological University (UTN), IREN Center, Buenos Aires, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Carlos Luzzani
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | - Maximiliano. S. Pérez
- University of Buenos Aires (UBA), Institute of Biomedical Engineering, Paseo Colon 850, C1428EGA Buenos Aires, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Santiago Miriuka
- National Scientific and Technical Research Council (CONICET) - Foundation for the Fight Against Childhood Neurological Diseases, (LIAN-CONICET-FLENI), FLENI Escobar Headquarters, Route 9 Km 53, 1625, Belén de Escobar, Buenos Aires, Argentina
| | - Betiana Lerner
- National Technological University (UTN), IREN Center, Buenos Aires, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
14
|
He CK, Hsu CH. Microfluidic technology for multiple single-cell capture. BIOMICROFLUIDICS 2021; 15:061501. [PMID: 34777676 PMCID: PMC8577867 DOI: 10.1063/5.0057685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
Microfluidic devices are widely used in single-cell capture and for pairing single cells or groups of cells for cell-cell interaction analysis; these advances have improved drug screening and cell signal transduction analysis. The complex in vivo environment involves interactions between two cells and among multiple cells of the same or different phenotypes. This study reviewed the core principles and performance of several microfluidic multiple- and single-cell capture methods, namely, the microwell, valve, trap, and droplet methods. The advantages and disadvantages of the methods were compared, and suggestions regarding their application to multiple-cell capture were provided. The results may serve as a reference for research on microfluidic multiple single-cell coculture technology.
Collapse
|
15
|
Lian J, Wu J, Wu S, Yu W, Wang P, Liu L, Zuo Q. Investigation of viscous effects on droplet generation in a co-flowing step emulsification device. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Kim S, Song H, Ahn H, Kim T, Jung J, Cho SK, Shin DM, Choi JR, Hwang YH, Kim K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. BIOSENSORS 2021; 11:412. [PMID: 34821628 PMCID: PMC8615569 DOI: 10.3390/bios11110412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/25/2023]
Abstract
Electrical impedance biosensors combined with microfluidic devices can be used to analyze fundamental biological processes for high-throughput analysis at the single-cell scale. These specialized analytical tools can determine the effectiveness and toxicity of drugs with high sensitivity and demonstrate biological functions on a single-cell scale. Because the various parameters of the cells can be measured depending on methods of single-cell trapping, technological development ultimately determine the efficiency and performance of the sensors. Identifying the latest trends in single-cell trapping technologies afford opportunities such as new structural design and combination with other technologies. This will lead to more advanced applications towards improving measurement sensitivity to the desired target. In this review, we examined the basic principles of impedance sensors and their applications in various biological fields. In the next step, we introduced the latest trend of microfluidic chip technology for trapping single cells and summarized the important findings on the characteristics of single cells in impedance biosensor systems that successfully trapped single cells. This is expected to be used as a leading technology in cell biology, pathology, and pharmacological fields, promoting the further understanding of complex functions and mechanisms within individual cells with numerous data sampling and accurate analysis capabilities.
Collapse
Affiliation(s)
- Soojung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Hyerin Song
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Heesang Ahn
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Taeyeon Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Jihyun Jung
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Soo Kyung Cho
- Division of Nano Convergence Technology, Pusan National University (PNU), Miryang 50463, Korea;
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Jong-ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Yoon-Hwae Hwang
- Department of Nano Energy Engineering, Pusan National University (PNU), Busan 46241, Korea
| | - Kyujung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
Hartner NT, Wink K, Raddatz CR, Thoben C, Schirmer M, Zimmermann S, Belder D. Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Anal Chem 2021; 93:13615-13623. [PMID: 34592821 DOI: 10.1021/acs.analchem.1c02883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce the coupling of droplet microfluidics and ion mobility spectrometry (IMS) to address the challenges of label-free and chemical-specific detection of compounds in individual droplets. In analogy to the established use of mass spectrometry, droplet-IMS coupling can be also achieved via electrospray ionization but with significantly less instrumental effort. Because IMS instruments do not require high-vacuum systems, they are very compact, cost-effective, and robust, making them an ideal candidate as a chemical-specific end-of-line detector for segmented flow experiments. Herein, we demonstrate the successful coupling of droplet microfluidics with a custom-built high-resolution drift tube IMS system for monitoring chemical reactions in nL-sized droplets in an oil phase. The analytes contained in each droplet were assigned according to their characteristic ion mobility with limit of detections down to 200 nM to 1 μM and droplet frequencies ranging from 0.1 to 0.5 Hz. Using a custom sheath flow electrospray interface, we have further achieved the chemical-specific monitoring of a biochemical transformation catalyzed by a few hundred yeast cells, at single droplet level.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Martin Schirmer
- Helmholtz Centre for Environmental Research - UFZ Leipzig, Leipzig 04318, Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Fan L, Guan Z, Luo T, Ren J, Lam RHW, Sun D. High-throughput deterministic pairing and coculturing of single cells in a microwell array using combined hydrodynamic and recirculation flow captures. BIOMICROFLUIDICS 2021; 15:054103. [PMID: 34737839 PMCID: PMC8550803 DOI: 10.1063/5.0066668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 05/16/2023]
Abstract
Single-cell level coculture facilitates the study of cellular interactions for uncovering unknown physiological mechanisms, which are crucial for the development of new therapies for diseases. However, efficient approaches for high-throughput deterministic pairing of single cells and traceable coculture remain lacking. In this study, we report a new microfluidic device, which combines hydrodynamic and recirculation flow captures, to achieve high-throughput and deterministic pairing of single cells in a microwell array for traceable coculture. Compared with the existing techniques, the developed device exhibits advantages with regard to pairing efficiency, throughput, determinacy, and traceability. Through repeating a two-step method, which sequentially captures single cells in a meandering channel and a microwell array, cell number and type can be easily controlled. Double and triple single-cell pairings have been demonstrated with an efficiency of 72.2% and 38.0%, respectively. Cellular engulfment using two breast cell lines is investigated on a developed microfluidic chip as a biological case study, in which the morphological characteristics and the incidence rate are analyzed. This research provides an efficient and reliable alternative for the coculture of single cells on the microfluidic platform for various biomedical applications, such as studying cellular engulfment and tumor sphere formation under single-cell pairing condition.
Collapse
Affiliation(s)
- Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhangyan Guan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Tao Luo
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, China
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Shi N, Mohibullah M, Easley CJ. Active Flow Control and Dynamic Analysis in Droplet Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:133-153. [PMID: 33979546 PMCID: PMC8956363 DOI: 10.1146/annurev-anchem-122120-042627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet-based microfluidics has emerged as an important subfield within the microfluidic and general analytical communities. Indeed, several unique applications such as digital assay readout and single-cell sequencing now have commercial systems based on droplet microfluidics. Yet there remains room for this research area to grow. To date, most analytical readouts are optical in nature, relatively few studies have integrated sample preparation, and passive means for droplet formation and manipulation have dominated the field. Analytical scientists continue to expand capabilities by developing droplet-compatible method adaptations, for example, by interfacing to mass spectrometers or automating droplet sampling for temporally resolved analysis. In this review, we highlight recently developed fluidic control techniques and unique integrations of analytical methodology with droplet microfluidics-focusing on automation and the connections to analog/digital domains-and we conclude by offering a perspective on current challenges and future applications.
Collapse
Affiliation(s)
- Nan Shi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
20
|
Latest Updates on the Advancement of Polymer-Based Biomicroelectromechanical Systems for Animal Cell Studies. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/8816564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biological sciences have reached the fundamental unit of life: the cell. Ever-growing field of Biological Microelectromechanical Systems (BioMEMSs) is providing new frontiers in both fundamental cell research and various practical applications in cell-related studies. Among various functions of BioMEMS devices, some of the most fundamental processes that can be carried out in such platforms include cell sorting, cell separation, cell isolation or trapping, cell pairing, cell-cell communication, cell differentiation, cell identification, and cell culture. In this article, we review each mentioned application in great details highlighting the latest advancements in fabrication strategy, mechanism of operation, and application of these tools. Moreover, the review article covers the shortcomings of each specific application which can open windows of opportunity for improvement of these devices.
Collapse
|
21
|
Warr CA, Hinnen HS, Avery S, Cate RJ, Nordin GP, Pitt WG. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. MICROMACHINES 2021; 12:mi12010091. [PMID: 33467026 PMCID: PMC7830873 DOI: 10.3390/mi12010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/11/2023]
Abstract
Droplet generation has been widely used in conventional two-dimensional (2D) microfluidic devices, and has recently begun to be explored for 3D-printed droplet generators. A major challenge for 3D-printed devices is preventing water-in-oil droplets from sticking to the interior surfaces of the droplet generator when the device is not made from hydrophobic materials. In this study, two approaches were investigated and shown to successfully form droplets in 3D-printed microfluidic devices. First, several printing resin candidates were tested to evaluate their suitability for droplet formation and material properties. We determined that a hexanediol diacrylate/lauryl acrylate (HDDA/LA) resin forms a solid polymer that is sufficiently hydrophobic to prevent aqueous droplets (in a continuous oil flow) from attaching to the device walls. The second approach uses a fully 3D annular channel-in-channel geometry to form microfluidic droplets that do not contact channel walls, and thus, this geometry can be used with hydrophilic resins. Stable droplets were shown to form using the channel-in-channel geometry, and the droplet size and generation frequency for this geometry were explored for various flow rates for the continuous and dispersed phases.
Collapse
Affiliation(s)
- Chandler A. Warr
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Hunter S. Hinnen
- Department of Electrical Engineering, Brigham Young University, Provo, UT 84602, USA; (H.S.H.); (S.A.); (R.J.C.); (G.P.N.)
| | - Saroya Avery
- Department of Electrical Engineering, Brigham Young University, Provo, UT 84602, USA; (H.S.H.); (S.A.); (R.J.C.); (G.P.N.)
| | - Rebecca J. Cate
- Department of Electrical Engineering, Brigham Young University, Provo, UT 84602, USA; (H.S.H.); (S.A.); (R.J.C.); (G.P.N.)
| | - Gregory P. Nordin
- Department of Electrical Engineering, Brigham Young University, Provo, UT 84602, USA; (H.S.H.); (S.A.); (R.J.C.); (G.P.N.)
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
- Correspondence:
| |
Collapse
|
22
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
23
|
Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, Wang H, Li JQ, Liu DY, Yu XY, Zhang JY. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021; 5:73-89. [PMID: 33391976 PMCID: PMC7738943 DOI: 10.7150/ntno.49614] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic chip is not a chip in the traditional sense. It is technologies that control fluids at the micro level. As a burgeoning biochip, microfluidic chips integrate multiple disciplines, including physiology, pathology, cell biology, biophysics, engineering mechanics, mechanical design, materials science, and so on. The application of microfluidic chip has shown tremendous promise in the field of cancer therapy in the past three decades. Various types of cell and tissue cultures, including 2D cell culture, 3D cell culture and tissue organoid culture could be performed on microfluidic chips. Patient-derived cancer cells and tissues can be cultured on microfluidic chips in a visible, controllable, and high-throughput manner, which greatly advances the process of personalized medicine. Moreover, the functionality of microfluidic chip is greatly expanding due to the customizable nature. In this review, we introduce its application in developing cancer preclinical models, detecting cancer biomarkers, screening anti-cancer drugs, exploring tumor heterogeneity and producing nano-drugs. We highlight the functions and recent development of microfluidic chip to provide references for advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ling-Ling Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ji-Fang Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R.China
| | - Jia-Jun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| | - Da-Yu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R.China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China.,The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| |
Collapse
|
24
|
Samlali K, Ahmadi F, Quach ABV, Soffer G, Shih SCC. One Cell, One Drop, One Click: Hybrid Microfluidics for Mammalian Single Cell Isolation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002400. [PMID: 32705796 DOI: 10.1002/smll.202002400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Generating a stable knockout cell line is a complex process that can take several months to complete. In this work, a microfluidic method that is capable of isolating single cells in droplets, selecting successful edited clones, and expansion of these isoclones is introduced. Using a hybrid microfluidics method, droplets in channels can be individually addressed using a co-planar electrode system. In the hybrid microfluidics device, it is shown that single cells can be trapped and subsequently encapsulate them on demand into pL-sized droplets. Furthermore, droplets containing single cells are either released, kept in the traps, or merged with other droplets by the application of an electric potential to the electrodes that is actuated through an in-house user interface. This high precision control is used to successfully sort and recover single isoclones to establish monoclonal cell lines, which is demonstrated with a heterozygous NCI-H1299 lung squamous cell population resulting from loss-of-function eGFP and RAF1 gene knockout transfections.
Collapse
Affiliation(s)
- Kenza Samlali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Angela B V Quach
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
25
|
Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci 2020; 282:102208. [PMID: 32721624 DOI: 10.1016/j.cis.2020.102208] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse
|
26
|
Hamidović M, Marta U, Bridle H, Hamidović D, Fink G, Wille R, Springer A, Haselmayr W. Off-Chip-Controlled Droplet-on-Demand Method for Precise Sample Handling. ACS OMEGA 2020; 5:9684-9689. [PMID: 32391454 PMCID: PMC7203690 DOI: 10.1021/acsomega.9b03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
We present a simple, stable, and highly reproducible off-chip-controlled method for generating droplets-on-demand. To induce the droplet generation, externally pre-programmed positive pressure pulses are applied to the dispersed phase input while the continuous phase channel remains at constant input pressure. By controlling solely one fluid phase, the method allows for connecting multiple independent dispersed-phase channels to a single continuous channel. Experimental results show that the method allows for a droplet generation frequency of 33 Hz and a high reproducibility of droplets with standard deviations less than 5% of the mean value. Moreover, utilization of the off-chip-controlled method results in the simplicity in chip design and allows rapid (∼5 min) and cost-efficient (0.5 USD) prototyping of the device.
Collapse
Affiliation(s)
- Medina Hamidović
- Institute
for Communications Engineering and RF-Systems, Johannes Kepler University Linz, Linz 4040, Austria
| | - Uli Marta
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Helen Bridle
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Damir Hamidović
- Institute
for Communications Engineering and RF-Systems, Johannes Kepler University Linz, Linz 4040, Austria
| | - Gerold Fink
- Institute
for Integrated Circuits, Johannes Kepler
University Linz, Linz 4040, Austria
| | - Robert Wille
- Institute
for Integrated Circuits, Johannes Kepler
University Linz, Linz 4040, Austria
| | - Andreas Springer
- Institute
for Communications Engineering and RF-Systems, Johannes Kepler University Linz, Linz 4040, Austria
| | - Werner Haselmayr
- Institute
for Communications Engineering and RF-Systems, Johannes Kepler University Linz, Linz 4040, Austria
| |
Collapse
|
27
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. BIOMICROFLUIDICS 2020; 14:014112. [PMID: 32038741 PMCID: PMC7002170 DOI: 10.1063/1.5143434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 05/03/2023]
Abstract
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, with parallel T-junctions and multiplexed microvalves within one chip enabling programmable injection of aqueous sample plugs, and nanoliter volumes transferred to a second microtrap array chip in which the plugs are actively discretized into picoliter droplets within a static array of membrane displacement actuators. The system employs two different multiplexer designs that reduce the number of input signals required for both sample injection and discretization. This versatile droplet-based technology offers flexible sample workflows and functionalities for the formation and manipulation of heterogeneous picoliter droplets, with particular utility for applications in biochemical synthesis and cell-based assays requiring flexible and programmable operation of parallel and multistep droplet processes. The platform is used here for the selective encapsulation of differentially labeled cells within a discrete droplet array.
Collapse
Affiliation(s)
| | - Supriya Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Don L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
29
|
Tavakoli H, Zhou W, Ma L, Perez S, Ibarra A, Xu F, Zhan S, Li X. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. Trends Analyt Chem 2019; 117:13-26. [PMID: 32831435 PMCID: PMC7434086 DOI: 10.1016/j.trac.2019.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding molecular, cellular, genetic and functional heterogeneity of tumors at the single-cell level has become a major challenge for cancer research. The microfluidic technique has emerged as an important tool that offers advantages in analyzing single-cells with the capability to integrate time-consuming and labour-intensive experimental procedures such as single-cell capture into a single microdevice at ease and in a high-throughput fashion. Single-cell manipulation and analysis can be implemented within a multi-functional microfluidic device for various applications in cancer research. Here, we present recent advances of microfluidic devices for single-cell analysis pertaining to cancer biology, diagnostics, and therapeutics. We first concisely introduce various microfluidic platforms used for single-cell analysis, followed with different microfluidic techniques for single-cell manipulation. Then, we highlight their various applications in cancer research, with an emphasis on cancer biology, diagnosis, and therapy. Current limitations and prospective trends of microfluidic single-cell analysis are discussed at the end.
Collapse
Affiliation(s)
- Hamed Tavakoli
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Stefani Perez
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| | - Andrea Ibarra
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center,
Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of
China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
| | - XiuJun Li
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| |
Collapse
|
30
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A Scalable Random Access Micro-traps Array for Formation, Selective Retrieval and Capturing of Individual Droplets. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:1054-1057. [PMID: 31946075 PMCID: PMC8320702 DOI: 10.1109/embc.2019.8857768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formation, selective retrieval and capturing of individual droplets are key operational capabilities needed for a broad range of droplet microfluidic applications. The membrane displacement trap (MDT) element gives a robust method for uniform discretization and controllable manipulation of aqueous droplets using an enclosed micro-well covered by an elastomer membrane. This capability can be scaled up by combining the modular elements with a system design that requires a minimal number of signal inputs. Incorporation of MDT elements with a pneumatically-controllable multiplexer system can lead to a scalable random access MDT array platform for liquid discretization and selective manipulation. Herein, we report the design and development of a programmable droplet microfluidic platform for liquid sampling and selectively handling up to 32 individual droplets using 10 pneumatic signal inputs. The multiplexer system can logarithmically scale up capacity of the MDT array platform, making it possible to manipulate hundreds droplets.
Collapse
|