1
|
Shen P, Liu Y, Qu X, Zhu M, Huang T, Sun Q. An optical keypad lock with high resettability based on a quantum dot-porphyrin FRET nanodevice. NANOSCALE ADVANCES 2023; 5:2986-2993. [PMID: 37260500 PMCID: PMC10228340 DOI: 10.1039/d3na00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Due to their appealing properties, nanomaterials have become ideal candidates for the implementation of computing systems. Herein, an optical keypad lock based on a Förster resonance energy transfer (FRET) nanodevice is developed. The nanodevice is composed of a green-emission quantum dot with a thick silica shell (gQD@SiO2) and peripheric blue-emission quantum dots with ultrathin silica spacer (bQD@SiO2), on which 5,10,15,20-tetrakis(4-sulfophenyl)porphyrin (TSPP) is covalently linked. The nanodevice outputs dual emission-based ratiometric fluorescence, depending on the FRET efficiency of bQD-porphyrin pairs, which is highly sensitive to the metalation of TSPP: values are 59.7%, 44.8%, and 10.1% for bQD-Zn(ii)TSPP, bQD-TSPP, and bQD-Fe(iii)TSPP pairs, respectively. As such, by using the competitive chelation-induced transmetalation of TSPP, the nanodevice is capable of implementing a 3-input keypad lock that is unlocked only by the correct input order of Zn(ii) chelator, iron ions, and UV light. Interestingly, the reversible transmetalation of TSPP permits the reset (lock) operation of the keypad lock with the correct input order of ascorbic acid, Zn(ii), and UV light. Application of the nanodevice is exemplified by the construction of paper and cellular keypad locks, respectively, both of which feature signal readability and/or high resettability, showing high potential for personal information identification and bio-encryption applications.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Xiaojun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Mingsong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Ting Huang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| |
Collapse
|
2
|
Wang X, Yuan W, Sun Z, Liu F, Wang D. Ultrasensitive multicolor electrochromic sensor built on closed bipolar electrode: Application in the visual detection of Pseudomonas aeruginosa. Food Chem 2023; 403:134240. [DOI: 10.1016/j.foodchem.2022.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
|
3
|
Xiao R, Wei W, Li J, Xiao C, Yao H, Liu H. Constructing combinational and sequential logic devices through an intelligent electrocatalytic interface with immobilized MoS2 quantum dots and enzymes. Talanta 2022; 248:123615. [DOI: 10.1016/j.talanta.2022.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
4
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wei W, Li J, Yao H, Liu H. A molecular keypad lock with 3-output signals built on stimulus-responsive polymer film electrodes containing diallyl viologen. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ma P, Ma X, Chen F. The Construction of Stimulus‐responsive Film Electrode by the Cu‐catalyzed Radical Polymerization and its Application in Multi‐valued Biologic Systems. ELECTROANAL 2021. [DOI: 10.1002/elan.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Xiaoyan Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Fang Chen
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| |
Collapse
|
7
|
Li J, Xiao C, Wei W, Xiao R, Yao H, Liu H. Constructing a Facile Biocomputing Platform Based on Smart Supramolecular Hydrogel Film Electrodes with Immobilized Enzymes and Gold Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36632-36643. [PMID: 34288670 DOI: 10.1021/acsami.1c11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, fluorescent gold nanoclusters (AuNCs) and horseradish peroxidase (HRP) were simultaneously embedded into self-assembled dipeptide supramolecular films of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) on the surface of ITO electrodes (Fmoc-FF/AuNCs/HRP) by using a simple single-step process. In the films, both the fluorescence property of AuNCs and the bioelectrocatalytic property of HRP were well maintained and could be reversibly regulated by pH-sensitive structural changes in the Fmoc-FF hydrogel films. Cu(II)/EDTA in the solution could lead to the aggregation/disaggregation of AuNCs and further quenching/dequenching the fluorescence signal from the films. Meanwhile, the blue complexes formed by Cu(II) and EDTA could produce a UV-vis signal in the solution. In addition, the coordinated Cu(II) in the films enhanced the electrocatalytic capacity toward the reduction of H2O2 and could switch the current signal. A biomolecular logic circuit was built based on the smart film electrode system by using pH, the concentrations of EDTA, Cu(II) and H2O2 as inputs, while the fluorescence intensity (FL), current (I) and UV-vis extinction (E) of the solution as outputs. Various logic devices were fabricated using the uniform platform, consisting of an encoder/decoder, demultiplexer, dual-transfer gate, keypad lock, digital comparator, half adder, and controlled NOT (CNOT) gate. Specifically, an electronic three-value logic gate, gullibility (ANY) gate, was first mimicked in this biocomputing system. This work not only demonstrated the construction of a new type of multivalued logic gate by using a dipeptide micromolecular matrix but also provided a new approach for designing sophisticated biologic functions, establishing smart multianalyte biosensing or fabricating biology information processing through the use of a simple film system.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Cong Xiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wenting Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ruiqi Xiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Huiqin Yao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Lv WY, Li CH, Li YF, Zhen SJ, Huang CZ. Hierarchical Hybridization Chain Reaction for Amplified Signal Output and Cascade DNA Logic Circuits. Anal Chem 2021; 93:3411-3417. [DOI: 10.1021/acs.analchem.0c04483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Pawar S, Duadi H, Fleger Y, Fixler D. Carbon Dots-Based Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:232. [PMID: 33477327 PMCID: PMC7830989 DOI: 10.3390/nano11010232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs)-based logic gates are smart nanoprobes that can respond to various analytes such as metal cations, anions, amino acids, pesticides, antioxidants, etc. Most of these logic gates are based on fluorescence techniques because they are inexpensive, give an instant response, and highly sensitive. Computations based on molecular logic can lead to advancement in modern science. This review focuses on different logic functions based on the sensing abilities of CDs and their synthesis. We also discuss the sensing mechanism of these logic gates and bring different types of possible logic operations. This review envisions that CDs-based logic gates have a promising future in computing nanodevices. In addition, we cover the advancement in CDs-based logic gates with the focus of understanding the fundamentals of how CDs have the potential for performing various logic functions depending upon their different categories.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Yafit Fleger
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| |
Collapse
|
10
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
11
|
Wei W, Li J, Yao H, Shi K, Liu H. A versatile molecular logic system based on Eu(III) coordination polymer film electrodes combined with multiple properties of NADH. Phys Chem Chem Phys 2020; 22:22746-22757. [PMID: 33020777 DOI: 10.1039/d0cp03020a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, a new type of lanthanide coordination polymer film made up of europium (Eu(iii)) and poly(N-methacryloylglycine) (Eu(iii)-PMAG) was prepared on an ITO electrode surface driven by the coordination between N-methacryloylglycine (MAG) and Eu(iii) through a single-step polymerization process. The fluorescence signal of Eu(iii)-PMAG films at 617 nm originating from Eu(iii) could be well retained in the buffer solution but was regulated by the concentration of Cu(ii) and the complexing agent EDTA. The switching of fluorescence by Cu(ii) was attributed to the inhibition of the "antenna effect" between Eu(iii) and the MAG ligand in the films. The coexistence of reduced β-nicotinamide adenine dinucleotide (NADH) in the solution can apparently quench the fluorescence of Eu(iii)-PMAG films through the internal filtration effect of UV absorbance overlapping the excitation wavelength, but itself exhibiting a fluorescence emission at 468 nm. In addition, the electrocatalytic oxidation of NADH with the help of the ferrocenedicarboxylic acid (FcDA) probe demonstrated a cyclic voltammetry (CV) signal at 0.45 V (vs. SCE). Based on various reversible stimulus-responsive behaviours, a 4-input/10-output logic network was built using Cu(ii), EDTA, NADH and FcDA as inputs and the signals of fluorescence from Eu(iii)-PMAG (617 nm) and NADH (468 nm), the CV response from FcDA and the UV-vis absorbance from the Cu(ii)-EDTA complex as outputs. Meanwhile, 6 different functional logic devices were constructed based on the same versatile platform, including a 2-to-1 encoder, a 1-to-2 decoder, a 1-to-2 demultiplexer, a parity checker, a transfer gate and a reprogrammable 3-input/2-output keypad lock. Combined with the new type of lanthanide coordination polymer film, NADH played central roles in designing sophisticated computing systems with its fluorescence, UV and electrocatalytic properties. This work might provide a novel avenue to develop intelligent multi-analyte sensing and information processing at the molecular level based on one single platform.
Collapse
Affiliation(s)
- Wenting Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Ishizaki M, Ohshida E, Tanno H, Kawamoto T, Tanaka H, Hara K, Kominami H, Kurihara M. H2O2-sensing abilities of mixed-metal (Fe-Ni) Prussian blue analogs in a wide pH range. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Ha SYY, Ng DKP. Constructing a four-input molecular keypad lock with a multi-stimuli-responsive phthalocyanine. Chem Commun (Camb) 2020; 56:14601-14604. [DOI: 10.1039/d0cc06251k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel phthalocyanine has been designed and synthesised whose response towards different stimuli can be manipulated to enable it to function as a four-input molecular keypad lock.
Collapse
Affiliation(s)
- Summer Y. Y. Ha
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| |
Collapse
|
14
|
Zhang S, Li KB, Shi W, Zhang J, Han DM, Xu JJ. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly. NANOSCALE 2019; 11:5048-5057. [PMID: 30839977 DOI: 10.1039/c8nr10103e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integration of multi-level DNA logic gates for biological diagnosis is far from being fully realized. In particular, the simplification of logical analysis to implement advanced logic diagnoses is still a critical challenge for DNA computing and bioelectronics. Here, we developed a magnetic bead/DNA system to construct a library of logic gates, enabling the sensing of multiplex target miRNAs. In this assay, the miRNA-catalyzed hairpin assembly (CHA) was successfully applied to construct two/three-input concatenated logic circuits with excellent specificity extended to design a highly sensitive multiplex detection system. Significantly, the CHA-based multiplex detection system can distinguish individual target miRNAs (such as miR-21, miR-155, and miR let-7a) under a logic function control, which presents great applications in the development of rapid and intelligent detection. Another novel feature is that the multiplex detection system can be reset by heating the output system and the magnetic separation of the computing modules. Overall, the proposed logic diagnostics with high amplification efficiency is simple, fast, low-cost, and resettable, and holds great promise in the development of biocomputing, multiparameter sensing, and intelligent disease diagnostics.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | | | | | | | | | | |
Collapse
|
15
|
Katz E. Boolean Logic Gates Realized with Enzyme‐catalyzed Reactions – Unusual Look at Usual Chemical Reactions. Chemphyschem 2018; 20:9-22. [DOI: 10.1002/cphc.201800900] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
16
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|