1
|
Gu QS, Yang ZC, Chao JJ, Li L, Mao GJ, Xu F, Li CY. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Anal Chem 2023; 95:12478-12486. [PMID: 37555783 DOI: 10.1021/acs.analchem.3c02134] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.
Collapse
Affiliation(s)
- Qing-Song Gu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Li Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
2
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
3
|
Xu Z, Si S, Zhang Z, Tan H, Qin T, Wang Z, Wang D, Wang L, Liu B. A fluorescent probe with dual acrylate sites for discrimination of different concentration ranges of cysteine in living cells. Anal Chim Acta 2021; 1176:338763. [PMID: 34399901 DOI: 10.1016/j.aca.2021.338763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/15/2022]
Abstract
Monitoring of cysteine (Cys) is of significant importance for studying Cys-involved biological functions and clinically diagnosing Cys-related diseases. Recently, few fluorescent probes with two different reacting sites were reported to be capable of sensing different concentration ranges of Cys with distinct fluorescence signals, particularly suiting for bioimaging. However, due to relative sophisticated synthesis and moderate selectivity, the applications of these probes were still severely restricted. In this work, we proposed a novel probe design strategy by utilizing two same reacting groups, instead of two different reacting groups, to simplify the synthesis route and minimize the interference from competing species. Same reacting groups in a probe with different steric hindrances could exhibit different reactivities to Cys. This probe showed distinguishable fluorescence peak wavelengths towards low and high concentration ranges of Cys, giving green and blue emissions, respectively. Moreover, this probe was successfully applied for monitoring of Cys concentration in living cells. We believe this work provided a simpler strategy for dual-site fluorescent probes to sense difference concentration ranges of Cys, which may inspire more probe design in future.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China; College of Physics and Optoelectronic Engineering, China
| | - Shufan Si
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhijun Zhang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Huiya Tan
- Medical Device Research and Testing Center of South China University of Technology, South China University of Technology, Guangzhou, 510006, China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhonglin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Dong Wang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China.
| |
Collapse
|
4
|
S K, Sam B, George L, N SY, Varghese A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 2021; 31:1251-1276. [PMID: 34255257 DOI: 10.1007/s10895-021-02770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F-, OCl-) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.
Collapse
Affiliation(s)
- Keerthana S
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Bincy Sam
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Sudhakar Y N
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
5
|
Chao J, Wang Z, Zhang Y, Huo F, Yin C, Li M, Duan Y. A Pyrene-Based Fluorescent Probe for Specific Detection of Cysteine and its Application in Living Cell. J Fluoresc 2021; 31:727-732. [PMID: 33609214 DOI: 10.1007/s10895-021-02703-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Cysteine (Cys) is an essential amino acid in organism, which is transformed from methionine in vivo and participates in protein synthesis and cell redox process. Therefore, the detection of Cys is of great significance. In this work, a novel fluorescent probe, (E)-3-(2-chloroquinolin-3-yl)-1-(pyren-3-yl) prop-2-en-1-one (PAQ) was designed and synthesized to specifically detect Cys. The response mechanism of the reaction between PAQ and Cys was due to the addition reaction of Cys to α,β-unsaturated ketone of PAQ. Interestingly, the addition of Cys induced significant fluorescence intensity enhancement at 462 nm. PAQ exhibited favorable sensing properties towards Cys such as the low limit of detection (0.27 μM) and fast response speed (2 min). In addition, PAQ displayed high selectivity and anti-interference ability toward Cys among various analytes. Notably, PAQ has been successfully used to image exogenous and endogenous Cys in HeLa cells.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ming Li
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuexiang Duan
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Wang Y, Feng H, Li H, Yang X, Jia H, Kang W, Meng Q, Zhang Z, Zhang R. A Copper (II) Ensemble-Based Fluorescence Chemosensor and Its Application in the 'Naked-Eye' Detection of Biothiols in Human Urine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1331. [PMID: 32121408 PMCID: PMC7085593 DOI: 10.3390/s20051331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Quick and effective detection of biothiols in biological fluids has gained increasing attention due to its vital biological functions. In this paper, a novel reversible fluorescence chemosensor (L-Cu2+) based on a benzocoumarin-Cu2+ ensemble has been developed for the detection of biothiols (Cys, Hcy and GSH) in human urine. The chemosensing ensemble (L-Cu2+) contains a 2:1 stoichiometry structure between fluorescent ligand L and paramagnetic Cu2+. L was found to exclusively bond with Cu2+ ions accompanied with a dramatic fluorescence quenching maximum at 443 nm and an increase of an absorbance band centered at 378 nm. Then, the in situ generated fluorescence sluggish ensemble, L-Cu2+, was successfully used as a chemosensor for the detection of biothiols with a fluorescence "OFF-ON" response modality. Upon the addition of biothiols, the decomplexation of L-Cu2+ led to the liberation of the fluorescent ligand, L, resulting in the recovery of fluorescence and absorbance spectra. Studies revealed that L-Cu2+ possesses simple synthesis, excellent stability, high sensitivity, reliability at a broad pH range and desired renewability (at least 5 times). The practical application of L-Cu2+ was then demonstrated by the detection of biothiols in human urine sample.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
8
|
Highly selective isomer fluorescent probes for distinguishing homo-/cysteine from glutathione based on AIE. Talanta 2020; 206:120177. [DOI: 10.1016/j.talanta.2019.120177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023]
|
9
|
Praveen Kumar PP, Kaur N, Shanavas A, Neelakandan PP. Nanomolar detection of biothiols via turn-ON fluorescent indicator displacement. Analyst 2020; 145:851-857. [DOI: 10.1039/c9an02222h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, visual colour and turn-ON fluorescent method for the detection of biothiols under physiological conditions is reported. The chemosensing is achieved on the basis of the displacement of BODIPY dyes from the surface of gold nanoparticles.
Collapse
Affiliation(s)
| | - Navneet Kaur
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali 160062
- India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali 160062
- India
| | | |
Collapse
|
10
|
Li B, Zhang D, An R, Zhu Y. A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications. Molecules 2019; 24:E3102. [PMID: 31461829 PMCID: PMC6749190 DOI: 10.3390/molecules24173102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/04/2023] Open
Abstract
In this work, a novel 7-hydroxybenzoxazinone-based fluorescent probe (PBD) for the selective sensing of biothiols is reported. Upon treatment with biothiols, PBD shows a strong fluorescence enhancement (up to 70-fold) and a large Stokes shift (155 nm). Meanwhile, this probe exhibits high resistance to interference from other amino acids and competing species. PBD features good linearity ranges with a low detection limit of 14.5 nM for glutathione (GSH), 17.5 nM for cysteine (Cys), and 80.0 nM for homocysteine (Hcy), respectively. Finally, the potential utility of this probe for biothiol sensing in living HeLa cells is demonstrated.
Collapse
Affiliation(s)
- Bin Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Datong Zhang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China.
| | - Ruibing An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Yaling Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
11
|
Hong H, Shi L, Huang J, Peng C, Yang S, Shao G, Gong S. A novel near-infrared fluorescent probe with a “donor–π–acceptor” type structure and its application in the selective detection of cysteine in living cells. NEW J CHEM 2019. [DOI: 10.1039/c8nj04006k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel “donor–π–acceptor” type fluorescent probe has been prepared for the detection of Cys. This probe shows great fluorescent performance and obvious response to Cys, and has been successfully applied in visualizing Cys in living cells.
Collapse
Affiliation(s)
- Haojia Hong
- School of Chemical Engineering and Technology
- Guangdong Industry Polytechnic, Guangzhou
- Guangdong
- P. R. China
| | - Lei Shi
- School of Chemical Engineering and Technology
- Guangdong Industry Polytechnic, Guangzhou
- Guangdong
- P. R. China
| | - Junzhe Huang
- School of Chemical Engineering and Technology
- Guangdong Industry Polytechnic, Guangzhou
- Guangdong
- P. R. China
| | - Chang Peng
- College of Science
- Hunan Agricultural University
- Changsha
- P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China
| | - Guang Shao
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- Guangdong
- P. R. China
| | - Shengzhao Gong
- School of Chemical Engineering and Technology
- Guangdong Industry Polytechnic, Guangzhou
- Guangdong
- P. R. China
| |
Collapse
|
12
|
Zhang P, Xiao Y, Zhang Q, Zhang Z, Yu H, Ding C. ESIPT-based fluorescent probe for cysteine sensing with large Stokes shift over homocysteine and glutathione and its application in living cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj01259a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An HBT-based fluorescent probe for Cys with a large Stokes shift and high selectivity was developed that operates by the ESIPT process.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Yuzhe Xiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Zixuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Hongwei Yu
- Qingdao Municipal Center for Disease Control & Prevention
- Qingdao 266033
- P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| |
Collapse
|
13
|
Synthesis of nitromethyl-, N-methylindolyl-, or N-methylindolylnitromethyl-substituted 1,4-benzothiazin(diazin)ones and 3-methyl-1,4-benzoxazinones from alkyl 3-nitroacrylates. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2339-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Wang Y, Meng Q, Han Q, He G, Hu Y, Feng H, Jia H, Zhang R, Zhang Z. Selective and sensitive detection of cysteine in water and live cells using a coumarin–Cu2+ fluorescent ensemble. NEW J CHEM 2018. [DOI: 10.1039/c8nj03809k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin–Cu2+ ensemble based fluorescent chemosensor was developed for the selective detection of cysteine in aqueous media and live cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
- Key Laboratory for Functional Material
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Guangjie He
- Department of Forensic Medicine
- Xinxiang Medical University
- XinXiang
- P. R. China
| | - Yaoyun Hu
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material
- Educational Department of Liaoning Province
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| |
Collapse
|