1
|
Liu Y, Li C, Tan C, Pei Z, Yang T, Zhang S, Huang Q, Wang Y, Zhou Z, Liao X, Dong J, Tan H, Yan W, Yin H, Liu ZQ, Huang J, Zhao S. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat Commun 2023; 14:2475. [PMID: 37120624 PMCID: PMC10148798 DOI: 10.1038/s41467-023-38129-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The chlor-alkali process plays an essential and irreplaceable role in the modern chemical industry due to the wide-ranging applications of chlorine gas. However, the large overpotential and low selectivity of current chlorine evolution reaction (CER) electrocatalysts result in significant energy consumption during chlorine production. Herein, we report a highly active oxygen-coordinated ruthenium single-atom catalyst for the electrosynthesis of chlorine in seawater-like solutions. As a result, the as-prepared single-atom catalyst with Ru-O4 moiety (Ru-O4 SAM) exhibits an overpotential of only ~30 mV to achieve a current density of 10 mA cm-2 in an acidic medium (pH = 1) containing 1 M NaCl. Impressively, the flow cell equipped with Ru-O4 SAM electrode displays excellent stability and Cl2 selectivity over 1000 h continuous electrocatalysis at a high current density of 1000 mA cm-2. Operando characterizations and computational analysis reveal that compared with the benchmark RuO2 electrode, chloride ions preferentially adsorb directly onto the surface of Ru atoms on Ru-O4 SAM, thereby leading to a reduction in Gibbs free-energy barrier and an improvement in Cl2 selectivity during CER. This finding not only offers fundamental insights into the mechanisms of electrocatalysis but also provides a promising avenue for the electrochemical synthesis of chlorine from seawater electrocatalysis.
Collapse
Affiliation(s)
- Yangyang Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chunhui Tan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tao Yang
- Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-93, Portugal
| | - Shuzhen Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yihan Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Huajie Yin
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Deng C, Zhu H, Huang Y, Liu H, Liu P, Cui P, Chao Y, Liu J, Wang R, Wu P, Zhu W. High temperature oxidizing-resistant magnetic high entropy catalyst for efficient oxidative desulfurization. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Froeschke S, Wolf D, Hantusch M, Giebeler L, Wels M, Gräßler N, Büchner B, Schmidt P, Hampel S. Synthesis of micro- and nanosheets of CrCl 3-RuCl 3 solid solution by chemical vapour transport. NANOSCALE 2022; 14:10483-10492. [PMID: 35822883 DOI: 10.1039/d2nr01366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid solutions of 2D transition metal trihalides are rapidly growing in interest for the search for new 2D materials with novel properties at nanoscale dimensions. In this regard, we present a synthesis method for the Cr1-xRuxCl3 solid solution and describe the behaviour of the unit cell parameters over the whole composition range, which in general follows Vegard's law in the range of a = 5.958(6)CrCl3 … 5.9731(5)RuCl3 Å, b = 10.3328(20)CrCl3 … 10.34606(21)RuCl3 Å, c = 6.110(5)CrCl3 … 6.0385(5)RuCl3 Å and β = 108.522(15)CrCl3 … 108.8314(14)RuCl3 °. The synthesized solid solution powder was subsequently used to deposit micro- and nanosheets directly on a substrate by applying chemical vapour transport in a temperature gradient of 575 °C → 525 °C for 2 h and 650 °C → 600 °C for 0.5 h as a bottom-up approach without the need for an external transport agent. The observed chromium chloride enrichment of the deposited crystals is predicted by thermodynamic simulation. The results allow for a nanostructure synthesis of this solid solution with a predictable composition down to about 30 nm in height and lateral size of several μm. When applying a quick consecutive delamination step, it is possible to obtain few- and monolayer structures, which could be used for further studies of downscaling effects for the CrCl3-RuCl3 solid solution. X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy were used to confirm the purity and quality of the synthesized crystals.
Collapse
Affiliation(s)
- Samuel Froeschke
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| | - Daniel Wolf
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| | - Martin Hantusch
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| | - Lars Giebeler
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| | - Martin Wels
- Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Nico Gräßler
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Peer Schmidt
- Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany.
| |
Collapse
|
4
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
5
|
Bergeron H, Lebedev D, Hersam MC. Polymorphism in Post-Dichalcogenide Two-Dimensional Materials. Chem Rev 2021; 121:2713-2775. [PMID: 33555868 DOI: 10.1021/acs.chemrev.0c00933] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) materials exhibit a wide range of atomic structures, compositions, and associated versatility of properties. Furthermore, for a given composition, a variety of different crystal structures (i.e., polymorphs) can be observed. Polymorphism in 2D materials presents a fertile landscape for designing novel architectures and imparting new functionalities. The objective of this Review is to identify the polymorphs of emerging 2D materials, describe their polymorph-dependent properties, and outline methods used for polymorph control. Since traditional 2D materials (e.g., graphene, hexagonal boron nitride, and transition metal dichalcogenides) have already been studied extensively, the focus here is on polymorphism in post-dichalcogenide 2D materials including group III, IV, and V elemental 2D materials, layered group III, IV, and V metal chalcogenides, and 2D transition metal halides. In addition to providing a comprehensive survey of recent experimental and theoretical literature, this Review identifies the most promising opportunities for future research including how 2D polymorph engineering can provide a pathway to materials by design.
Collapse
Affiliation(s)
- Hadallia Bergeron
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Tanaka M, Fujishiro Y, Mogi M, Kaneko Y, Yokosawa T, Kanazawa N, Minami S, Koretsune T, Arita R, Tarucha S, Yamamoto M, Tokura Y. Topological Kagome Magnet Co 3Sn 2S 2 Thin Flakes with High Electron Mobility and Large Anomalous Hall Effect. NANO LETTERS 2020; 20:7476-7481. [PMID: 32897724 DOI: 10.1021/acs.nanolett.0c02962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here, we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (∼2600 cm2 V-1 s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (∼1400 Ω-1 cm-1) and anomalous Hall angle (∼32%) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.
Collapse
Affiliation(s)
- M Tanaka
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Y Fujishiro
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - M Mogi
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Y Kaneko
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - T Yokosawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - N Kanazawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - S Minami
- Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - T Koretsune
- Department of Physics, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - R Arita
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - S Tarucha
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - M Yamamoto
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Y Tokura
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Tokyo College, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Minakawa T, Murakami Y, Koga A, Nasu J. Majorana-Mediated Spin Transport in Kitaev Quantum Spin Liquids. PHYSICAL REVIEW LETTERS 2020; 125:047204. [PMID: 32794825 DOI: 10.1103/physrevlett.125.047204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
We study the spin transport through the quantum spin liquid (QSL) by investigating the real-time and real-space dynamics of the Kitaev spin system with zigzag edges using the time-dependent Majorana mean-field theory. After the magnetic-field pulse is introduced to one of the edges, spin moments are excited in the opposite edge region although spin moments are never induced in the Kitaev QSL region. This unusual spin transport originates from the fact that the S=1/2 spins are fractionalized into the itinerant and localized Majorana fermions in the Kitaev system. Although both Majorana fermions are excited by the magnetic pulse, only the itinerant ones flow through the bulk regime without spin excitations, resulting in the spin transport in the Kitaev system despite the presence of a nonzero spin gap. We also demonstrate that this phenomenon can be observed in the system with small Heisenberg interactions using the exact diagonalization.
Collapse
Affiliation(s)
- Tetsuya Minakawa
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152- 8551, Japan
| | - Yuta Murakami
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152- 8551, Japan
| | - Akihisa Koga
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152- 8551, Japan
| | - Joji Nasu
- Department of Physics, Yokohama National University, Hodogaya, Yokohama 240-8501, Japan
- PRESTO, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Motome Y, Sano R, Jang S, Sugita Y, Kato Y. Materials design of Kitaev spin liquids beyond the Jackeli-Khaliullin mechanism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:404001. [PMID: 32235048 DOI: 10.1088/1361-648x/ab8525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The Kitaev spin liquid provides a rare example of well-established quantum spin liquids in more than one dimension. It is obtained as the exact ground state of the Kitaev spin model with bond-dependent anisotropic interactions. The peculiar interactions can be yielded by the synergy of spin-orbit coupling and electron correlations for specific electron configuration and lattice geometry, which is known as the Jackeli-Khaliullin mechanism. Based on this mechanism, there has been a fierce race for the materialization of the Kitaev spin liquid over the last decade, but the candidates have been still limited mostly to 4d- and 5d-electron compounds including cations with the low-spind5electron configuration, such as Ir4+and Ru3+. Here we discuss recent efforts to extend the material perspective beyond the Jackeli-Khaliullin mechanism, by carefully reexamining the two requisites, formation of thejeff= 1/2 doublet and quantum interference between the exchange processes, for not onlyd- but alsof-electron systems. We present three examples: the systems including Co2+and Ni3+with the high-spind7electron configuration, Pr4+with thef1-electron configuration, and polar asymmetry in the lattice structure. In particular, the latter two are intriguing since they may realize the antiferromagnetic Kitaev interactions, in contrast to the ferromagnetic ones in the existing candidates. This partial overview would stimulate further material exploration of the Kitaev spin liquids and its topological properties due to fractional excitations.
Collapse
Affiliation(s)
- Yukitoshi Motome
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Ryoya Sano
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Seonghoon Jang
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yusuke Sugita
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yasuyuki Kato
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Wang F, Zhang Z, Zhang Y, Nie A, Zhao W, Wang D, Huang F, Zhai T. Honeycomb RhI 3 Flakes with High Environmental Stability for Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001979. [PMID: 32419271 DOI: 10.1002/adma.202001979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The emerging 2D layered transition metal trihalides (MX3 ) have attracted extremely high interest given their exceptional structural and physical properties. Continuing to extend the library of 2D MX3 is essential for exploring new physical phenomena and enabling new functionality. Herein, the optical and electrical properties and the photodetection behavior of atomically thin RhI3 flakes exfoliated from bulk crystals are reported. This compound exhibits superior air and thermal stability, as well as thickness-dependent bandgap from 1.1 (18L) to 1.4 eV (2L). Field-effect transistors based on the few-layer RhI3 flakes display n-type semiconducting behavior with competitive mobility of 2.5 cm2 V-1 s-1 and ON/OFF current ratio of 4 × 104 . Importantly, the outstanding responsivity of 11.5 A W-1 and high specific detectivity of 2 × 1010 Jones are recorded from the RhI3 photodetectors under 980 nm illumination at room temperature in air. These findings indicate a variety of potential applications of atomically thin RhI3 flakes in future 2D-material-based electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Fakun Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Zhang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Anmin Nie
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Dong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Grönke M, Pohflepp D, Schmidt P, Valldor M, Oswald S, Wolf D, Hao Q, Steiner U, Büchner B, Hampel S. Simulation and synthesis of α-MoCl3 nanosheets on substrates by short time chemical vapor transport. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Roslova M, Hunger J, Bastien G, Pohl D, Haghighi HM, Wolter AUB, Isaeva A, Schwarz U, Rellinghaus B, Nielsch K, Büchner B, Doert T. Detuning the Honeycomb of the α-RuCl 3 Kitaev Lattice: A Case of Cr 3+ Dopant. Inorg Chem 2019; 58:6659-6668. [PMID: 31045349 DOI: 10.1021/acs.inorgchem.8b03545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fine-tuning chemistry by doping with transition metals enables new perspectives for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice of α-RuCl3, which is promising in the field of quantum information protection and quantum computation. The key parameters to vary by doping are both Heisenberg and Kitaev components of the nearest-neighbor exchange interaction between the Jeff = 1/2 Ru3+ spins, depending strongly on the peculiarities of the crystal structure. Here, we present crystal growth by chemical vapor transport and structure elucidation of a solid solution series Ru1- xCr xCl3 (0 ≤ x ≤ 1), with Cr3+ ions coupled to the Ru3+ Kitaev host. The Cr3+ substitution preserves the honeycomb type lattice of α-RuCl3 and creates mixed occupancy of Ru/Cr sites without cationic order within the layers as confirmed by single-crystal X-ray diffraction and transmission electron microscopy investigations. In contrast to high-quality single crystals of α-RuCl3 with ABAB-stacked layers, the ternary compounds demonstrate a significant stacking disorder along the c-axis direction as evidenced by X-ray diffraction and high resolution scanning transmission electron microscopy (HR-STEM). Raman spectra of substituted samples are in line with the symmetry conservation of the parent lattice upon chromium doping. At the same time, our magnetic susceptibility data indicate that the Kitaev physics of α-RuCl3 is increasingly suppressed by the dominant spin-only driven magnetism of Cr3+ ( S = 3/2) in Ru1- xCr xCl3.
Collapse
Affiliation(s)
- Maria Roslova
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Jens Hunger
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Gaël Bastien
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany
| | - Darius Pohl
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany.,Dresden Center for Nanoanalysis, cfaed , Technische Universität Dresden , 01062 Dresden , Germany
| | - Hossein M Haghighi
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany
| | - Anja U B Wolter
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany
| | - Anna Isaeva
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Ulrich Schwarz
- Max Planck Institute for Chemical Physics of Solids , 01187 Dresden , Germany
| | - Bernd Rellinghaus
- Dresden Center for Nanoanalysis, cfaed , Technische Universität Dresden , 01062 Dresden , Germany
| | - Kornelius Nielsch
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany
| | - Bernd Büchner
- Institute for Solid State and Materials Research (IFW) Dresden , 01171 Dresden , Germany
| | - Thomas Doert
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|