1
|
Fernández-Mateo R, García-Sánchez P, Ramos A, Morgan H. Concentration-polarization electroosmosis for particle fractionation. LAB ON A CHIP 2024; 24:2968-2974. [PMID: 38726642 DOI: 10.1039/d4lc00081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Concentration-polarization electroosmosis (CPEO) refers to steady-state electroosmotic flows around charged dielectric micro-particles induced by low-frequency AC electric fields. Recently, these flows were shown to cause repulsion of colloidal particles from the wall of a microfluidic channel when an electric field is applied along the length of the channel. In this work, we exploit this mechanism to demonstrate fractionation of micron-sized polystyrene particles and bacteria in a flow-focusing device. The results are in agreement with predictions of the CPEO theory. The ease of implementation of CPEO-based fractionation in microfluidics makes it an ideal candidate for combining with current techniques commonly used to generate particle lift, such as inertial or viscoelastic focusing, requiring no extra fabrication steps other than inserting two electrodes.
Collapse
Affiliation(s)
- Raúl Fernández-Mateo
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Pablo García-Sánchez
- Depto. Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Antonio Ramos
- Depto. Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
2
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials. MICROMACHINES 2023; 14:2239. [PMID: 38138408 PMCID: PMC10745336 DOI: 10.3390/mi14122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
There is a rising need for rapid and reliable analytical methods for separating microorganisms in clinical and biomedical applications. Microscale-insulator-based electrokinetic (iEK) systems have proven to be robust platforms for assessing a wide variety of microorganisms. Traditionally, iEK systems are usually stimulated with direct-current (DC) potentials. This work presents a comparison between using DC potentials and using DC-biased alternating-current (AC) potentials in iEK systems for the separation of microorganisms. The present study, which includes mathematical modeling and experimentation, compares the separation of bacterial and yeast cells in two distinct modes by using DC and DC-biased AC potentials. The quality of both separations, assessed in terms of separation resolution (Rs), showed a complete separation (Rs = 1.51) with the application of a DC-biased low-frequency AC signal but an incomplete separation (Rs = 0.55) with the application of an RMS-equivalent DC signal. Good reproducibility between experimental repetitions (<10%) was obtained, and good agreement (~18% deviation) was observed between modeling and experimental retention times. The present study demonstrates the potential of extending the limits of iEK systems by employing DC-biased AC potentials to perform discriminatory separations of microorganisms that are difficult to separate with the application of DC potentials.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| | | | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| |
Collapse
|
3
|
Giesler J, Weirauch L, Pesch GR, Baune M, Thöming J. Semi-continuous dielectrophoretic separation at high throughput using printed circuit boards. Sci Rep 2023; 13:20696. [PMID: 38001123 PMCID: PMC10673871 DOI: 10.1038/s41598-023-47571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Particle separation is an essential part of many processes. One mechanism to separate particles according to size, shape, or material properties is dielectrophoresis (DEP). DEP arises when a polarizable particle is immersed in an inhomogeneous electric field. DEP can attract microparticles toward the local field maxima or repulse them from these locations. In biotechnology and microfluidic devices, this is a well-described and established method to separate (bio-)particles. Increasing the throughput of DEP separators while maintaining their selectivity is a field of current research. In this study, we investigate two approaches to increase the overall throughput of an electrode-based DEP separator that uses selective trapping of particles. We studied how particle concentration affects the separation process by using two differently-sized graphite particles. We showed that concentrations up to 800 mg/L can be processed without decreasing the collection rate depending on the particle size. As a second approach to increase the throughput, parallelization in combination with two four-way valves, relays, and stepper motors was presented and successfully tested to continuously separate conducting from non-conducting particles. By demonstrating possible concentrations and enabling a semi-continuous process, this study brings the low-cost DEP setup based on printed circuit boards one step closer to real-world applications. The principle for semi-continuous processing is also applicable for other DEP devices that use trapping DEP.
Collapse
Affiliation(s)
- Jasper Giesler
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen, Germany
| | - Laura Weirauch
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen, Germany
| | - Georg R Pesch
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen, Germany
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Michael Baune
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Jorg Thöming
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
| |
Collapse
|
4
|
Calero V, Fernández-Mateo R, Morgan H, García-Sánchez P, Ramos A. Low-frequency electrokinetics in a periodic pillar array for particle separation. J Chromatogr A 2023; 1706:464240. [PMID: 37544238 DOI: 10.1016/j.chroma.2023.464240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Deterministic Lateral Displacement (DLD) exploits periodic arrays of pillars inside microfluidic channels for high-precision sorting of micro- and nano-particles. Previously we demonstrated how DLD separation can be significantly improved by the addition of AC electrokinetic forces, increasing the tunability of the technique and expanding the range of applications. At high frequencies of the electric field (>1 kHz) the behaviour of such systems is dominated by Dielectrophoresis (DEP), whereas at low frequencies the particle behaviour is much richer and more complex. In this article, we present a detailed numerical analysis of the mechanisms governing particle motion in a DLD micropillar array in the presence of a low-frequency AC electric field. We show how a combination of Electrophoresis (EP) and Concentration-Polarisation Electroosmosis (CPEO) driven wall-particle repulsion account for the observed experimental behaviour of particles, and demonstrate how this complete model can predict conditions that lead to electrically induced deviation of particles much smaller than the critical size of the DLD array.
Collapse
Affiliation(s)
- Víctor Calero
- Depto. Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain; International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Raúl Fernández-Mateo
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Pablo García-Sánchez
- Depto. Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain.
| | - Antonio Ramos
- Depto. Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| |
Collapse
|
5
|
Torres-Castro K, Jarmoshti J, Xiao L, Rane A, Salahi A, Jin L, Li X, Caselli F, Honrado C, Swami NS. Multichannel impedance cytometry downstream of cell separation by deterministic lateral displacement to quantify macrophage enrichment in heterogeneous samples. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201463. [PMID: 37706194 PMCID: PMC10497222 DOI: 10.1002/admt.202201463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 09/15/2023]
Abstract
The integration of on-chip biophysical cytometry downstream of microfluidic enrichment for inline monitoring of phenotypic and separation metrics at single-cell sensitivity can allow for active control of separation and its application to versatile sample sets. We present integration of impedance cytometry downstream of cell separation by deterministic lateral displacement (DLD) for enrichment of activated macrophages from a heterogeneous sample, without the problems of biased sample loss and sample dilution caused by off-chip analysis. This required designs to match cell/particle flow rates from DLD separation into the confined single-cell impedance cytometry stage, the balancing of flow resistances across the separation array width to maintain unidirectionality, and the utilization of co-flowing beads as calibrated internal standards for inline assessment of DLD separation and for impedance data normalization. Using a heterogeneous sample with un-activated and activated macrophages, wherein macrophage polarization during activation causes cell size enlargement, on-chip impedance cytometry is used to validate DLD enrichment of the activated subpopulation at the displaced outlet, based on the multiparametric characteristics of cell size distribution and impedance phase metrics. This hybrid platform can monitor separation of specific subpopulations from cellular samples with wide size distributions, for active operational control and enhanced sample versatility.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Javad Jarmoshti
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Xiao
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Aditya Rane
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Armita Salahi
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Jin
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Xudong Li
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | | | - Carlos Honrado
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Nathan S. Swami
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| |
Collapse
|
6
|
Tottori N, Nisisako T. Tunable deterministic lateral displacement of particles flowing through thermo-responsive hydrogel micropillar arrays. Sci Rep 2023; 13:4994. [PMID: 36973401 PMCID: PMC10043002 DOI: 10.1038/s41598-023-32233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Deterministic lateral displacement (DLD) is a promising technology that allows for the continuous and the size-based separation of suspended particles at a high resolution through periodically arrayed micropillars. In conventional DLD, the critical diameter (Dc), which determines the migration mode of a particle of a particular size, is fixed by the device geometry. Here, we propose a novel DLD that uses the pillars of a thermo-responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAM) to flexibly tune the Dc value. Upon heating and cooling, the PNIPAM pillars in the aqueous solution shrink and swell because of their hydrophobic-hydrophilic phase transitions as the temperature varies. Using the PNIPAM pillars confined in a poly(dimethylsiloxane) microchannel, we demonstrate continuous switching of particle (7-μm beads) trajectories (displacement or zigzag mode) by adjusting the Dc through temperature control of the device on a Peltier element. Further, we perform on/off operation of the particle separation (7-μm and 2-μm beads) by adjusting the Dc values.
Collapse
Affiliation(s)
- Naotomo Tottori
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takasi Nisisako
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
7
|
Vaghef-Koodehi A, Ernst OD, Lapizco-Encinas BH. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal Chem 2023; 95:1409-1418. [PMID: 36599093 DOI: 10.1021/acs.analchem.2c04366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Presented here is the first continuous separation of microparticles and cells of similar characteristics employing linear and nonlinear electrokinetic phenomena in an insulator-based electrokinetic (iEK) system. By utilizing devices with insulating features, which distort the electric field distribution, it is possible to combine linear and nonlinear EK phenomena, resulting in highly effective separation schemes that leverage the new advancements in nonlinear electrophoresis. This work combines mathematical modeling and experimentation to separate four distinct binary mixtures of particles and cells. A computational model with COMSOL Multiphysics was used to predict the retention times (tR,p) of the particles and cells in iEK devices. Then, the experimental separations were carried out using the conditions identified with the model, where the experimental retention time (tR,e) of the particles and cells was measured. A total of four distinct separations of binary mixtures were performed by increasing the level of difficulty. For the first separation, two types of polystyrene microparticles, selected to mimic Escherichia coli and Saccharomyces cerevisiae cells, were separated. By leveraging the knowledge gathered from the first separation, a mixture of cells of distinct domains and significant size differences, E. coli and S. cerevisiae, was successfully separated. The third separation also featured cells of different domains but closer in size: Bacillus cereus versus S. cerevisiae. The last separation included cells in the same domain and genus, B. cereus versus Bacillus subtilis. Separation results were evaluated in terms of number of plates (N) and separation resolution (Rs), where Rs values for all separations were above 1.5, illustrating complete separations. Experimental results were in agreement with modeling results in terms of retention times, with deviations in the 6-27% range, while the variation between repetitions was between 2 and 18%, demonstrating good reproducibility. This report is the first prediction of the retention time of cells in iEK systems.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Olivia D Ernst
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| |
Collapse
|
8
|
Flores-Mena JE, García-Sánchez P, Ramos A. Scattering of Metal Colloids by a Circular Post under Electric Fields. MICROMACHINES 2022; 14:23. [PMID: 36677083 PMCID: PMC9866174 DOI: 10.3390/mi14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
We consider the scattering of metal colloids in aqueous solutions by an insulating circular post under the action of an AC electric field. We analyze the effects on the particle of several forces of electrical origin: the repulsion between the induced dipole of the particle and its image dipole in the post, the hydrodynamic interaction with the post due to the induced-charge electroosmotic (ICEO) flow around the particle, and the dielectrophoresis arising from the distortion of the applied electric field around the post. The relative influence of these forces is discussed as a function of frequency of the AC field, particle size and distance to the post. We perform numerical simulations of the scattering of the metal colloid by the insulating circular post flowing in a microchannel and subjected to alternating current electric fields. Our simulation results show that the maximum particle deviation is found for an applied electric field parallel to the flow direction. The deviation is also greater at low electric field frequencies, corresponding to the regime in which the ICEO's interaction with the post is predominant over other mechanisms.
Collapse
Affiliation(s)
- José Eladio Flores-Mena
- Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, San Manuel, CU. FCE2, Puebla 72570, Mexico
| | - Pablo García-Sánchez
- Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Antonio Ramos
- Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
9
|
Gillams RJ, Calero V, Fernandez-Mateo R, Morgan H. Electrokinetic deterministic lateral displacement for fractionation of vesicles and nano-particles. LAB ON A CHIP 2022; 22:3869-3876. [PMID: 36065949 DOI: 10.1039/d2lc00583b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe fractionation of sub-micron vesicles and particles suspended in high conductivity electrolytes using an electrokinetically biased Deterministic Lateral Displacement (DLD) device. An optimised, asymmetric array of micron-sized pillars and gaps, with an AC electric field applied orthogonal to the fluid flow gives an approximately ten-fold reduction in the intrinsic critical diameter (Dc) of the device. The asymmetry in the device maximises the throughput. Fractionation of populations of 100 nm and 400 nm extruded vesicles is achieved in 690 mS m-1 KCl, and 100 nm, 200 nm and 500 nm polystyrene particles in 105 mS m-1 KCl. The electrokinetically biased DLD may provide solutions for simple and rapid isolation of extracellular vesicles.
Collapse
Affiliation(s)
- Richard J Gillams
- School of Electronics and Computer Science, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| | - Victor Calero
- School of Electronics and Computer Science, University of Southampton, UK.
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | | | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
10
|
Al-Ali A, Waheed W, Abu-Nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. J Chromatogr A 2022; 1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
|
11
|
Nanogap Electrode-Enabled Versatile Electrokinetic Manipulation of Nanometric Species in Fluids. BIOSENSORS 2022; 12:bios12070451. [PMID: 35884255 PMCID: PMC9313323 DOI: 10.3390/bios12070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Noninvasive manipulation of nanoscopic species in liquids has attracted considerable attention due to its potential applications in diverse fields. Many sophisticated methodologies have been developed to control and study nanoscopic entities, but the low-power, cost-effective, and versatile manipulation of nanometer-sized objects in liquids remains challenging. Here, we present a dielectrophoretic (DEP) manipulation technique based on nanogap electrodes, with which the on-demand capturing, enriching, and sorting of nano-objects in microfluidic systems can be achieved. The dielectrophoretic control unit consists of a pair of swelling-induced nanogap electrodes crossing a microchannel, generating a steep electric field gradient and thus strong DEP force for the effective manipulation of nano-objects microfluidics. The trapping, enriching, and sorting of nanoparticles and DNAs were performed with this device to demonstrate its potential applications in micro/nanofluidics, which opens an alternative avenue for the non-invasive manipulation and characterization of nanoparticles such as DNA, proteins, and viruses.
Collapse
|
12
|
Li Y, Wang Y, Pesch GR, Baune M, Du F, Liu X. Rational Design and Numerical Analysis of a Hybrid Floating cIDE Separator for Continuous Dielectrophoretic Separation of Microparticles at High Throughput. MICROMACHINES 2022; 13:mi13040582. [PMID: 35457887 PMCID: PMC9026825 DOI: 10.3390/mi13040582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
Dielectrophoresis (DEP) enables continuous and label-free separation of (bio)microparticles with high sensitivity and selectivity, whereas the low throughput issue greatly confines its clinical application. Herein, we report a novel design of the DEP separator embedded with cylindrical interdigitated electrodes that incorporate hybrid floating electrode layout for (bio)microparticle separation at favorable throughput. To better predict microparticle trajectory in the scaled-up DEP platform, a theoretical model based on coupling of electrostatic, fluid and temperature fields is established, in which the effects of Joule heating-induced electrothermal and buoyancy flows on particles are considered. Size-based fractionation of polystyrene microspheres and dielectric properties-based isolation of MDA-MB-231 from blood cells are numerically realized, respectively, by the proposed separator with sample throughputs up to 2.6 mL/min. Notably, the induced flows can promote DEP discrimination of heterogeneous cells. This work provides a reference on tailoring design of enlarged DEP platforms for highly efficient separation of (bio)samples at high throughput.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
- Correspondence: (Y.W.); (X.L.)
| | - Georg R. Pesch
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany; (G.R.P.); (M.B.)
| | - Michael Baune
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany; (G.R.P.); (M.B.)
| | - Fei Du
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
- Correspondence: (Y.W.); (X.L.)
| |
Collapse
|
13
|
Fernández-Mateo R, Calero V, Morgan H, García-Sánchez P, Ramos A. Wall Repulsion of Charged Colloidal Particles during Electrophoresis in Microfluidic Channels. PHYSICAL REVIEW LETTERS 2022; 128:074501. [PMID: 35244446 DOI: 10.1103/physrevlett.128.074501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Electrophoresis describes the motion of charged particles suspended in electrolytes when subjected to an external electric field. Previous experiments have shown that particles undergoing electrophoresis are repelled from nearby channel walls, contrary to the standard description of electrophoresis that predicts no hydrodynamic repulsion. Dielectrophoretic (DEP) repulsive forces have been commonly invoked as the cause of this wall repulsion. We show that DEP forces can only account for this wall repulsion at high frequencies of applied electric field. In the presence of a low-frequency field, quadrupolar electro-osmotic flows are observed around the particles. We experimentally demonstrate that these hydrodynamic flows are the cause of the widely observed particle-wall interaction. This hydrodynamic wall repulsion should be considered in the design and application of electric-field-driven manipulation of particles in microfluidic devices.
Collapse
Affiliation(s)
- Raúl Fernández-Mateo
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Víctor Calero
- Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Pablo García-Sánchez
- Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Antonio Ramos
- Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
14
|
Song CL, Tao Y, Liu WY, Chen YC, Xue R, Jiang TY, Li B, Jiang HY, Ren YK. Fluid pumping by liquid metal droplet utilizing ac electric field. Phys Rev E 2022; 105:025102. [PMID: 35291076 DOI: 10.1103/physreve.105.025102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
We report a unique phenomenon in which liquid metal droplets (LMDs) under a pure ac electric field pump fluid. Unlike the directional pumping that occurs upon reversing the electric field polarity under a dc signal, this phenomenon allows the direction of fluid motion to be switched by simply shifting the position of the LMD within the cylindrical chamber. The physical mechanism behind this phenomenon has been termed Marangoni flow, caused by nonlinear electrocapillary stress. Under the influence of a localized, asymmetric ac electric field, the polarizable surface of the position-offset LMD produces a net time-averaged interfacial tension gradient that scales with twice the field strength, and thus pumps fluid unidirectionally. However, the traditional linear RC circuit polarization model of the LMD/electrolyte interface fails to capture the correct pump-flow direction when the thickness of the LMD oxide skin is non-negligible compared to the Debye length. Therefore, we developed a physical description by treating the oxide layer as a distributed capacitance with variable thickness and connected with the electric double layer. The flow profile is visualized via microparticle imaging velocimetry, and excellent consistency is found with simulation results obtained from the proposed nonlinear model. Furthermore, we investigate the effects of relevant parameters on fluid pumping and discuss a special phenomenon that does not exist in dc control systems. To our knowledge, no previous work addresses LMDs in this manner and uses a zero-mean ac electric field to achieve stable, adjustable directional pumping of a low-conductivity solution.
Collapse
Affiliation(s)
- Chun-Lei Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wei-Yu Liu
- School of Electronics and Control Engineering, Chang'an University, Xi'an 710000, China
| | - Yi-Cheng Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Tian-Yi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Biao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hong-Yuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu-Kun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
15
|
Fernández-Mateo R, Calero V, Morgan H, Ramos A, García-Sánchez P. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels. Anal Chem 2021; 93:14667-14674. [PMID: 34704741 PMCID: PMC8581963 DOI: 10.1021/acs.analchem.1c02849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Electric fields are
commonly used to trap and separate micro- and
nanoparticles near channel constrictions in microfluidic devices.
The trapping mechanism is attributed to the electrical forces arising
from the nonhomogeneous electric field caused by the constrictions,
and the phenomenon is known as insulator-based-dielectrophoresis (iDEP).
In this paper, we describe stationary electroosmotic flows of electrolytes
around insulating constrictions induced by low frequency AC electric
fields (below 10 kHz). Experimental characterization of the flows
is described for two different channel heights (50 and 10 μm),
together with numerical simulations based on an electrokinetic model
that considers the modification of the local ionic concentration due
to surface conductance on charged insulating walls. We term this phenomenon
concentration–polarization electroosmosis (CPEO). The observed
flow characteristics are in qualitative agreement with the predictions
of this model. However, for shallow channels (10 μm),
trapping of the particles on both sides of the constrictions is also
observed. This particle and fluid behavior could play a major role
in iDEP and could be easily misinterpreted as a dielectrophoretic
force.
Collapse
Affiliation(s)
- Raúl Fernández-Mateo
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Víctor Calero
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Antonio Ramos
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Pablo García-Sánchez
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
16
|
Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021; 414:885-905. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
17
|
Sun H, Ren Y, Jiang T, Tao Y, Jiang H. Dielectrophoretic medium exchange around droplets for on-chip fabrication of layer-by-layer microcapsules. LAB ON A CHIP 2021; 21:3352-3360. [PMID: 34235524 DOI: 10.1039/d1lc00357g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Continuous medium exchange within a microchannel represents a highly sought-after technique in functionalizing micro-objects with coating layers, enabling a myriad of applications ranging from biomedical engineering to materials science. Herein, we introduce a unique medium exchange approach, namely, tilted-angle dielectrophoresis, to accomplish layer-by-layer (LbL) coating on droplets in a wide microchannel. Pairs of adjacent tilted parallel electrodes arranged in a zigzag fashion are exploited to consecutively and repeatedly guide particles/droplets travelling through three parallel laminar streams comprising two reagents and a washing buffer. The performance of medium exchange is demonstrated using PS microparticles and oil droplets. We show that multi-cycle medium exchange, droplet transfer accompanied with purification, and multi-mode medium exchange around different micro-objects are achieved by conveniently regulating the applied voltage and the inlet flow rate, indicating a flexible, versatile and label-free alternative for characterizing and handling colloidal particles. Furthermore, LbL coating on droplets utilizing the presented strategy is implemented in the parallel coating-chemical and washing streams to obtain multiple layers of microcapsules. The linearly increasing fluorescence intensity of the coated droplets with each subsequent fluorescent coating demonstrates the capability of the tilted-angle dielectrophoretic medium exchanger for on-chip generation of LbL microcapsules on demand. The presented medium exchange strategy, together with its unique features of simple geometric configuration, facile control and multifunctionality, can provide a refined alternative for further expanding the utility scope in functional particles and cells.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001.
| | | | | | | | | |
Collapse
|
18
|
Separating microparticles by material and size using dielectrophoretic chromatography with frequency modulation. Sci Rep 2021; 11:16861. [PMID: 34413323 PMCID: PMC8376941 DOI: 10.1038/s41598-021-95404-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Separation of (biological) particles (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ll {10}~{\upmu }\text {m}$$\end{document}≪10μm) according to size or other properties is an ongoing challenge in a variety of technical relevant fields. Dielectrophoresis is one method to separate particles according to a diversity of properties, and within the last decades a pool of dielectrophoretic separation techniques has been developed. However, many of them either suffer selectivity or throughput. We use simulation and experiments to investigate retention mechanisms in a novel DEP scheme, namely, frequency-modulated DEP. Results from experiments and simulation show a good agreement for the separation of binary PS particles mixtures with respect to size and more importantly, for the challenging task of separating equally sized microparticles according to surface functionalization alone. The separation with respect to size was performed using 2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\upmu }$$\end{document}μm and 3 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\upmu }$$\end{document}μm sized particles, whereas separation with respect to surface functionalization was performed with 2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\upmu }$$\end{document}μm particles. The results from this study can be used to solve challenging separation tasks, for example to separate particles with distributed properties.
Collapse
|
19
|
Wu Y, Chattaraj R, Ren Y, Jiang H, Lee D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal Chem 2021; 93:7635-7646. [PMID: 34014074 DOI: 10.1021/acs.analchem.1c00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.
Collapse
Affiliation(s)
- Yupan Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.,School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, P. R. China.,Yangtze River Delta Research Institute of NPU, Taicang 215400, P. R. China
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Xuan X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Electrophoresis 2021; 43:167-189. [PMID: 33991344 DOI: 10.1002/elps.202100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) has been increasingly used for particle manipulation in various microfluidic applications. It exploits insulating structures to constrict and/or curve electric field lines to generate field gradients for particle dielectrophoresis. However, the presence of these insulators, especially those with sharp edges, causes two nonlinear electrokinetic flows, which, if sufficiently strong, may disturb the otherwise linear electrokinetic motion of particles and affect the iDEP performance. One is induced charge electroosmotic (ICEO) flow because of the polarization of the insulators, and the other is electrothermal flow because of the amplified Joule heating in the fluid around the insulators. Both flows vary nonlinearly with the applied electric field (either DC or AC) and exhibit in the form of fluid vortices, which have been utilized to promote some applications while being suppressed in others. The effectiveness of iDEP benefits from a comprehensive understanding of the nonlinear electrokinetic flows, which is complicated by the involvement of the entire iDEP device into electric polarization and thermal diffusion. This article is aimed to review the works on both the fundamentals and applications of ICEO and electrothermal flows in iDEP microdevices. A personal perspective of some future research directions in the field is also given.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
21
|
Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. NANOSCALE 2021; 13:4330-4358. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an efficient, rapid and label-free micro-/nanoparticle separation technique, dielectrophoresis (DEP) has attracted widespread attention in recent years, especially in the field of biomedicine, which exhibits huge potential in biomedically relevant applications such as disease diagnosis, cancer cell screening, biosensing, and others. DEP technology has been greatly developed recently from the low-flux laboratory level to high-throughput practical applications. In this review, we summarize the recent progress of DEP technology in biomedical applications, including firstly the design of various types and materials of DEP electrode and flow channel, design of input signals, and other improved designs. Then, functional tailoring of DEP systems with endowed specific functions including separation, purification, capture, enrichment and connection of biosamples, as well as the integration of multifunctions, are demonstrated. After that, representative DEP biomedical application examples in aspects of disease detection, drug synthesis and screening, biosensing and cell positioning are presented. Finally, limitations of existing DEP platforms on biomedical application are discussed, in which emphasis is given to the impact of other electrodynamic effects such as electrophoresis (EP), electroosmosis (EO) and electrothermal (ET) effects on DEP efficiency. This article aims to provide new ideas for the design of novel DEP micro-/nanoplatforms with desirable high throughput toward application in the biomedical community.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, College of Life Science, Qingdao University, 266071 Qingdao, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
22
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
23
|
Dienerowitz M, Howard JAL, Quinn SD, Dienerowitz F, Leake MC. Single-molecule FRET dynamics of molecular motors in an ABEL trap. Methods 2021; 193:96-106. [PMID: 33571667 DOI: 10.1016/j.ymeth.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap's inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. In this work we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 seconds with sub-millisecond time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.
Collapse
Affiliation(s)
- Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2 - 4, 07743 Jena, Germany.
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
24
|
García-Sánchez P, Ramos A. Continuous Particle Separation in Microfluidics: Deterministic Lateral Displacement Assisted by Electric Fields. MICROMACHINES 2021; 12:66. [PMID: 33435288 PMCID: PMC7827387 DOI: 10.3390/mi12010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Advances in the miniaturization of microelectromechanical systems (MEMS) [...]
Collapse
Affiliation(s)
| | - Antonio Ramos
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain;
| |
Collapse
|
25
|
Cell Sorting Using Electrokinetic Deterministic Lateral Displacement. MICROMACHINES 2020; 12:mi12010030. [PMID: 33396630 PMCID: PMC7823954 DOI: 10.3390/mi12010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
We show that by combining deterministic lateral displacement (DLD) with electrokinetics, it is possible to sort cells based on differences in their membrane and/or internal structures. Using heat to deactivate cells, which change their viability and structure, we then demonstrate sorting of a mixture of viable and non-viable cells for two different cell types. For Escherichia coli, the size change due to deactivation is insufficient to allow size-based DLD separation. Our method instead leverages the considerable change in zeta potential to achieve separation at low frequency. Conversely, for Saccharomyces cerevisiae (Baker’s yeast) the heat treatment does not result in any significant change of zeta potential. Instead, we perform the sorting at higher frequency and utilize what we believe is a change in dielectrophoretic mobility for the separation. We expect our work to form a basis for the development of simple, low-cost, continuous label-free methods that can separate cells and bioparticles based on their intrinsic properties.
Collapse
|
26
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoresis as a tool for electrophysiological characterization of stem cells. BIOPHYSICS REVIEWS 2020; 1:011304. [PMID: 38505626 PMCID: PMC10903368 DOI: 10.1063/5.0025056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 03/21/2024]
Abstract
Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Anthony T. Giduthuri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Sophia K. Theodossiou
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
27
|
Ho BD, Beech JP, Tegenfeldt JO. Charge-Based Separation of Micro- and Nanoparticles. MICROMACHINES 2020; 11:E1014. [PMID: 33218201 PMCID: PMC7702211 DOI: 10.3390/mi11111014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Deterministic Lateral Displacement (DLD) is a label-free particle sorting method that separates by size continuously and with high resolution. By combining DLD with electric fields (eDLD), we show separation of a variety of nano and micro-sized particles primarily by their zeta potential. Zeta potential is an indicator of electrokinetic charge-the charge corresponding to the electric field at the shear plane-an important property of micro- and nanoparticles in colloidal or separation science. We also demonstrate proof of principle of separation of nanoscale liposomes of different lipid compositions, with strong relevance for biomedicine. We perform careful characterization of relevant experimental conditions necessary to obtain adequate sorting of different particle types. By choosing a combination of frequency and amplitude, sorting can be made sensitive to the particle subgroup of interest. The enhanced displacement effect due to electrokinetics is found to be significant at low frequency and for particles with high zeta potential. The effect appears to scale with the square of the voltage, suggesting that it is associated with either non-linear electrokinetics or dielectrophoresis (DEP). However, since we observe large changes in separation behavior over the frequency range at which DEP forces are expected to remain constant, DEP can be ruled out.
Collapse
Affiliation(s)
| | | | - Jonas O. Tegenfeldt
- Division of Solid State Physics and NanoLund, Physics Department, Lund University, P.O. Box 118, 22100 Lund, Sweden; (B.D.H.); (J.P.B.)
| |
Collapse
|
28
|
Dalili A, Taatizadeh E, Tahmooressi H, Tasnim N, Rellstab-Sánchez PI, Shaunessy M, Najjaran H, Hoorfar M. Parametric study on the geometrical parameters of a lab-on-a-chip platform with tilted planar electrodes for continuous dielectrophoretic manipulation of microparticles. Sci Rep 2020; 10:11718. [PMID: 32678180 PMCID: PMC7366698 DOI: 10.1038/s41598-020-68699-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Advances in lab-on-a-chip (LOC) devices have led to significant improvements in the on-chip manipulation, separation, sorting, and isolation of particles and cells. Among various LOC-based approaches such as inertia-based methods, acoustophoresis, and magnetophoresis, the planar-slanted-electrode dielectrophoresis (DEP) method has demonstrated great potential as a label-free, cost-effective, and user-friendly approach. However, the devices built based on this method suffer from low flow throughput compared to devices functioning based on other LOC-based manipulation approaches. In order to overcome this obstacle, the geometrical parameters of these types of DEP-based devices must be studied to increase the effectiveness of DEP manipulation. With the consideration of both numerical and experimental studies, this paper studies the geometrical factors of a LOC platform consisting of tilted planar electrodes with the goal of achieving higher throughput in continuous manipulation of polystyrene particles. COMSOL Multiphysics software was used to study the effect of the electrodes geometry on the induced electric field. The simulation results show that by increasing the electrode's width and decreasing the electrode's spacing, higher DEP force is generated. Furthermore, the experimental outcomes indicated that lower channel height, higher voltage, and larger particle size resulted in the most improvement to DEP manipulation. Additionally, the experimental results demonstrated that slanted electrodes with an angle of 8° with respect to the direction of flow provide a more effective configuration.
Collapse
Affiliation(s)
- Arash Dalili
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Erfan Taatizadeh
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- School of Biomedical Engineering, Faculty of Applied Science, Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hamed Tahmooressi
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Nishat Tasnim
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Pamela Inés Rellstab-Sánchez
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Matthew Shaunessy
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
29
|
Calero V, García-Sánchez P, Ramos A, Morgan H. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. J Chromatogr A 2020; 1623:461151. [DOI: 10.1016/j.chroma.2020.461151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
|
30
|
Deterministic Lateral Displacement-Based Separation of Magnetic Beads and Its Applications of Antibody Recognition. SENSORS 2020; 20:s20102846. [PMID: 32429490 PMCID: PMC7287841 DOI: 10.3390/s20102846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/02/2022]
Abstract
This work presents a magnetic-driven deterministic lateral displacement (m-DLD) microfluidic device. A permanent magnet located at the outlet of the microchannel was used to generate the driving force. Two stages of mirrored round micropillar array were designed for the separation of magnetic beads with three different sizes in turn. The effects of the forcing angle and the inlet width of the micropillar array on the separating efficiency were studied. The m-DLD device with optimal structure parameters shows that the separating efficiencies for the 10 μm, 20 μm and 40 μm magnetic beads are 87%, 89% and 94%, respectively. Furthermore, this m-DLD device was used for antibody recognition and separation among a mixture solution of antibodies. The trajectories of different kinds of magnetic beads coupled with different antigens showed that the m-DLD device could realize a simple and low-cost diagnostic test.
Collapse
|
31
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
32
|
Rodriguez-Gonzalez A, Gleghorn JP, Kirby BJ. Rational design protocols for size-based particle sorting microdevices using symmetry-induced cyclical dynamics. Phys Rev E 2020; 101:032125. [PMID: 32289981 DOI: 10.1103/physreve.101.032125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/14/2020] [Indexed: 01/16/2023]
Abstract
In this paper, we describe the unification and extension of multiple kinematic theories on the advection of colloidal particles through periodic obstacle lattices of arbitrary geometry and infinitesimally small obstacle size. We focus specifically on the particle displacement lateral to the flow direction (termed "deterministic lateral displacement") and the particle-obstacle interaction frequency, and develop methods for describing these as a function of particle size and lattice parameters for arbitrary lattice geometries. We then demonstrate design algorithms for microfluidic devices consisting of chained obstacle lattices of this type that approximate any lateral displacement function of size to arbitrary accuracy with respect to multiple optimization metrics, prove their validity mathematically, and compare the generated results favorably to designs in the literature with respect to metrics such as accuracy, device size, and complexity.
Collapse
Affiliation(s)
- Arnaldo Rodriguez-Gonzalez
- Field of Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Brian J Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA and Department of Medicine, Division of Hematology and Medical Oncology, Weill-Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
33
|
Zhang T, Hong ZY, Tang SY, Li W, Inglis DW, Hosokawa Y, Yalikun Y, Li M. Focusing of sub-micrometer particles in microfluidic devices. LAB ON A CHIP 2020; 20:35-53. [PMID: 31720655 DOI: 10.1039/c9lc00785g] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sub-micrometer particles (0.10-1.0 μm) are of great significance to study, e.g., microvesicles and protein aggregates are targets for therapeutic intervention, and sub-micrometer fluorescent polystyrene (PS) particles are used as probes for diagnostic imaging. Focusing of sub-micrometer particles - precisely control over the position of sub-micrometer particles in a tightly focused stream - has a wide range of applications in the field of biology, chemistry and environment, by acting as a prerequisite step for downstream detection, manipulation and quantification. Microfluidic devices have been attracting great attention as desirable tools for sub-micrometer particle focusing, due to their small size, low reagent consumption, fast analysis and low cost. Recent advancements in fundamental knowledge and fabrication technologies have enabled microfluidic focusing of particles at sub-micrometer scale in a continuous, label-free and high-throughput manner. Microfluidic methods for the focusing of sub-micrometer particles can be classified into two main groups depending on whether an external field is applied: 1) passive methods, which utilize intrinsic fluidic properties without the need of external actuation, such as inertial, deterministic lateral displacement (DLD), viscoelastic and hydrophoretic focusing; and 2) active methods, where external fields are used, such as dielectrophoretic, thermophoretic, acoustophoretic and optical focusing. This article mainly reviews the studies on the focusing of sub-micrometer particles in microfluidic devices over the past 10 years. It aims to bridge the gap between the focusing of micrometer and nanometer scale (1.0-100 nm) particles and to improve the understanding of development progress, current advances and future prospects in microfluidic focusing techniques.
Collapse
Affiliation(s)
- Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. and School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Zhen-Yi Hong
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| |
Collapse
|
34
|
Kottmeier J, Wullenweber M, Blahout S, Hussong J, Kampen I, Kwade A, Dietzel A. Accelerated Particle Separation in a DLD Device at Re > 1 Investigated by Means of µPIV. MICROMACHINES 2019; 10:E768. [PMID: 31718021 PMCID: PMC6915452 DOI: 10.3390/mi10110768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022]
Abstract
A pressure resistant and optically accessible deterministic lateral displacement (DLD) device was designed and microfabricated from silicon and glass for high-throughput fractionation of particles between 3.0 and 7.0 µm comprising array segments of varying tilt angles with a post size of 5 µm. The design was supported by computational fluid dynamic (CFD) simulations using OpenFOAM software. Simulations indicated a change in the critical particle diameter for fractionation at higher Reynolds numbers. This was experimentally confirmed by microparticle image velocimetry (µPIV) in the DLD device with tracer particles of 0.86 µm. At Reynolds numbers above 8 an asymmetric flow field pattern between posts could be observed. Furthermore, the new DLD device allowed successful fractionation of 2 µm and 5 µm fluorescent polystyrene particles at Re = 0.5-25.
Collapse
Affiliation(s)
- Jonathan Kottmeier
- Institute for Microtechology, TU Braunschweig, 38124 Braunschweig, Germany;
| | - Maike Wullenweber
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, 38106 Braunschweig, Germany; (M.W.); (I.K.); (A.K.)
- Institute for Particle Technology, TU Braunschweig, 38104 Braunschweig, Germany
| | - Sebastian Blahout
- Institute for Fluid Mechanics and Aerodynamics, TU Darmstadt, 64287 Darmstadt, Germany; (S.B.); (J.H.)
| | - Jeanette Hussong
- Institute for Fluid Mechanics and Aerodynamics, TU Darmstadt, 64287 Darmstadt, Germany; (S.B.); (J.H.)
| | - Ingo Kampen
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, 38106 Braunschweig, Germany; (M.W.); (I.K.); (A.K.)
- Institute for Particle Technology, TU Braunschweig, 38104 Braunschweig, Germany
| | - Arno Kwade
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, 38106 Braunschweig, Germany; (M.W.); (I.K.); (A.K.)
- Institute for Particle Technology, TU Braunschweig, 38104 Braunschweig, Germany
| | - Andreas Dietzel
- Institute for Microtechology, TU Braunschweig, 38124 Braunschweig, Germany;
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, 38106 Braunschweig, Germany; (M.W.); (I.K.); (A.K.)
| |
Collapse
|
35
|
Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. NANO-MICRO LETTERS 2019; 11:77. [PMID: 34138050 PMCID: PMC7770818 DOI: 10.1007/s40820-019-0308-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/25/2019] [Indexed: 05/03/2023]
Abstract
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics. In this field, microfluidic deterministic lateral displacement (DLD) holds a promise due to the ability of continuous separation of particles by size, shape, deformability, and electrical properties with high resolution. DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes. DLD techniques have been previously reviewed in 2014. Since then, the field has matured as several physics of DLD have been updated, new phenomena have been discovered, and various designs have been presented to achieve a higher separation performance and throughput. Furthermore, some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection. This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection. Furthermore, current challenges and potential solutions of DLD are also discussed. We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications. In particular, the rapid, low-cost, and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yi Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.
| |
Collapse
|
36
|
Calero V, Garcia-Sanchez P, Ramos A, Morgan H. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation. BIOMICROFLUIDICS 2019; 13:054110. [PMID: 31673301 PMCID: PMC6811356 DOI: 10.1063/1.5124475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
This paper describes the behavior of particles in a deterministic lateral displacement (DLD) separation device with DC and AC electric fields applied orthogonal to the fluid flow. As proof of principle, we demonstrate tunable microparticle and nanoparticle separation and fractionation depending on both particle size and zeta potential. DLD is a microfluidic technique that performs size-based binary separation of particles in a continuous flow. Here, we explore how the application of both DC and AC electric fields (separate or together) can be used to improve separation in a DLD device. We show that particles significantly smaller than the critical diameter of the device can be efficiently separated by applying orthogonal electric fields. Following the application of a DC voltage, Faradaic processes at the electrodes cause local changes in medium conductivity. This conductivity change creates an electric field gradient across the channel that results in a nonuniform electrophoretic velocity orthogonal to the primary flow direction. This phenomenon causes particles to focus on tight bands as they flow along the channel countering the effect of particle diffusion. It is shown that the final lateral displacement of particles depends on both particle size and zeta potential. Experiments with six different types of negatively charged particles and five different sizes (from 100 nm to 3 μm) and different zeta potential demonstrate how a DC electric field combined with AC electric fields (that causes negative-dielectrophoresis particle deviation) could be used for fractionation of particles on the nanoscale in microscale devices.
Collapse
Affiliation(s)
- Victor Calero
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Pablo Garcia-Sanchez
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Seville 41012, Spain
| | - Antonio Ramos
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Seville 41012, Spain
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|