1
|
Feng RM, Liu Y, Liu ZQ, Wang L, Chen N, Zhao Y, Yi HW. Advances in nucleic acid aptamer-based detection of respiratory virus and bacteria: a mini review. Virol J 2024; 21:237. [PMID: 39350296 PMCID: PMC11443872 DOI: 10.1186/s12985-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Respiratory pathogens infecting the human respiratory system are characterized by their diversity, high infectivity, rapid transmission, and acute onset. Traditional detection methods are time-consuming, have low sensitivity, and lack specificity, failing to meet the needs of rapid clinical diagnosis. Nucleic acid aptamers, as an emerging and innovative detection technology, offer novel solutions with high specificity, affinity, and broad target applicability, making them particularly promising for respiratory pathogen detection. This review highlights the progress in the research and application of nucleic acid aptamers for detecting respiratory pathogens, discussing their selection, application, potential in clinical diagnosis, and future development. Notably, these aptamers can significantly enhance the sensitivity and specificity of detection when combined with detection techniques such as fluorescence, colorimetry and electrochemistry. This review offers new insights into how aptamers can address the limitations of traditional diagnostic methods and advance clinical diagnostics. It also highlights key challenges and future research directions for the clinical application of nucleic acid aptamers.
Collapse
Affiliation(s)
- Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
- Laboratory Department, the People's Hospital of Yanhu District, Yuncheng, Shanxi, People's Republic of China
| | - Ye Liu
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zhi-Qiang Liu
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Li Wang
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Nan Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yu Zhao
- Oncology Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Kashkanova AD, Albrecht D, Küppers M, Blessing M, Sandoghdar V. Measuring Concentration of Nanoparticles in Polydisperse Mixtures Using Interferometric Nanoparticle Tracking Analysis. ACS NANO 2024; 18:19161-19168. [PMID: 38981021 PMCID: PMC11271174 DOI: 10.1021/acsnano.4c04396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Quantitative measurements of nanoparticle concentration in liquid suspensions are in high demand, for example, in the medical and food industries. Conventional methods remain unsatisfactory, especially for polydisperse samples with overlapping size ranges. Recently, we introduced interferometric nanoparticle tracking analysis (iNTA) for high-precision measurement of nanoparticle size and refractive index. Here, we show that by counting the number of trajectories that cross the focal plane, iNTA can measure concentrations of subpopulations in a polydisperse mixture in a quantitative manner and without the need for a calibration sample. We evaluate our method on both monodisperse samples and mixtures of known concentrations. Furthermore, we assess the concentration of SARS-CoV-2 in supernatant samples obtained from infected cells.
Collapse
Affiliation(s)
- Anna D. Kashkanova
- Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum
für Physik und Medizin, 91058 Erlangen, Germany
| | - David Albrecht
- Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum
für Physik und Medizin, 91058 Erlangen, Germany
| | - Michelle Küppers
- Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum
für Physik und Medizin, 91058 Erlangen, Germany
- Department
of Physics, Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Blessing
- Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum
für Physik und Medizin, 91058 Erlangen, Germany
- Department
of Physics, Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum
für Physik und Medizin, 91058 Erlangen, Germany
- Department
of Physics, Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Mi W, Zhang X, Wang B, Sun R, Ma S, Hu Z, Dai X. Absolute protein quantification based on calibrated particle counting using electrospray-differential mobility analysis. Anal Chim Acta 2024; 1304:342534. [PMID: 38637035 DOI: 10.1016/j.aca.2024.342534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The traceability of in vitro diagnostics or drug products is based on the accurate quantification of proteins. In this study, we developed an absolute quantification approach for proteins. This method is based on calibrated particle counting using electrospray-differential mobility analysis (ES-DMA) coupled with a condensation particle counter (CPC). The absolute concentration of proteins was quantified with the observed protein particle number measured with ES-DMA-CPC, and the detection efficiency was determined by calibrators. The measurement performance and quantitative level were verified using two certificated reference materials, BSA and NIMCmAb. The linear regression fit for the detection efficiency values of three reference materials and one highly purified protein (myoglobin, BSA, NIMCmAb and fibrinogen) indicated that the detection efficiency and the particle size distribution of these proteins exhibited a linear relationship. Moreover, to explore the suitability of the detection efficiency-particle size curve for protein quantification, the concentrations of three typical proteinaceous particles, including two high molecular weight proteins (NIST reference material 8671 and D-dimer) and one protein complex (glutathione S-transferase dimer), were determined. This work suggests that this calibrated particle counting method is an efficient approach for nondestructive, rapid and accurate quantification of proteins, especially for measuring proteinaceous particles with tremendous size and without reference standards.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Bin Wang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
4
|
Du D, Zhang Q, Zhang Z. Graphene-integrated microring cavity for electronically controlled molecular fingerprinting. APPLIED OPTICS 2024; 63:3916-3921. [PMID: 38856355 DOI: 10.1364/ao.519693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
Microring cavities supporting whispering-gallery modes (WGMs) have an exceptionally high quality factor (Q) and a small mode volume, greatly improving the interaction between light and matter, which has attracted great attention in various microscale/nanoscale photonic devices and potential applications. Recently, two-dimensional van der Waals (vdW) materials such as graphene have emerged as a potential platform for next-generation biosensing by enabling the confinement of light fields at the nanoscale. Here, we propose what we believe to be a novel approach to achieve molecular fingerprint retrieval by integrating graphene into a microring cavity and conducting numerical simulations using the finite-difference time-domain (FDTD) method. The hybrid cavity exhibits high-quality WGMs with a high Q factor of up to 800. Moreover, the resonant wavelength can be electronically controlled through modulation of graphene's Fermi level, enabling coverage of the entire free spectral range at infrared frequencies. By depositing a thin layer of biomolecular material (e.g., CBP) onto the surface of our hybrid cavity, we are able to accurately read out the absorption spectrum at multiple spectral points, thereby achieving broadband fingerprint retrieval for the targeted biomolecule. Our results pave the way for highly sensitive, chip-integrated, miniaturized, and electrically modulated infrared spectroscopy biosensing.
Collapse
|
5
|
Talts T, Mosscrop LG, Williams D, Tregoning JS, Paulo W, Kohli A, Williams TC, Hoschler K, Ellis J, de Lusignan S, Zambon M. Robust and sensitive amplicon-based whole-genome sequencing assay of respiratory syncytial virus subtype A and B. Microbiol Spectr 2024; 12:e0306723. [PMID: 38411056 PMCID: PMC10986592 DOI: 10.1128/spectrum.03067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Prevention of respiratory syncytial virus (RSV) infection is now a global health priority, with a long-acting monoclonal antibody and two RSV vaccines recently licenced for clinical use. Most licenced and candidate interventions target the RSV fusion (RSV-F) protein. New interventions may be associated with the spread of mutations, reducing susceptibility to antibody neutralization in RSV-F. There is a need for ongoing longitudinal global surveillance of circulating RSV strains. To achieve this large-scale genomic surveillance, a reliable, high-throughput RSV sequencing assay is required. Here we report an improved high-throughput RSV whole-genome sequencing (WGS) assay performed directly on clinical samples without additional enrichment, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. Using upper respiratory tract (URT) RSV-positive clinical samples obtained from a sentinel network of primary care providers and from hospital patients (29.7% and 70.2%, respectively; n = 1,037), collected over the period 2019 to 2023, this assay had a threshold of approximately 4 × 103 to 8 × 103 copies/mL (RSV-B and RSV-A sub-types, respectively) as the lowest amount of virus needed in the sample to achieve >96% of whole-genome coverage at a high-quality level. Using a Ct value of 31 as an empirical cut-off, the overall assay success rate of obtaining >90% genome coverage at a read depth minimum of 20 was 96.83% for clinical specimens successfully sequenced from a total of 1,071. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national programs for the surveillance of RSV genomic variation. IMPORTANCE In this paper, we report an improved high-throughput respiratory syncytial virus (RSV) whole-genome sequencing (WGS) assay performed directly on clinical samples, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national and global programs for the surveillance of RSV genomic variation. The quality of sequence produced is essential for preparedness for new interventions in monitoring antigenic escape, where a single point mutation might lead to a reduction in antibody binding effectiveness and neutralizing activity, or indeed in the monitoring of retaining susceptibility to neutralization by existing and new interventions.
Collapse
Affiliation(s)
- Tiina Talts
- UK Health Security Agency, London, United Kingdom
| | | | | | | | | | | | | | | | - Joanna Ellis
- UK Health Security Agency, London, United Kingdom
| | | | - Maria Zambon
- UK Health Security Agency, London, United Kingdom
| |
Collapse
|
6
|
Nava G, Casiraghi L, Carzaniga T, Zanchetta G, Chiari M, Damin F, Bollati V, Signorini L, Delbue S, Bellini T, Buscaglia M. Digital Detection of Single Virus Particles by Multi-Spot, Label-Free Imaging Biosensor on Anti-Reflective Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300947. [PMID: 37060208 DOI: 10.1002/smll.202300947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Rapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction. Thus, these settings are exploited to realize a scan-free, label-free, micro-array-type digital assay on a disposable cartridge, in which the virion counting takes place in wide field-of-view imaging. With this approach we could quantify, by enumeration, different variants of SARS-CoV-2 virions interacting with antibodies and aptamers immobilized on different spots. For all tested variants, the aptamers showed larger affinity but lower specificity relative to the antibodies. It is found that the combination of different probes on the same surface enables increasing specificity of detection and dynamic range.
Collapse
Affiliation(s)
- Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunitá, Universitá degli Studi di Milano, via S. Barnaba 8, Milano, 20122, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| |
Collapse
|
7
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
8
|
Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Varga Z, Madai M, Kemenesi G, Beke-Somfai T, Jakab F. Single-particle detection of native SARS-CoV-2 virions by microfluidic resistive pulse sensing. Colloids Surf B Biointerfaces 2022; 218:112716. [PMID: 35907357 PMCID: PMC9306222 DOI: 10.1016/j.colsurfb.2022.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.
Collapse
Affiliation(s)
- Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Tamás Beke-Somfai
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
10
|
Lothert K, Eilts F, Wolff MW. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Rev Vaccines 2022; 21:1029-1044. [PMID: 35483057 DOI: 10.1080/14760584.2022.2072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Effective cell-based production processes of virus particles are the foundation for the global availability of classical vaccines, gene therapeutic vectors, and viral oncolytic treatments. Their production is subject to regulatory standards ensuring the safety and efficacy of the pharmaceutical product. Process analytics must be fast and reliable to provide an efficient process development and a robust process control during production. Additionally, for the product release, the drug compound and the contaminants must be quantified by assays specified by regulatory authorities. AREAS COVERED This review summarizes analytical methods suitable for the quantification of viruses or virus-like particles. The different techniques are grouped by the analytical question that may be addressed. Accordingly, methods focus on the infectivity of the drug component on the one hand, and on particle counting and the quantification of viral elements on the other hand. The different techniques are compared regarding their advantages, drawbacks, required assay time, and sample throughput. EXPERT OPINION Among the technologies summarized, a tendency toward fast methods, allowing a high throughput and a wide applicability, can be foreseen. Driving forces for this progress are miniaturization and automation, and the continuous enhancement of process-relevant databases for a successful future process control.
Collapse
Affiliation(s)
- Keven Lothert
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Friederike Eilts
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Michael W Wolff
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany.,Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
11
|
O’Connell L, Roupioz Y, Marcoux PR. Container Material Dictates Stability of Bacteriophage Suspensions: Light Scattering & Infectivity Measurements Reveal Mechanisms of Infectious Titer Decay. J Appl Microbiol 2022; 133:529-543. [DOI: 10.1111/jam.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Larry O’Connell
- Univ. Grenoble Alpes, CEA, LETI, F‐38054 Grenoble France
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, F‐38000 Grenoble France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, F‐38000 Grenoble France
| | | |
Collapse
|
12
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Bognár Z, de Jonge MI, Gyurcsányi RE. In situ silver nanoparticle coating of virions for quantification at single virus level. NANOSCALE 2022; 14:2296-2303. [PMID: 35081610 DOI: 10.1039/d1nr07607h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ labelling and encapsulation of biological entities, such as of single viruses, may provide a versatile approach to modulate their functionality and facilitate their detection at single particle level. Here, we introduce a novel virus metallization approach based on in situ coating of viruses in solution with silver nanoparticles (AgNP) in a two-step synthetic process, i.e. surface activation with a tannic acid - Sn(II) coordination complex, which subsequently induces silver ion (I) reduction. The metalic coating on the virus surface opens the opportunity for electrochemical quantification of the AgNP-tagged viruses by nano-impact electrochemistry on a microelectrode with single particle sensitivity, i.e. enable the detection of particles oherwise undetectable. We show that the silver coating of the virus particles impacting the electrode can be oxidized to produce distinct current peaks the frequency of which show a linear correlation with the virus count. The proof of the concept was done with inactivated Influenza A (H3N2) viruses resulting in their quantitation down to the femtomolar concentrations (ca. 5 × 107 particles per mL) using 50 s counting sequences.
Collapse
Affiliation(s)
- Zsófia Bognár
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
15
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
16
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
17
|
The basic reproductive number and particle-to-plaque ratio: comparison of these two parameters of viral infectivity. Virol J 2021; 18:92. [PMID: 33931090 PMCID: PMC8085655 DOI: 10.1186/s12985-021-01566-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic has brought more widespread attention to the basic reproductive number (Ro), an epidemiologic measurement. A lesser-known measure of virologic infectivity is the particle-to-plaque ratio (P:PFU). We suggest that comparison between the two parameters may assist in better understanding viral transmission dynamics.
Collapse
|
18
|
Chatterjee S, Molenaar R, Tromp L, Wagterveld RM, Roesink HDW, Cornelissen JJLM, Claessens MMAE, Blum C. Optimizing fluorophore density for single virus counting: a photophysical approach. Methods Appl Fluoresc 2021; 9:025001. [PMID: 33480360 DOI: 10.1088/2050-6120/abd8e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In health and environmental research, it is often necessary to quantify the concentrations of single (bio) nanoparticles present at very low concentrations. Suitable quantification approaches that rely on counting and tracking of single fluorescently labelled (bio) nanoparticles are often challenging since fluorophore self-quenching limits the maximum particle brightness. Here we study how the number of labels per nanoparticle influences the total brightness of fluorescently labelled cowpea chlorotic mottle virus (CCMV). We analyze in detail the photophysical interplay between the fluorophores on the virus particles. We deduce that the formation of dark aggregates and energy transfer towards these aggregates limits the total particle brightness that can be achieved. We show that by carefully selecting the number of fluorescent labels per CCMV, and thus minimizing the negative effects on particle brightness, it is possible to quantify fluorescently labelled CCMV concentrations down to fM concentrations in single particle counting experiments.
Collapse
Affiliation(s)
- Swarupa Chatterjee
- Nanobiophysics (NBP), MESA + Institute for Nanotechnology and Technical Medical Centre, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang Y, Su Z, Ma G, Zhang S. Characterization and stabilization in process development and product formulation for super large proteinaceous particles. Eng Life Sci 2020; 20:451-465. [PMID: 33204232 PMCID: PMC7645648 DOI: 10.1002/elsc.202000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Super large proteinaceous particles (SLPPs) such as virus, virus like particles, and extracellular vesicles have successful and promising applications in vaccination, gene therapy, and cancer treatment. The unstable nature, the complex particulate structure and composition are challenges for their manufacturing and applications. Rational design of the processing should be built on the basis of fully understanding the characteristics of these bio-particles. This review highlights useful analytical techniques for characterization and stabilization of SLPPs in the process development and product formulations, including high performance size exclusion chromatography, multi-angle laser light scattering, asymmetrical flow field-flow fractionation, nanoparticle tracking analysis, CZE, differential scanning calorimetry, differential scanning fluorescence, isothermal titration calorimetry , and dual polarization interferometry. These advanced analytical techniques will be helpful in obtaining deep insight into the mechanism related to denaturation of SLPPs, and more importantly, in seeking solutions to preserve their biological functions against deactivation or denaturation. Combination of different physicochemical techniques, and correlation with in vitro or in vivo biological activity analyses, are considered to be the future trend of development in order to guarantee a high quality, safety, and efficacy of SLPPs.
Collapse
Affiliation(s)
- Yanli Yang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Songping Zhang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
20
|
Berkenbrock JA, Grecco-Machado R, Achenbach S. Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks. Proc Math Phys Eng Sci 2020; 476:20200398. [PMID: 33363440 PMCID: PMC7735301 DOI: 10.1098/rspa.2020.0398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Extensive testing of populations against COVID-19 has been suggested as a game-changer quest to control the spread of this contagious disease and to avoid further disruption in our social, healthcare and economical systems. Nonetheless, testing millions of people for a new virus brings about quite a few challenges. The development of effective tests for the new coronavirus has become a worldwide task that relies on recent discoveries and lessons learned from past outbreaks. In this work, we review the most recent publications on microfluidics devices for the detection of viruses. The topics of discussion include different detection approaches, methods of signalling and fabrication techniques. Besides the miniaturization of traditional benchtop detection assays, approaches such as electrochemical analyses, field-effect transistors and resistive pulse sensors are considered. For emergency fabrication of quick test kits, the local capabilities must be evaluated, and the joint work of universities, industries, and governments seems to be an unequivocal necessity.
Collapse
Affiliation(s)
- José Alvim Berkenbrock
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rafaela Grecco-Machado
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Ekrami E, Pouresmaieli M, Barati F, Asghari S, Ziarani FR, Shariati P, Mamoudifard M. Potential Diagnostic Systems for Coronavirus Detection: a Critical Review. Biol Proced Online 2020; 22:21. [PMID: 32884452 PMCID: PMC7462115 DOI: 10.1186/s12575-020-00134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
22
|
Gast M, Sobek H, Mizaikoff B. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. Hum Gene Ther Methods 2020; 30:235-244. [PMID: 31760805 DOI: 10.1089/hgtb.2019.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detailed characterization of biological nanoparticles is of paramount importance for various industrial sectors, as for production of viral therapeutics. More recently, technologies that allow real-time quantification with simultaneous sizing and determination of surface potentials of virus particles in solution have been developed. In this study, nanoparticle tracking analysis (NTA) was applied to determine the size and the zeta potential of human adenovirus type 5 (AdV5), one the most frequently used therapeutic/oncolytic agents and viral vectors. Virus aggregation was detected, and the kinetics of the dissolution of virus aggregates were studied in real time. In addition, advanced fluorescence detection of AdV5 was performed enabling the measurements in matrices and discrimination of viral subpopulations. It was shown that NTA is an efficient approach for investigating infectious viruses in a live viewing mode. Consequently, NTA provides a promising methodology for virus particle detection and analysis in real time beyond assays requiring nucleic acids or infectivity.
Collapse
Affiliation(s)
- Manuela Gast
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Ochsenhausen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Zhang T, Xu L, Jiang B, Yuan R, Xiang Y. Polymerization nicking-triggered LAMP cascades enable exceptional signal amplification for aptamer-based label-free detection of trace proteins in human serum. Anal Chim Acta 2019; 1098:164-169. [PMID: 31948580 DOI: 10.1016/j.aca.2019.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Detecting molecular biomarkers in high sensitivity plays an important role in the diagnosis of various diseases at the early stage. Here, by combining the target-induced polymerization nicking reaction (TIPNR) with the loop-mediated isothermal amplification (LAMP), we describe an ultrasensitive and label-free aptamer-based sensing method for detecting low levels of proteins in human serum by using thrombin as the model target analyte. The target thrombin binds and causes spontaneous assembly of two distinct aptamer probes to form the templates for the polymerization nicking reaction recycling amplification to produce many forward inner primer sequences. Subsequently, downstream LAMP reactions are initiated by these sequences for the generation of tremendous DNA hairpins with various lengths via automated cyclic strand displacement reactions. The SYBR Green I organic dye further binds the many hairpins to show drastically amplified fluorescence for ultrasensitive detection of thrombin down to 3.6 fM in the linear range from 0.01 pM to 10 nM. Such a sensing method based on aptamers has high discrimination capability for the target molecules against other non-specific proteins and is applicable for diluted serum samples. With the successful demonstration of the substantial signal amplification ability and simplicity feature of this assay approach, highly sensitive and convenient detection of other disease biomarkers with this method can be envisioned in the near future.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lin Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
24
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. NANOSCALE ADVANCES 2019; 1:2123-2138. [PMID: 36131986 PMCID: PMC9418768 DOI: 10.1039/c9na00153k] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Nanomaterials have been exploited extensively to fabricate various biosensors for clinical diagnostics and food & environmental monitoring. These materials in conjugation with highly specific aptamers (next-gen antibody mimics) have enhanced the selectivity, sensitivity and rapidness of the developed aptasensors for numerous targets ranging from small molecules such as heavy metal ions to complex matrices containing large entities like cells. In this review, we highlight the recent advancements in nanomaterial based aptasensors from the past five years also including the basics of conventionally used detection methodologies that paved the way for futuristic sensing techniques. The aptasensors have been categorised based upon these detection techniques and their modifications viz., colorimetric, fluorometric, Raman spectroscopy, electro-chemiluminescence, voltammetric, impedimetric and mechanical force-based sensing of a multitude of targets are discussed in detail. The bio-interaction of these numerous nanomaterials with the aptameric component and that of the complete aptasensor with the target have been studied in great depth. This review thus acts as a compendium for nanomaterial based aptasensors and their applications in the field of clinical and environmental diagnosis.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology Mohali 160062 India
| | - Munish Shorie
- Institute of Nano Science and Technology Mohali 160062 India
| |
Collapse
|