1
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Charlestin V, Tan E, Arias-Matus CE, Wu J, Miranda-Vergara MC, Lee M, Wang M, Nannapaneni DT, Tennakoon P, Blagg BSJ, Ashfeld BL, Kaliney W, Li J, Littlepage LE. Evaluation of the Mammalian Aquaporin Inhibitors Auphen and Z433927330 in Treating Breast Cancer. Cancers (Basel) 2024; 16:2714. [PMID: 39123442 PMCID: PMC11311482 DOI: 10.3390/cancers16152714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
AQPs contribute to breast cancer progression and metastasis. We previously found that genetic inhibition of Aqp7 reduces primary tumor burden and metastasis in breast cancer. In this study, we utilized two AQP inhibitors, Auphen and Z433927330, to evaluate the efficacy of therapeutic inhibition of AQPs in breast cancer treatment. The inhibitors were evaluated in breast cancer for both cytotoxicity and metabolic stability assays across both murine and human breast cancer cell lines. Both AQP inhibitors also affected the expression of other AQP transcripts and proteins, which demonstrates compensatory regulation between AQP family members. As a single agent, Auphen treatment in vivo extended overall survival but did not impact primary or metastatic tumor burden. However, Auphen treatment made cells more responsive to chemotherapy (doxorubicin) or endocrine treatment (tamoxifen, fulvestrant). In fact, treatment with Tamoxifen reduced overall AQP7 protein expression. RNA-seq of breast cancer cells treated with Auphen identified mitochondrial metabolism genes as impacted by Auphen and may contribute to reducing mammary tumor progression, lung metastasis, and increased therapeutic efficacy of endocrine therapy in breast cancer. Interestingly, we found that Auphen and tamoxifen cooperate to reduce breast cancer cell viability, which suggests that Auphen treatment makes the cells more susceptible to Tamoxifen. Together, this study highlights AQPs as therapeutic vulnerabilities of breast cancer metastasis that are promising and should be exploited. However, the pharmacologic results suggest additional chemical refinements and optimization of AQP inhibition are needed to make these AQP inhibitors appropriate to use for therapeutic benefit in overcoming endocrine therapy resistance.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Elijah Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Carlos Eduardo Arias-Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Maria Cristina Miranda-Vergara
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Biotechnology Department, Life and Health Sciences Deanship, Universidad Popular Autonoma del Estado de Puebla (UPAEP University), 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Dharma T. Nannapaneni
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Parinda Tennakoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - William Kaliney
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Jun Li
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| |
Collapse
|
4
|
Azimi Mohammadabadi M, Moazzeni A, Jafarzadeh L, Faraji F, Mansourabadi AH, Safari E. Aquaporins in colorectal cancer: exploring their role in tumorigenesis, metastasis, and drug response. Hum Cell 2024; 37:917-930. [PMID: 38806940 DOI: 10.1007/s13577-024-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Aquaporins (AQPs) are small, integral proteins facilitating water transport across plasma cell membranes in response to osmotic gradients. This family has 13 unique members (AQP0-12), which can also transport glycerol, urea, gases, and other salute small molecules. AQPs play a crucial role in the regulation of different cellular processes, including metabolism, migration, immunity, barrier function, and angiogenesis. These proteins are found to aberrantly overexpress in various cancers, including colorectal cancer (CRC). Growing evidence has explored AQPs as a potential diagnostic biomarker and therapeutic target in different cancers. However, there is no comprehensive review compiling the available information on the crucial role of AQPs in the context of colorectal cancer. This review highlights the significance of AQPs as the biomarker and regulator of tumor cells metabolism. In addition, the proliferation, angiogenesis, and metastasis of tumor cells related to AQPs expression as well as function are discussed. Understanding the AQPs prominent role in chemotherapy resistance is of great importance clinically.
Collapse
Affiliation(s)
- Maryam Azimi Mohammadabadi
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Ali Moazzeni
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Leila Jafarzadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
- University of Ottawa, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
| | - Elahe Safari
- Breast Health & Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
da Silva IV, Pimpão C, Paccetti-Alves I, Thomas SR, Barateiro A, Casini A, Soveral G. Blockage of aquaporin-3 peroxiporin activity by organogold compounds affects melanoma cell adhesion, proliferation and migration. J Physiol 2024; 602:3111-3129. [PMID: 38323926 DOI: 10.1113/jp284155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and H2O2 across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy. In this study, we validated the phenotype resulting from AQP3-silencing of two melanoma cell lines, MNT-1 and A375, which resulted in decreased H2O2 permeability. Subsequently, the AQP3 inhibitory effect of a new series of organogold compounds derived from Auphen, a potent AQP3 inhibitor, was first evaluated in red blood cells (RBCs) that highly express AQP3, and then in HEK-293T cells with AQP3 overexpression to ascertain the compounds' specificity. The first screening in RBCs unveiled two organogold compounds as promising blockers of AQP3 permeability. Moderate reduction of glycerol permeability but drastic inhibition of H2O2 permeability was detected for some of the gold derivatives in both AQP3-overexpressing cells and human melanoma cell lines. Additionally, all compounds were effective in impairing cell adhesion, proliferation and migration, although in a cell type-dependent manner. In conclusion, our data show that AQP3 peroxiporin activity is crucial for melanoma progression and highlight organogold compounds as promising AQP3 inhibitors with implications in melanoma cell adhesion, proliferation and migration, unveiling their potential as anticancer drugs against AQP3-overexpressing tumours. KEY POINTS: AQP3 affects cellular redox balance. Gold compounds inhibit AQP3 permeability in melanoma cells. AQP3 is involved in cell adhesion, proliferation and migration of melanoma. Blockage of AQP3 peroxiporin activity impairs melanoma cell migration. Gold compounds are potential anticancer drug leads for AQP3-overexpressing cancers.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sophie R Thomas
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Park M, Schmidt C, Türck S, Hanusch F, Hirmer SV, Ott I, Casini A, Inoue S. Potent Anticancer Activity of a Dinuclear Gold(I) bis-N-Heterocyclic Imine Complex Related to Thioredoxin Reductase Inhibition in Vitro. Chempluschem 2024; 89:e202300557. [PMID: 37937471 DOI: 10.1002/cplu.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A dinuclear gold(I) complex featuring a strongly donating bis-N-heterocyclic imine ligand was synthesised and characterised by different methods, including single crystal X-ray diffraction (SC-XRD) analysis. The compound has been tested for its antiproliferative effects in a panel of human cancer cell lines in vitro, showing highly selective anticancer effects, particularly against human A549 non-small cell lung cancer cells (NSCLC), with respect to non-tumorigenic cells (VERO). The accumulation of the compound in A549 and VERO cells was studied by high-resolution continuum source atomic absorption spectrometry (HRCS-AAS), revealing that the anticancer effects are not particularly related to the different amounts of gold taken up by the cells over 72 h. Enzyme inhibition studies to evaluate the activity of the seleno-enzyme thioredoxin reductase (TrxR) in cancer cell extracts show that the gold(I) compound is a potent inhibitor (IC50=0.567±0.208 μM), while the free ligand is ineffective. This result correlates with the observed compound's selectivity towards A549 cells overexpressing the enzyme.
Collapse
Affiliation(s)
- Mihyun Park
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Claudia Schmidt
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Franziska Hanusch
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Simone V Hirmer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
7
|
Alotaibi MO, Alotaibi NM, Alwaili MA, Alshammari N, Adnan M, Patel M. Natural sapogenins as potential inhibitors of aquaporins for targeted cancer therapy: computational insights into binding and inhibition mechanism. J Biomol Struct Dyn 2024:1-22. [PMID: 38174738 DOI: 10.1080/07391102.2023.2299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| |
Collapse
|
8
|
Mu K, Kitts DD. Intestinal polyphenol antioxidant activity involves redox signaling mechanisms facilitated by aquaporin activity. Redox Biol 2023; 68:102948. [PMID: 37922763 PMCID: PMC10643476 DOI: 10.1016/j.redox.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Ascertaining whether dietary polyphenols evoke an antioxidant or prooxidant activity, which translates to a functional role required to maintain intestinal cell homeostasis continues to be an active and controversial area of research for food chemists and biochemists alike. We have proposed that the paradoxical function of polyphenols to autoxidize to generate H2O2 is a required first step in the capacity of some plant phenolics to function as intracellular antioxidants. This is based on the fact that cell redox homeostasis is achieved by a balance between H2O2 formation and subsequent outcomes of antioxidant systems function. Maintaining optimal extracellular and intracellular H2O2 concentrations is required for cell survival, since low levels are important to upregulate endogenous antioxidant capacity; whereas, concentrations that go beyond homeostatic control typically result in an inflammatory response, growth arrest, or eventual cell death. Aquaporins (AQPs) are a family of water channel membrane proteins that facilitate cellular transportation of water and other small molecule-derived solutes, such as H2O2, in all organisms. In the intestine, AQPs act as gatekeepers to regulate intracellular uptake of H2O2, generated from extracellular polyphenol autoxidation, thus enabling an intracellular cell signaling responses to mitigate onset of oxidative stress and intestinal inflammation. In this review, we highlight the potential role of AQPs to control important underlying mechanisms that define downstream regulation of intestinal redox homeostasis, specifically. It has been established that polyphenols that undergo oxidation to the quinone form, resulting in subsequent adduction to a thiol group on Keap1-Nrf2 complex, trigger Nrf2 activation and a cascade of indirect intracellular antioxidant effects. Here, we propose a similar mechanism that involves H2O2 generated from specific dietary polyphenols with a predisposition to undergo autoxidation. The ultimate bioactivity is regulated and expressed by AQP membrane function and thus, by extension, represents expression of an intracellular antioxidant chemoprotection mechanism.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - David D Kitts
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Zhu J, Shi L, Su Y. Aquaporin-4 as a New Potential Molecular Biomarker for Prognosis of Low-Grade Glioma: Comprehensive Analysis Based on Online Platforms. World Neurosurg 2023; 175:e713-e722. [PMID: 37037365 DOI: 10.1016/j.wneu.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Aquaporin-4 (AQP4) is a significant factor in transcellular and transepithelial water movement, and abnormal expression of AQP4 has been detected in many types of tumors. The purpose of this study was to explore its role in low-grade gliomas (LGG) using freely available online bioinformatics tools. METHODS OncoLnc database was used to analyze Cox coefficients and compare AQP4 expression between various types of tumors; Tumor Immune Estimation Resource database and Gene Expression Profiling Interactive Analysis were used to compare gene expression between LGG and normal tissues; University of California Santa Cruz Xena browser generated Kaplan-Meier survival curves in the LGG cohort in The Cancer Genome Atlas and subgroups; LinkedOmics database screened the most relevant genes based on Pearson correlation coefficient; Gene Ontology Biological Process and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed through gene set enrichment analysis to explore possible molecular mechanisms. RESULTS LGG had higher AQP4 expression compared with normal tissues and ranked first among 21 different types of cancer (P < 0.05). The oligodendroglioma group had the lowest AQP4 expression and the longest overall survival (OS) (P < 0.05). LGG with astrocytoma, isocitrate dehydrogenase mutation, or 1p/19q codeletion had lower AQP4 expression and longer OS (P < 0.001). LGG with lower AQP4 expression, without 1p/19q codeletion, without chemotherapy, and with or without radiation therapy had longer OS (P < 0.05). AQP4 and coexpressed genes were involved in complex biological processes in LGG, including regulation of neurotransmitter level, peroxisome proliferator-activated receptor signaling pathway, cell adhesion molecules, and others. CONCLUSIONS AQP4 is a prognostic marker in LGG and its subgroups. Patients with lower AQP4 expression may have longer OS.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Neurosurgery, Beijing Jishuitan Hospital, Xicheng District, Beijing, China
| | - Liang Shi
- Department of Neurosurgery, Beijing Jishuitan Hospital, Xicheng District, Beijing, China
| | - Yibing Su
- Department of Neurosurgery, Beijing Jishuitan Hospital, Xicheng District, Beijing, China.
| |
Collapse
|
10
|
Mlinarić M, Lučić I, Milković L, da Silva IV, Tartaro Bujak I, Musani V, Soveral G, Čipak Gašparović A. AQP3-Dependent PI3K/Akt Modulation in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24098133. [PMID: 37175840 PMCID: PMC10179317 DOI: 10.3390/ijms24098133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.
Collapse
Affiliation(s)
- Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan Lučić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ivana Tartaro Bujak
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | |
Collapse
|
11
|
Bhend ME, Kempuraj D, Sinha NR, Gupta S, Mohan RR. Role of aquaporins in corneal healing post chemical injury. Exp Eye Res 2023; 228:109390. [PMID: 36696947 PMCID: PMC9975064 DOI: 10.1016/j.exer.2023.109390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Aquaporins (AQPs) are transmembrane water channel proteins that regulate the movement of water through the plasma membrane in various tissues including cornea. The cornea is avascular and has specialized microcirculatory mechanisms for homeostasis. AQPs regulate corneal hydration and transparency for normal vision. Currently, there are 13 known isoforms of AQPs that can be subclassified as orthodox AQPs, aquaglyceroporins (AQGPs), or supraquaporins (SAQPs)/unorthodox AQPs. AQPs are implicated in keratocyte function, inflammation, edema, angiogenesis, microvessel proliferation, and the wound-healing process in the cornea. AQPs play an important role in wound healing by facilitating the movement of corneal stromal keratocytes by squeezing through tight stromal matrix and narrow extracellular spaces to the wound site. Deficiency of AQPs can cause reduced concentration of hepatocyte growth factor (HGF) leading to reduced epithelial proliferation, reduced/impaired keratocyte migration, reduced number of keratocytes in the injury site, delayed and abnormal wound healing process. Dysregulated AQPs cause dysfunction in osmolar homeostasis as well as wound healing mechanisms. The cornea is a transparent avascular tissue that constitutes the anterior aspect of the outer covering of the eye and aids in two-thirds of visual light refraction. Being the outermost layer of the eye, the cornea is prone to injury. Of the 13 AQP isoforms, AQP1 is expressed in the stromal keratocytes and endothelial cells, and AQP3 and AQP5 are expressed in epithelial cells in the human cornea. AQPs can facilitate wound healing through aid in cellular migration, proliferation, migration, extracellular matrix (ECM) remodeling and autophagy mechanism. Corneal wound healing post-chemical injury requires an integrative and coordinated activity of the epithelium, stromal keratocytes, endothelium, ECM, and a battery of cytokines and growth factors to restore corneal transparency. If the chemical injury is mild, the cornea will heal with normal clarity, but severe injuries can lead to partial and/or permanent loss of corneal functions. Currently, the role of AQPs in corneal wound healing is poorly understood in the context of chemical injury. This review discusses the current literature and the role of AQPs in corneal homeostasis, wound repair, and potential therapeutic target for acute and chronic corneal injuries.
Collapse
Affiliation(s)
- Madeline E Bhend
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; School of Medicine, University of South Carolina, Columbia, SC, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Nishant R Sinha
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Suneel Gupta
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Rajiv R Mohan
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
13
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
15
|
Azmanova M, Rafols L, Cooper PA, Seaton CC, Shnyder SD, Pitto‐Barry A. Anticancer Water-Soluble Organoruthenium Complexes: Synthesis and Preclinical Evaluation. Chembiochem 2022; 23:e202200259. [PMID: 35838006 PMCID: PMC9545474 DOI: 10.1002/cbic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate-based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non-small-cell lung cancer cell line (H460) and one normal prostate cell line (PNT2) are presented herein. These 18-electron complexes were designed with four water-soluble phosphine ligands to increase the water-solubility character of the corresponding electron-deficient ruthenium complex which showed great in vitro promises, and triphenylphosphine for comparison. The complexes with triphenylphosphine-3,3',3''-trisulfonic acid and triphenylphosphine present similar cytotoxicity compared to the 16-electron precursor, with equal cytotoxicity to both A2780 and A2780cisR. Hints at the mechanism of action suggest an apoptotic pathway based on reactive oxygen species (ROS) production. No toxicity was observed in preliminary in vivo pilot studies for these two complexes in subcutaneous A2780 and A2780cisR xenograft models, with some evidence of tumour growth delay.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Laia Rafols
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | | | - Colin C. Seaton
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Steven D. Shnyder
- Institute of Cancer TherapeuticsUniversity of BradfordBD7 1DPBradfordUK
| | - Anaïs Pitto‐Barry
- Université Paris-SaclayCNRSInstitut Galien Paris-Saclay92296Châtenay-MalabryFrance
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| |
Collapse
|
16
|
Liu S, Qiu Y, Gu F, Xu X, Wu S, Jin Z, Wang L, Gao K, Zhu C, Yang X, Jiang Z. Niacin Improves Intestinal Health through Up-Regulation of AQPs Expression Induced by GPR109A. Int J Mol Sci 2022; 23:ijms23158332. [PMID: 35955466 PMCID: PMC9368703 DOI: 10.3390/ijms23158332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.
Collapse
|
17
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
18
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
19
|
Wang W, Wu J, Dai X, Cheng K. Inhibitory effect of CC chemokine ligand 23 (CCL23)/ transcription factor activating enhancer binding protein 4 (TFAP4) on cell proliferation, invasion and angiogenesis in hepatocellular carcinoma. Bioengineered 2022; 13:1626-1636. [PMID: 35001801 PMCID: PMC8805957 DOI: 10.1080/21655979.2021.2021125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly vascularized solid tumor with a fast growth rate. According to bioinformatics analysis, CC chemokine ligand 23 (CCL23) has clinical significance for survival and prognosis in HCC. The online databases TCGA and CCLE were used to analyze the expression level of CCL23, and its expression was also measured in HCC cell lines by RT-qPCR and Western blotting. The STRING database and co-immunoprecipitation were employed to evaluate the association between CCL23 and transcription factor activating enhancer binding protein 4 (TFAP4). Overexpression plasmids for CCL23 (Ov-CCL23) and TFAP4 (Ov-TFAP4) were transfected into Huh-7 cells to detect TFAP4 expression. Huh-7 cells injected with OV-negative control (NC)/Ov-CCL23 or OV-NC/Ov-CCL23 plus Ov-TFAP4 were utilized to study the function of CCL23/TFAP4. Cell proliferation, invasion and human umbilical vein endothelial cell tube formation assays were conducted. The database revealed decreased expression of CCL23 in HCC and that it was commonly downregulated in HCC cell lines. TFAP4 expression was negatively correlated with CCL23. The overexpression of CCL23 inhibited the proliferation and invasion of Huh-7 cells, whereas TFAP4 blocked these effects. Similarly, the supernatant of CCL23-upregulated cells exhibited significantly lower tube formation potential, and low vascular endothelial growth factor A (VEGFA), VEGFRs expression compared with those of non-transfected Huh-7 cells, while TFAP4 plasmid co-transfected markedly increased these. Taken together, the present study suggests that CCL23 is expressed at low levels in HCC; it inhibits HCC cell proliferation, invasion and angiogenesis in vitro; and its action is negatively associated with and can be blocked by TFAP4.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Radiotherapy, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jianjun Wu
- Department of Radiotherapy, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xulei Dai
- Department of Medical Laboratory Science, Xingtai Medical College, Xingtai, Hebei, China
| | - Kun Cheng
- Department of Pathology, Xingtai Medical College, Xingtai, Hebei, China
| |
Collapse
|
20
|
Tolbatov I, Marrone A, Coletti C, Re N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021; 26:7600. [PMID: 34946684 PMCID: PMC8707411 DOI: 10.3390/molecules26247600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l’Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| |
Collapse
|
21
|
Xu S, Huang S, Li D, Zou Q, Yuan Y, Yang Z. The Expression of Aquaporin-1 and Aquaporin-3 in Extrahepatic Cholangiocarcinoma and their Clinicopathological Significance. Am J Med Sci 2021; 364:181-191. [PMID: 34800429 DOI: 10.1016/j.amjms.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the expression and clinicopathological significance of aquaporin-1 (AQP1) and aquaporin-3 (AQP3) in extrahepatic cholangiocarcinoma (EHCC). METHODS Immunostaining of AQP1 and AQP3 was performed by EnVision immunohistochemistry in benign and malignant biliary tract tissues. RESULTS The expression of AQP1 and AQP3 protein were significantly higher in EHCC tumor tissues (P < 0.05 or P < 0.01). Adenoma and paracancerous tissues with positive AQP1 and/or AQP3 protein expression exhibited atypical hyperplasia. AQP1 expression was positive correlated with AQP3 expression in EHCC (P < 0.01). TNM I + II stage and radical surgery, the positive expression of AQP1 and AQP3 In patients with well-differentiation, no invasion, no lymph metastasis, is lower (P < 0.05 or P < 0.01). Average overall survival time of those with positive expression of AQP1 and AQP3 was significant shorter (P < 0.01). Both AQP1 and AQP3 positive expressions were proved to be an independent prognostic factors in EHCC by cox multivariate analysis. The AUC calculated for AQP1 was 0.769 (95% confidence interval [CI]: 0.618-0.920), and that for AQP3 was 0.758 (95%CI: 0.605-0.911, while that for AQP1 and AQP3 was 0.825 (95%CI: 0.658-0.991). CONCLUSIONS Positive expression of AQP1 and AQP3 is closely related to the pathogenesis, severe clinicopathological characteristics, aggressive biological behaviors, and dismal prognoses in EHCC.
Collapse
Affiliation(s)
- Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Shengfu Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China.
| |
Collapse
|
22
|
Li W, Song Y, Pan C, Yu J, Zhang J, Zhu X. Aquaporin-8 is a novel marker for progression of human cervical cancer cells. Cancer Biomark 2021; 32:391-400. [PMID: 34151838 PMCID: PMC8673491 DOI: 10.3233/cbm-203251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Role of aquaporin-8 (AQP8) in cervical cancer has not been fully elucidated. OBJECTIVE: We aim to explore the impacts of AQP8 on viability, apoptosis and metastasis in cervical cancer cells. METHODS: AQP8 protein expression in cervical carcinoma specimens and cell lines was detected by IHC and western blot analysis. Lentivirus-mediated transfection was used to upregulate and knockdown AQP8 in cells. Cell viability and apoptosis were assessed by CCK-8 and flow cytometry assays, respectively. Transwell experiments were conducted to investigate cell invasive and migratory capabilities. EMT-related markers were detected by western blot analysis. RESULTS: A strong positive of AQP8 protein expression was observed in cervical cancer tissues. Western blot analysis confirmed overexpression and knockdown of AQP8 in SiHa cells. AQP8-overexpressed SiHa cells displayed an enhanced viability, reduced apoptotic rate, increased invasive and migratory abilities. Knockdown of AQP8 inhibited the viability, promoted the apoptosis, and suppressed invasion and migration. Furthermore, AQP8 overexpression significantly upregulated vimentin and N-cadherin, and downregulated E-cadherin, which were reversed by AQP8 knockdown. CONCLUSIONS: AQP8 increases viability, inhibits apoptosis, and facilitates metastasis in SiHa cells. This may be associated with EMT-related markers regulated by AQP8. AQP8 could serve as a potential marker for cervical cancer progression.
Collapse
Affiliation(s)
- Weibo Li
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Obstetrics and Gynecology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.,Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yizuo Song
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyu Pan
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhui Yu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianan Zhang
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
24
|
de Almeida A, Parthimos D, Dew H, Smart O, Wiltshire M, Errington RJ. Aquaglyceroporin-3's Expression and Cellular Localization Is Differentially Modulated by Hypoxia in Prostate Cancer Cell Lines. Cells 2021; 10:cells10040838. [PMID: 33917751 PMCID: PMC8068192 DOI: 10.3390/cells10040838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Aquaporins are required by cells to enable fast adaptation to volume and osmotic changes, as well as microenvironmental metabolic stimuli. Aquaglyceroporins play a crucial role in supplying cancer cells with glycerol for metabolic needs. Here, we show that AQP3 is differentially expressed in cells of a prostate cancer panel. AQP3 is located at the cell membrane and cytoplasm of LNCaP cell while being exclusively expressed in the cytoplasm of Du145 and PC3 cells. LNCaP cells show enhanced hypoxia growth; Du145 and PC3 cells display stress factors, indicating a crucial role for AQP3 at the plasma membrane in adaptation to hypoxia. Hypoxia, both acute and chronic affected AQP3′s cellular localization. These outcomes were validated using a machine learning classification approach of the three cell lines and of the six normoxic or hypoxic conditions. Classifiers trained on morphological features derived from cytoskeletal and nuclear labeling alongside corresponding texture features could uniquely identify each individual cell line and the corresponding hypoxia exposure. Cytoskeletal features were 70–90% accurate, while nuclear features allowed for 55–70% accuracy. Cellular texture features (73.9% accuracy) were a stronger predictor of the hypoxic load than the AQP3 distribution (60.3%).
Collapse
|
25
|
Lv H, Li Y, Xue C, Dong N, Bi C, Shan A. Aquaporin: targets for dietary nutrients to regulate intestinal health. J Anim Physiol Anim Nutr (Berl) 2021; 106:167-180. [PMID: 33811387 DOI: 10.1111/jpn.13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
Aquaporins (AQP) are a class of water channel membrane proteins that are widely expressed in the gut. The biological functions of aquaporins, which regulate the absorption and secretion of water molecules and small solutes, maintain the stable state of the intestine, regulate cell proliferation and migration, participate in the process of intestinal inflammation, and mediate tumorigenesis, demonstrate the physiological significance of these channels in intestinal health. The pathology of many intestinal diseases is associated with changes in the location and expression of aquaporins, such as intestinal infection, which can change the expression and distribution of AQPs in intestinal tissues/cells by affecting cytokines and chemokines. This can lead to various intestinal diseases such as diarrhoea, which also suggests the importance of aquaporins in the prevention and treatment of intestinal diseases. This review summarizes the relationship between aquaporins and intestinal physiology and diseases and focuses on drugs (such as plant extracts) or diets that can regulate intestinal health by regulating aquaporins. It provides a basis for establishing aquaporins as biomarkers and therapeutic targets for intestinal health.
Collapse
Affiliation(s)
- Hao Lv
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ying Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Pinho JO, da Silva IV, Amaral JD, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int J Pharm 2021; 599:120463. [PMID: 33711474 DOI: 10.1016/j.ijpharm.2021.120463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects. This is the case of the widely studied Cu(II) complexes featuring phenanthroline ligands, with potent antiproliferative effects in vitro, but often failing in vivo. Aiming to overcome these limitations and maximize its anticancer effects in vivo, the Cu(II) complex (Cu(1,10-phenanthroline)Cl2) (Cuphen), displaying IC50 values <6 μM against different tumor cell lines, was loaded in long circulating liposomes with pH-sensitive properties (F1, DMPC:CHEMS:DSPE-PEG; F2, DOPE:CHEMS:DMPC:DSPE-PEG). This enabled a pH-dependent Cuphen release, with F1 and F2 releasing 36/78% and 47/94% of Cuphen at pH 6/4.5, respectively. The so formed nanoformulations preserved Cuphen effects towards cancer cell lines, with F2 presenting IC50 of 2.7 μM and 4.9 μM towards colon cancer CT-26 and HCT-116 cells, respectively. Additional in vitro studies confirmed that Cuphen antiproliferative activity towards colon cancer cells does not rely on cell cycle effect. Furthermore, in these cells, Cuphen reduced glycerol permeation and impaired cell migration. At 24 h incubation, wound closure was reduced by Cuphen, with migration values of 29% vs 54% (control) and 45% (1,10-phenanthroline) in CT-26 cells, and 33% vs ~44% (control and 1,10-phenanthroline) in HCT-116 cells. These effects were probably due to inhibition of aquaglyceroporins, membrane water and glycerol channels that are often abnormally expressed in tumors. In a syngeneic murine colon cancer model, F2 significantly reduced tumor progression, compared to the control group and to mice treated with free Cuphen or with the ligand, 1,10-phenanthroline, without eliciting toxic side effects. F2 led to a tumor volume reduction of ca. 50%. This was confirmed by RTV analysis, where F2 reached a value of 1.3 vs 4.4 (Control), 5.8 (Phen) and 3.8 (free Cuphen). These results clearly demonstrated the important role of the Cu(II) for the observed biological activity that was maximized following the association to a lipid-based nanosystem. Overall, this study represents a step forward in the development of pH-sensitive nanotherapeutic strategies of metallodrugs for colon cancer management.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
27
|
da Silva IV, Cardoso C, Martínez-Banaclocha H, Casini A, Pelegrín P, Soveral G. Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response. Cell Mol Life Sci 2021; 78:3073-3085. [PMID: 33231721 PMCID: PMC11073090 DOI: 10.1007/s00018-020-03708-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1β, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1β release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Carlos Cardoso
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- Clinical Chemistry Laboratory, Dr. Joaquim Chaves, 1495-148, Algés, Portugal
| | - Helios Martínez-Banaclocha
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Carretera Buenavista, 30120, Murcia, Spain
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Carretera Buenavista, 30120, Murcia, Spain.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
28
|
Targeting Aquaporins in Novel Therapies for Male and Female Breast and Reproductive Cancers. Cells 2021; 10:cells10020215. [PMID: 33499000 PMCID: PMC7911300 DOI: 10.3390/cells10020215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aquaporins are membrane channels in the broad family of major intrinsic proteins (MIPs), with 13 classes showing tissue-specific distributions in humans. As key physiological modulators of water and solute homeostasis, mutations, and dysfunctions involving aquaporins have been associated with pathologies in all major organs. Increases in aquaporin expression are associated with greater severity of many cancers, particularly in augmenting motility and invasiveness for example in colon cancers and glioblastoma. However, potential roles of altered aquaporin (AQP) function in reproductive cancers have been understudied to date. Published work reviewed here shows distinct classes aquaporin have differential roles in mediating cancer metastasis, angiogenesis, and resistance to apoptosis. Known mechanisms of action of AQPs in other tissues are proving relevant to understanding reproductive cancers. Emerging patterns show AQPs 1, 3, and 5 in particular are highly expressed in breast, endometrial, and ovarian cancers, consistent with their gene regulation by estrogen response elements, and AQPs 3 and 9 in particular are linked with prostate cancer. Continuing work is defining avenues for pharmacological targeting of aquaporins as potential therapies to reduce female and male reproductive cancer cell growth and invasiveness.
Collapse
|
29
|
Wragg D, Leoni S, Casini A. Aquaporin-driven hydrogen peroxide transport: a case of molecular mimicry? RSC Chem Biol 2020; 1:390-394. [PMID: 34458769 PMCID: PMC8341912 DOI: 10.1039/d0cb00160k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are membrane proteins that have evolved to control cellular water uptake and efflux, and as such are amongst the most ancient biological "devices" in cellular organisms. Recently, using metadynamics, we have shown that water nanoconfinement within aquaporin channels results into bidirectional water movement along single file chains, extending previous investigations. Here, the elusive mechanisms of H2O2 facilitated transport by the human 'peroxiporin' AQP3 has been unravelled via a combination of atomistic simulations, showing that while hydrogen peroxide is able to mimic water during AQP3 permeation, this comes at a certain energy expense due to the required conformational changes within the channel. Furthermore, the intrinsic water dynamics allows for host H2O2 molecule solvation and transport in both directions, highlighting the fundamental role of water nanoconfinement for successful transduction and molecular selection. Overall, the bidirectional nature of the water flux under equilibrium conditions along with the mimicking behavior of hydrogen peroxide during a conductance event introduce a new chemical paradigm never reported so far in any theoretical paper involving any aquaporin isoform.
Collapse
Affiliation(s)
- Darren Wragg
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Stefano Leoni
- School of Chemistry, Cardiff University Park Place CF103AT Cardiff UK
| | - Angela Casini
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
30
|
Gaber A, Alsanie WF, Kumar DN, Refat MS, Saied EM. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020; 25:molecules25225447. [PMID: 33233775 PMCID: PMC7699950 DOI: 10.3390/molecules25225447] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine–vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV–Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine–Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111µg/mL. These results indicate that papaverine–Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.
Collapse
Affiliation(s)
- Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Walaa F. Alsanie
- Department of Clinical Laboratories, College of Applied Medical Sciences, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Deo Nandan Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi 110019, India;
| | - Moamen S. Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42511, Egypt
- Correspondence: (M.S.R.); (E.M.S.)
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Correspondence: (M.S.R.); (E.M.S.)
| |
Collapse
|
31
|
Liao S, Huang H, Zhang F, Lu D, Ye S, Zheng L, Sun Y, Wu Y. Differential expression of epithelial sodium channels in human RCC associated with the prognosis and tumor stage: Evidence from integrate analysis. J Cancer 2020; 11:7348-7356. [PMID: 33193899 PMCID: PMC7646170 DOI: 10.7150/jca.48970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Epithelial sodium channels are disputed in renal cell carcinoma, but its functions and effects on clinical outcomes are not well understood. Materials and Methods: IHC and PT-PCR were used to detect ENaCα, β, γ, AVPR2, AQP2, and MR expression in the primary tumor and peritumoral tissues. GEPIA online tool was used to analyze the relationship between epithelial sodium channels and clinical-pathological characteristics. Tumor IMmune Estimation Resource online tool was used to investigate the immune profile relevant to epithelial sodium channels expression. Results: Quantitative RT-PCR analysis revealed that ENaCα, β, γ, AQP2, and AVPR2 mRNA were decreased in the RCC, but there was no difference in MR mRNA expression between kidney and RCC (p=0.238). The IHC analyses showed that the intensely positive staining of ENaCα, β, γ, AVPR2, and AQP in the renal tubular and the attenuated in the RCCs. MR displayed moderate staining in both RCC and normal tissue. With the promotion of staging, the expression of AQP2, AVPR2, and MR reduced gradually and predicted a better prognosis. Although ENaCα, β, and γ were unable to associate with staging, we still observed a high expression of ENaCβ and γ displayed a poorer prognosis of RCC. Conclusions: ENaCs shows an oncogene profile in RCC, drugs targeting epithelial sodium channel should be a possible therapeutic way to treat RCC. AVPR2 and MR exhibit an encouraging immunomodulatory function; patients with low expression of AVPR2 and MR may obtain more benefit from immunotherapy.
Collapse
Affiliation(s)
- Shangfan Liao
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Huaibin Huang
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Fabiao Zhang
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Dongming Lu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Shuchao Ye
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Luoping Zheng
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming365100, Fujian, PR. China
| |
Collapse
|
32
|
Soldevila-Barreda JJ, Fawibe KB, Azmanova M, Rafols L, Pitto-Barry A, Eke UB, Barry NPE. Synthesis, Characterisation and In Vitro Anticancer Activity of Catalytically Active Indole-Based Half-Sandwich Complexes. Molecules 2020; 25:E4540. [PMID: 33022980 PMCID: PMC7583056 DOI: 10.3390/molecules25194540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
The synthesis, characterisation and evaluation of the in vitro cytotoxicity of four indole-based half-sandwich metal complexes towards two ovarian cancer cell lines (A2780 and A2780cisR) and one normal prostate cell line (PNT2) are presented herein. Although capable of inducing catalytic oxidation of NADH and able to reduce NAD+ with high turnover frequencies, in cells and in the presence of sodium formate, these complexes also strongly interact with biomolecules such as glutathione. This work highlights that efficient out-of-cells catalytic activity might lead to higher reactivity towards biomolecules, thus inhibiting the in-cells catalytic processes.
Collapse
Affiliation(s)
- Joan J. Soldevila-Barreda
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Kehinde B. Fawibe
- Department of Chemistry, University of Ilorin, Ilorin P.M.B 1515, Nigeria; (K.B.F.); (U.B.E.)
| | - Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Laia Rafols
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Uche B. Eke
- Department of Chemistry, University of Ilorin, Ilorin P.M.B 1515, Nigeria; (K.B.F.); (U.B.E.)
| | - Nicolas P. E. Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| |
Collapse
|
33
|
Hong Y, Chen Z, Li N, Zhang M. Prognostic value of serum aquaporin-1, aquaporin-3 and galectin-3 for young patients with colon cancer. Ann Clin Biochem 2020; 57:404-411. [PMID: 32936667 DOI: 10.1177/0004563220961752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND This study aimed to investigate the long-term prognosis value of serum galectin-3, aquaporin (AQP)-1 and AQP-3 in young patients with colon cancer. METHODS A total of 100 young patients with colon cancer, 100 cases of benign colon and 100 healthy people were collected. All colon cancer patients were followed up for 42 months. RESULTS Compared with the benign lesion group and the control group, preoperative serum galectin-3, AQP-1 and AQP-3 concentrations were significantly increased in patients with colon cancer (P < 0.05). The immunohistochemistry scores of galectin-3, AQP-1 and AQP-3 in colon cancer patients were positively correlated with serum galectin-3, AQP-1 and AQP-3 concentrations (P < 0.05). Serum galectin-3, AQP-1 and AQP-3 concentrations were positively correlated with TNM staging (galectin-3: rPearson = 0.502, P < 0.001; AQP-1: rPearson = 0.415, P < 0.001; AQP-3: rPearson = 0.454, P < 0.001) and differentiation (galectin-3: rPearson = 0.377, P = 0.004; AQP-1: rPearson = 0.411, P = 0.001; AQP-3: rPearson = 0.483, P < 0.001). Receiver operator characteristic curve (ROC) analysis showed that the area under ROC curve (AUC) of the combination of galectin-3, AQP-1 and AQP-3 in distinguishing colon cancer was 0.907. The sensitivity in the parallel mode was 87.6%, and the specificity in the serial mode was 98.2%. Compared with the low galectin-3 group, low AQP-1 group and low AQP-3 group, the survival time of patients in the high galectin-3 group (χ2 = 13.929, P < 0.001), high AQP-1 group (χ2 = 10.157, P = 0.001) and high AQP-3 group (χ2 = 4.364, P = 0.037) were significantly shortened. CONCLUSION Galectin-3 combined with AQP-1 and AQP-3 had important value in the identification of young patients with colon cancer and was of great value in evaluating long-term prognosis.
Collapse
Affiliation(s)
- Yanyan Hong
- Cancer Centre, Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Zhendong Chen
- Cancer Centre, Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Na Li
- Cancer Centre, Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Mingjun Zhang
- Cancer Centre, Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
34
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
35
|
Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020; 11:855. [PMID: 32765303 PMCID: PMC7379034 DOI: 10.3389/fphys.2020.00855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Ion transporters play an important role in several physiological functions, such as cell volume regulation, pH homeostasis and secretion. In the oesophagus, ion transport proteins are part of the epithelial resistance, a mechanism which protects the oesophagus against reflux-induced damage. A change in the function or expression of ion transporters has significance in the development or neoplastic progression of Barrett’s oesophagus (BO). In this review, we discuss the physiological and pathophysiological roles of ion transporters in the oesophagus, highlighting transport proteins which serve as therapeutic targets or prognostic markers in eosinophilic oesophagitis, BO and esophageal cancer. We believe that this review highlights important relationships which might contribute to a better understanding of the pathomechanisms of esophageal diseases.
Collapse
Affiliation(s)
- Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Huang SH, Lin YC, Tung CW. Identification of Time-Invariant Biomarkers for Non-Genotoxic Hepatocarcinogen Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124298. [PMID: 32560183 PMCID: PMC7345770 DOI: 10.3390/ijerph17124298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Non-genotoxic hepatocarcinogens (NGHCs) can only be confirmed by 2-year rodent studies. Toxicogenomics (TGx) approaches using gene expression profiles from short-term animal studies could enable early assessment of NGHCs. However, high variance in the modulation of the genes had been noted among exposure styles and datasets. Expanding from our previous strategy in identifying consensus biomarkers in multiple experiments, we aimed to identify time-invariant biomarkers for NGHCs in short-term exposure styles and validate their applicability to long-term exposure styles. In this study, nine time-invariant biomarkers, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3, Cyp2c11, Ntf3, and Sds, were identified from four large-scale microarray datasets. Machine learning techniques were subsequently employed to assess the prediction performance of the biomarkers. The biomarker set along with the Random Forest models gave the highest median area under the receiver operating characteristic curve (AUC) of 0.824 and a low interquartile range (IQR) variance of 0.036 based on a leave-one-out cross-validation. The application of the models to the external validation datasets achieved high AUC values of greater than or equal to 0.857. Enrichment analysis of the biomarkers inferred the involvement of chronic inflammatory diseases such as liver cirrhosis, fibrosis, and hepatocellular carcinoma in NGHCs. The time-invariant biomarkers provided a robust alternative for NGHC prediction.
Collapse
Affiliation(s)
- Shan-Han Huang
- Ph. D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-H.H.); (Y.-C.L.)
| | - Ying-Chi Lin
- Ph. D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-H.H.); (Y.-C.L.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan
- Correspondence:
| |
Collapse
|
37
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Development of four ruthenium polypyridyl complexes as antitumor agents: Design, biological evaluation and mechanism investigation. J Inorg Biochem 2020; 208:111104. [PMID: 32485635 DOI: 10.1016/j.jinorgbio.2020.111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Ruthenium complexes are expected to be new opportunities for the development of antitumor agents. Herein, four ruthenium polypyridyl complexes ([Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-1, bpy = 2,2'-bipyridine; CAPIP = (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ru(phen)2(CA-PIP)](ClO4)2 (Ru(II)-2, phen = 1,10-phenanthroline), [Ru(dmb)2(CAPIP)](ClO4)2 (Ru(II)-3, dmb = 4,4'-dimethyl-2,2'-bipyridine), [Ru(dmb)2(ETPIP)](ClO4)2 (Ru(II)-4, ETPIP = 2-(4-(thiophen-2-ylethynyl)phenyl)-1H-imidazo[4,5-f][1,10]phen-anthroline)) have been investigated as mitochondria-targeted antitumor metallodrugs. DNA binding studies indicated that target Ru(II) complexes interacts with CT DNA (calf thymus DNA) by an intercalative mode. Cytotoxicity assay results demonstrate that Ru(II) complexes show high cytotoxicity against A549 cells with low IC50 value of 23.6 ± 2.3, 20.1 ± 1.9, 22.7 ± 1.8 and 18.4 ± 2.3 μM, respectively. Flow cytometry and morphological analysis revealed that these Ru(II) complexes can induce apoptosis in A549 cells. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were also investigated by ImageXpress Micro XLS system. The experimental results indicate that the reactive oxygen species in A549 cells increased significantly and mitochondrial membrane potential decreased obviously. In addition, colocalization studies shown these complexes could get to the cytoplasm through the cell membrane and accumulate in the mitochondria. Furthermore, Ru(II) complexes can effectively induces cell cycle arrest at the S phase in A549 cells. Finally, cell invasion assay and quantitative studies were also performed to investigate the mechanism of this process. All in together, this study suggested that these Ru(II) complexes could induce apoptosis in A549 cells through cell cycle arrest and ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int J Mol Sci 2020; 21:E2932. [PMID: 32331263 PMCID: PMC7215620 DOI: 10.3390/ijms21082932] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology.
Collapse
Affiliation(s)
| | - Dana Dvorská
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (E.H.); (H.Š.)
| | | | | |
Collapse
|
39
|
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. Computational Modeling on Aquaporin-3 as Skin Cancer Target: A Virtual Screening Study. Front Chem 2020; 8:250. [PMID: 32351935 PMCID: PMC7175779 DOI: 10.3389/fchem.2020.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Aquaporin-3 (AQP3) is one of the aquaglyceroporins, which is expressed in the basolateral layer of the skin membrane. Studies have reported that human skin squamous cell carcinoma overexpresses AQP3 and inhibition of its function may alleviate skin tumorigenesis. In the present study, we have applied a virtual screening method that encompasses filters for physicochemical properties and molecular docking to select potential hit compounds that bind to the Aquaporin-3 protein. Based on molecular docking results, the top 20 hit compounds were analyzed for stability in the binding pocket using unconstrained molecular dynamics simulations and further evaluated for binding free energy. Furthermore, examined the ligand-unbinding pathway of the inhibitor from its bound form to explore possible routes for inhibitor approach to the ligand-binding site. With a good docking score, stability in the binding pocket, and free energy of binding, these hit compounds can be developed as Aquaporin-3 inhibitors in the near future.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, South Korea
| | - Sandeep Chaudhary
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
40
|
Aquaporin 1, 3, and 5 Patterns in Salivary Gland Mucoepidermoid Carcinoma: Expression in Surgical Specimens and an In Vitro Pilot Study. Int J Mol Sci 2020; 21:ijms21041287. [PMID: 32075009 PMCID: PMC7073006 DOI: 10.3390/ijms21041287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Salivary gland aquaporins (AQPs) are essential for the control of saliva production and maintenance of glandular structure. However, little is known of their role in salivary gland neoplasia. Salivary gland tumors comprise a heterogeneous group of lesions, featuring variable histological characteristics and diverse clinical behaviors. Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. The aim of this study was to evaluate the expression of AQP1, AQP3, and AQP5 in 24 MEC samples by immunohistochemistry. AQP1 expression was observed in vascular endothelium throughout the tumor stroma. AQP3 was expressed in epidermoid and mucosal cells and AQP5 was expressed in mucosal cells of MEC. These proteins were expressed in the human MEC cell line UH-HMC-3A. Cellular ultrastructural aspects were analyzed by electron microscopy to certificate the tumor cell phenotype. In summary, our results show that, despite the fact that these molecules are important for salivary gland physiology, they may not play a distinct role in tumorigenesis in MEC. Additionally, the in vitro model may offer new possibilities to further investigate mechanisms of these molecules in tumor biology and their real significance in prognosis and possible target therapies.
Collapse
|
41
|
Oberkofler J, Aikman B, Bonsignore R, Pöthig A, Platts J, Casini A, Kühn FE. Exploring the Reactivity and Biological Effects of Heteroleptic N‐Heterocyclic Carbene Gold(I)‐Alkynyl Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jens Oberkofler
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Brech Aikman
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Riccardo Bonsignore
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Alexander Pöthig
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - James Platts
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Angela Casini
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Fritz E. Kühn
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
42
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
43
|
Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019; 20:E5052. [PMID: 31614661 PMCID: PMC6834120 DOI: 10.3390/ijms20205052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporins are a family of transmembrane proteins permeable to water. In mammals, they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer. Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This review summarizes the current knowledge related to the involvement of aquaporins in the pancreas physiology and physiopathology.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
44
|
Zhang X, Chen J, Liu X, Zhang Y, Zou Y, Yuan J. Study on removal of pyrene by Agropyron cristatum L. in pyrene-Ni co-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:313-321. [PMID: 31522526 DOI: 10.1080/15226514.2019.1663481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metals and polycyclic aromatic hydrocarbons (PAHs) co-contamination in the soil is widespread. Phytoremediation is often used to remediate co-contaminated soil, but few studies focused on the effects of nickel on the dissipation and uptake of pyrene in phytoremediation. The dissipation of pyrene, the uptake, and distribution of pyrene in Agropyron cristatum L. (A. cristatum) were investigated in this study in the presence of nickel. The pyrene removal rate in single pyrene-contaminated soil with A. cristatum cultivation (48.97%) was the highest, which was higher than that of the co-contamination (47.88%). This was due to the high soil microbial activity and high dissolved organic matter (DOM) contents. In single pyrene-contaminated soil, pyrene was mainly accumulated in the soluble fraction in shoots and on the cell wall in roots of A. cristatuma. Besides, nickel could promote the adsorption of pyrene on the cell wall. Pyrene in A. cristatum could be transported through the apoplast and symplast, and the pyrene contents in the symplast were 2-3 times that of the apoplast. The uptake of pyrene by A. cristatum included both active absorption and passive transportation. Active absorption involved H+ transport and energy conversion processes, and passive transport was associated with water protein channels.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jing Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Contaminated Site Remediation Technology Research Center, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yanming Zhang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai, China
| | - Yuqi Zou
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jingxi Yuan
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
45
|
Wragg D, de Almeida A, Casini A, Leoni S. Unveiling the Mechanisms of Aquaglyceroporin‐3 Water and Glycerol Permeation by Metadynamics. Chemistry 2019; 25:8713-8718. [DOI: 10.1002/chem.201902121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Darren Wragg
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Andreia de Almeida
- Tumour Micro Environment Group, Division of Cancer and GeneticsSchool of MedicineCardiff University Tenovus Building Cardiff CF14 4XN UK
| | - Angela Casini
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Stefano Leoni
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| |
Collapse
|
46
|
Pinho JO, Amaral JD, Castro RE, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine (Lond) 2019; 14:835-850. [DOI: 10.2217/nnm-2018-0388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Preclinical evaluation of a cytotoxic copper (II) complex formulated in long circulating nanoliposomes for melanoma treatment. Materials & methods: Liposomal nanoformulations of the copper complex were characterized in terms of thermodynamic behavior (differential scanning calorimeter), pH-sensitivity (spectrophotometry) and antiproliferative effects against murine melanoma B16F10 cells in vitro. Preclinical studies were performed in a C57BL/6 syngeneic melanoma model. Results: Nanoformulations were thermodynamically stable, and CHEMS-containing nanoliposomes were pH-sensitive and preserved the antiproliferative properties of the copper compound. These nanoformulations significantly impaired tumor progression in vivo, devoid of toxic side effects, compared with control mice or mice treated with the free metallodrug. Conclusion: Copper complex-containing nanoliposomes demonstrate high anticancer efficacy and safety, constituting a step forward to the development of more effective therapeutic strategies against melanoma.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília MP Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
47
|
Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of Mammalian Aquaporin Water Channels. Int J Mol Sci 2019; 20:ijms20071589. [PMID: 30934923 PMCID: PMC6480248 DOI: 10.3390/ijms20071589] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Collapse
Affiliation(s)
- Mohammed Abir-Awan
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Matthew T Conner
- Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
48
|
Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and after Carcinogenesis. Cancers (Basel) 2019; 11:cancers11020213. [PMID: 30781816 PMCID: PMC6406746 DOI: 10.3390/cancers11020213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is recognized as a cancer-initiating stress response in the digestive system. It is produced through mitochondrial respiration and induces DNA damage, resulting in cancer cell transformation. However, recent findings indicate that oxidative stress is also a necessary anticancer response for destroying cancer cells. The oxidative stress response has also been reported to be an important step in increasing the anticancer response of newly developed molecular targeted agents. Oxidative stress might therefore be a cancer-initiating response that should be downregulated in the precancerous stage in patients at risk of cancer but an anticancer cell response that should not be downregulated in the postcancerous stage when cancer cells are still present. Many commercial antioxidant agents are marketed as “cancer-eliminating agents” or as products to improve one’s health, so cancer patients often take these antioxidant agents. However, care should be taken to avoid harming the anticancerous oxidative stress response. In this review, we will highlight the paradoxical effects of oxidative stress and antioxidant agents in the digestive system before and after carcinogenesis.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
49
|
Wenzel MN, Mósca AF, Graziani V, Aikman B, Thomas SR, de Almeida A, Platts JA, Re N, Coletti C, Marrone A, Soveral G, Casini A. Insights into the Mechanisms of Aquaporin-3 Inhibition by Gold(III) Complexes: the Importance of Non-Coordinative Adduct Formation. Inorg Chem 2019; 58:2140-2148. [DOI: 10.1021/acs.inorgchem.8b03233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Margot N. Wenzel
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Andreia F. Mósca
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Valentina Graziani
- Università“G. d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100 Chieti, Italy
| | - Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Sophie R. Thomas
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Andreia de Almeida
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
- Tumour Microenvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, United Kingdom
| | - James A. Platts
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Nazzareno Re
- Università“G. d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100 Chieti, Italy
| | - Cecilia Coletti
- Università“G. d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Marrone
- Università“G. d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100 Chieti, Italy
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
50
|
Pracharova J, Novohradsky V, Kostrhunova H, Štarha P, Trávníček Z, Kasparkova J, Brabec V. Half-sandwich Os(ii) and Ru(ii) bathophenanthroline complexes: anticancer drug candidates with unusual potency and a cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans 2018; 47:12197-12208. [PMID: 30112527 DOI: 10.1039/c8dt02236d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an urgent need to discover new, selective compounds to add to the limited arsenal of chemotherapeutics displaying selective toxicity for aggressive triple-negative breast cancer (TNBC) cells. The effect of two, recently developed metal-based half-sandwich complexes [Os(η6-pcym)(bphen)(dca)]PF6 (Os-dca) and [Ru(η6-pcym)(bphen)(dca)]PF6 (Ru-dca) [pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene); bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline); dca = dichloroacetate] on triple-negative breast cancer cells MDA-MB-231 is reported. The complexes display selective toxicity in several tumor cells (at submicromolar concentrations), and a prominent effect is observed against highly progressive triple negative breast cancer MDA-MB-231 cells for Os-dca. The lower potency of Ru-dca in comparison with Os-dca is apparently connected with a relatively quick release of the dca ligand due to the hydrolysis of Ru-dca before this complex enters the cells. Remarkably, both Os-dca and Ru-dca reduce successfully metastasis-related properties of the triple-negative breast cancer cells such as migration, invasion, and re-adhesion. The anti-metastatic effects of Os-dca and Ru-dca are associated with their ability to suppress matrix metalloproteinase activity and/or production and reduce the expression of aquaporins. Further detailed mechanistic studies reveal that Os-dca reverses Warburg's effect and oncosis seems to be a prominent mode of cell death that predominates over apoptosis. As such, Os-dca can efficiently overcome the resistance of cancer cells to clinically-used apoptotic inducers cisplatin and carboplatin. The cytostatic and anti-metastatic properties of Os-dca in MDA-MB-231 provide a strong impetus for the development of new metal-based compounds to target hardly treatable human TNBC cells and displaying different modes of action compared to the antitumor metallodrugs in clinical use.
Collapse
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|