1
|
Liu Z, Liu C, He L, Liu J, Li L, Yang S, Tan Y, Liu X, Xiao X. A Cascade Signal Amplification Strategy for the Ultrasensitive Fluorescence Detection of Cu 2+ via λ-Exonuclease-Assisted Target Recycling with Mismatched Catalytic Hairpin Assembly. BIOSENSORS 2023; 13:918. [PMID: 37887111 PMCID: PMC10605925 DOI: 10.3390/bios13100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Herein, an ultrasensitive DNAzyme-based fluorescence biosensor for detecting Cu2+ was designed using the cascade signal amplification strategy, coupling λ-exonuclease-assisted target recycling and mismatched catalytic hairpin assembly (MCHA). In the designed detection system, the target, Cu2+, can activate the Cu2+-dependent DNAzyme to cause a cleavage reaction, releasing ssDNA (tDNA). Then, tDNA binds to hairpin DNA (H0) with an overhanging 5'-phosphorylated terminus to form dsDNA with a blunt 5'-phosphorylated terminus, which activates the dsDNA to be digested by λ-Exo and releases tDNA along with another ssDNA (iDNA). Subsequently, the iDNA initiates MCHA, which can restore the fluorescence of carboxyfluorescein (FAM) previously quenched by tetramethylrhodamine (TAMRA), resulting in a strong fluorescent signal. Furthermore, MCHA efficiently improves the signal-to-noise ratio of the detection system. More importantly, tDNA recycling can be achieved with the λ-Exo digestion reaction to release more iDNA, efficiently amplifying the fluorescent signal and further improving the sensitivity to Cu2+ with a detection limit of 60 fM. The practical application of the developed biosensor was also demonstrated by detecting Cu2+ in real samples, proving it to be an excellent analytical strategy for the ultrasensitive quantification of heavy metal ions in environmental water sources.
Collapse
Affiliation(s)
- Zhen Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Chen Liu
- Hunan Province Key Laboratory for Typical Environmental Pollution and Health Hazards, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
| | - Liqiong He
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Jinquan Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Le Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Yan Tan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Xing Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Xilin Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
- State Key Laboratory of Chemo & Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Yan T, Hou Y, Zuo Q, Jiang D, Zhao H, Xia T, Zhu X, Han X, An R, Liang X. Ultralow background one-pot detection of Lead(II) using a non-enzymatic double-cycle system mediated by a hairpin-involved DNAzyme. Biosens Bioelectron 2023; 237:115534. [PMID: 37527624 DOI: 10.1016/j.bios.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
A double-cycle system has been developed for specifically detecting trace amounts of Pb2+ by significantly decreasing the background signal. The detection involves two types of RNA cleavage reactions: one using a Pb2+-specific GR5 DNAzyme (PbDz) and the other utilizing a newly constructed 10-23 DNAzyme with two hairpins embedded in its catalytic center (hpDz). The ring-structured hpDz (c-hpDz) exhibits significantly lower activity compared to the circular 10-23 DNAzyme without hairpin structures, which plays a crucial role in reducing the background signal. When Pb2+ is present, PbDz cleaves c-hpDz to its active form, which then disconnects the molecular beacon to emit the fluorescent signal. The method allows for rapid and sensitive Pb2+ detection within 40 min for 10 fM of Pb2+ and even as short as 10 min for 100 nM of Pb2+. Additionally, visual detection is possible through the non-crosslinking assembly of Au nanoparticles. The entire process can be performed in one pot and even one step, making it highly versatile and suitable for a wide range of applications, including food safety testing and environmental monitoring.
Collapse
Affiliation(s)
- Ting Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qianqian Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Difei Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huijie Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tongyue Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqian Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xutiange Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
3
|
Abstract
Microscale thermophoresis (MST) technology has emerged as a powerful growing method in a molecular interaction study by measuring fluorescence responses of molecules inside a capillary to infrared (IR) laser heating with the benefits of rapid ratiometric measurement, separation-free, no immobilization, and low sample consumption. Combining the advantages of RNA-cleaving DNAzymes in target recognition and enzymatic catalysis and the strength of MST technology for fluorescence signaling, here, we reported a DNAzyme-based MST method for sensitive target detection. We introduced a fluorescein terminal label at the RNA-cleaving DNAzyme, and the substrate was linked to DNAzyme together with a poly-T sequence in a unimolecular design or not conjugated with DNAzyme in a bimolecular design. The presence of the cofactor activated DNAzyme to catalytically cleave the substrate, causing molecular structure alteration and significant changes in MST signals. This DNAzyme MST sensor enabled sensitively detecting activator targets Pb2+ and l-histidine, with a detection limit of 49 pM Pb2+ and 3.9 μM l-histidine. This biosensing strategy is universal and promising for wide applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
4
|
Sun H, Liu Z, Li Z, Ma X, Duan Z, Sun C. Label-Free Fluorescent Determination of Lead (II) Using DNAzyme and Thiazole Orange. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongjing Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zheng Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zhihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zixuan Duan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
|
6
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Pan J, Bao D, Bao E, Chen J. A hairpin probe-mediated DNA circuit for the detection of the mecA gene of Staphylococcus aureus based on exonuclease III and DNAzyme-mediated signal amplification. Analyst 2021; 146:3673-3678. [PMID: 33954316 DOI: 10.1039/d1an00028d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, highly sensitive biosensor for S. aureus detection is becoming increasingly important in human health and safety. In this work, a hairpin probe-mediated DNA circuit for the detection of the mecA gene of S. aureus was reported cascading Exo III-assisted cycling signal amplification and the DNAzyme-mediated cleavage reaction. In the presence of the target mecA gene, the recognition and hybridization between HP1 and mecA can trigger Exo III and DNAzyme-mediated signal amplification and further release numerous ATMND, resulting in an enhanced fluorescence response, which serves as a response signal for the fluorescence detection of mecA gene. This biosensor enables the sensitive and specific detection of the mecA gene, showing a linear response ranging from 1 fM to 1 nM with a detection limit of 0.5 fM. Moreover, this fluorescence assay has been applied for the analysis of clinical samples with satisfactory recovery. Importantly, this universal platform can be further extended for the analysis of other targets by alternating the corresponding recognition unit, which holds much promise in point-of-care testing for bacterial analysis.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Dongqin Bao
- Shuyang Hospital Affiliated to Xuzhou Medical University, Suqian 223800, China
| | - Enhu Bao
- Shuyang Hospital Affiliated to Xuzhou Medical University, Suqian 223800, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Zhang D, Yu X, Wu L, Jin H, Wei M. Ultrasensitive electrochemical detection of Pb2+ based on DNAzyme coupling with exonuclease III –Assisted target recycling. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb 2+ detection. Anal Chim Acta 2020; 1147:124-143. [PMID: 33485571 DOI: 10.1016/j.aca.2020.12.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal of great environmental and health concerns, and interestingly Pb2+ has played important roles in nucleic acids chemistry. Since 2000, using DNA for selective detection of Pb2+ has become a rapidly growing topic in the analytical community. Pb2+ can serve as the most active cofactor for RNA-cleaving DNAzymes including the GR5, 17E and 8-17 DNAzymes. Recently, Pb2+ was found to promote a porphyrin metalation DNAzyme named T30695. In addition, Pb2+ can tightly bind to various G-quadruplex sequences inducing their unique folding and binding to other molecules such as dyes and hemin. The peroxidase-like activity of G-quadruplex/hemin complexes was also used for Pb2+ sensing. In this article, these Pb2+ recognition mechanisms are reviewed from fundamental chemistry to the design of fluorescent, colorimetric, and electrochemical biosensors. In addition, various signal amplification mechanisms such as rolling circle amplification, hairpin hybridization chain reaction and nuclease-assisted methods are coupled to these sensing methods to drive up sensitivity. We mainly cover recent examples published since 2015. In the end, some practical aspects of these sensors and future research opportunities are discussed.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Food and Biological Sciences, College of Agriculture, Yanbian University, Yanji, 133002, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weixuan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Water Institute, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
11
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|