1
|
van der Heide P, Retini M, Fanini F, Piersanti G, Secci F, Mazzarella D, Noël T, Luridiana A. Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation. Beilstein J Org Chem 2024; 20:3274-3280. [PMID: 39717264 PMCID: PMC11665442 DOI: 10.3762/bjoc.20.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation. In this research, we present a metal-free strategy for the photochemical alkylation of dehydroalanine derivatives. Upon abstraction of a hydride from tris(trimethylsilyl)silane (TTMS) by an excited benzophenone derivative, the formed silane radical can undergo a XAT with an alkyl bromide to generate an alkyl radical. Consequently, the alkyl radical undergoes a Giese-type reaction with the Dha derivative, forming a new C(sp3)-C(sp3) bond. The reaction can be performed in a phosphate-buffered saline (PBS) solution and shows post-functionalization prospects through pathways involving classical peptide chemistry.
Collapse
Affiliation(s)
- Perry van der Heide
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Fabiola Fanini
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino ‘‘Carlo Bo”, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Daniele Mazzarella
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata” Via della Ricerca Scientifica, 1, 00133 Rome, Italy,
- Department of Chemical Sciences, University of Padova Institution, Via Francesco Marzolo, 1, 35131 Padova, Italy
| | - Timothy Noël
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alberto Luridiana
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
2
|
Kothuri P, Bhumannagari H, Battula S, Rekha K, Nayani K. N-Protection Dependent Phosphorylation of Dehydroamino Acids to Build Unusual Phosphono-Peptides. Chem Asian J 2024:e202401244. [PMID: 39568182 DOI: 10.1002/asia.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
An efficient Mn(III)-promoted phosphorylation of dehydroalanine (Dha) has been developed to give unusual α-amino acids bearing phosphonates/phosphine oxides and β-vinyl phosphonates/phosphinates depending on N-protection of amino acid. N,N-diprotected dehydroalanine reacted with H-phosphonates and H-phosphine oxides to give structurally diverse phosphorylated α-amino acids through conjugate addition of phosphorous radical generated by Mn(OAc)3.2H2O. Whereas, a highly Z-selective phosphorylation was observed in the case of mono N-Boc protected dehydroalanine via cross dehydrogenative coupling to give (Z)- β -vinyl phosphono amino acid. The method is successfully applied to short peptides to derive unusual phosphono-peptides under mild conditions.
Collapse
Affiliation(s)
- Pranay Kothuri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Haripriya Bhumannagari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Shravani Battula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kolachina Rekha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Haysom-Rodríguez A, Bloom S. Poly-Dha Sequences as Pro-polypeptides: An Original Mechanistic Postulate Leads to the Discovery of a Long-Acting Vasodilator KU04212. JACS AU 2024; 4:3910-3920. [PMID: 39483240 PMCID: PMC11522928 DOI: 10.1021/jacsau.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
The construction of polypeptides was revolutionized by Merrifield's solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a first-in-class polyazole peptide, was found to reduce vascular length density (-17%; p < 0.05) and increase vessel diameter (124%; p < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl2 after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects in vivo, making it an enticing lead for the treatment of ischemic disorders.
Collapse
Affiliation(s)
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Li M, Li M, Geng H, Chen L, Xu L, Li X, Liu C. Sulfa-Michael Addition on Dehydroalanine: A Versatile Reaction for Protein Modifications. Org Lett 2024; 26:8329-8334. [PMID: 39311466 DOI: 10.1021/acs.orglett.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chemical modification of proteins has been widely applied in diagnostic and therapeutic processes. Here, we report a novel bioconjugation between sulfinic acids and amino acid dehydroalanine (Dha) in the context of both small molecules and proteins. This conjugation enables the rapid formation of sulfone linkages in a chemoselective and disulfide-compatible manner under biocompatible conditions with Dha residues chemically installed in proteins and thus provides a robust tool that is simple and has exquisite site selectivity for protein functionalization in a wide range.
Collapse
Affiliation(s)
- Man Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| | - Mengzhao Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongen Geng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ludan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, China
| | - Chunrong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Gu X, Zhang YA, Zhang S, Wang L, Ye X, Occhialini G, Barbour J, Pentelute BL, Wendlandt AE. Synthesis of non-canonical amino acids through dehydrogenative tailoring. Nature 2024; 634:352-358. [PMID: 39208846 DOI: 10.1038/s41586-024-07988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1-3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C-H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu-An Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuo Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leon Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonah Barbour
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Langschwager T, Storch G. Flavin-Catalyzed, Photochemical Conversion of Dehydroalanine into 4,5-Dihydroxynorvaline. Angew Chem Int Ed Engl 2024:e202414679. [PMID: 39305229 DOI: 10.1002/anie.202414679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/06/2024]
Abstract
The chemical synthesis of unnatural amino acids (UAA) is a key strategy for preparing designed peptides, including pharmaceutically active compounds. Alterations of existing amino acid residues such as dehydroalanine (Dha) are particularly important since selected positions can be addressed without the necessity of a complete de novo synthesis. The intriguing UAA 4,5-dihydroxynorvaline (Dnv) is found in a variety of naturally occurring peptides and biologically active compounds. However, no method is currently available to modify an existing peptide with this residue. We report the use of flavin catalysts and visible light irradiation for this challenge, which serves as a versatile strategy for converting Dha into Dnv. Our study shows that excited flavins are competent hydrogen atom abstraction catalysts for ethers and acetals, which allows masked 1,2-dihydroxyethylene functionalization from 2,2-dimethyl-1,3-dioxolane. The masked diol was successfully coupled to Dha residues, and a series of Dnv-containing products is reported. A mild and orthogonal protocol for deprotection of the acetal group was also identified, allowing free Dnv-modified peptides to be obtained. This method provides a straightforward strategy for Dnv functionalization, which is envisioned to be crucial for accessing natural products and synthetic analogues with pharmaceutical activity.
Collapse
Affiliation(s)
- Tim Langschwager
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Golo Storch
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
7
|
Zhao Y, Du SS, Zhao CY, Li TL, Tong SC, Zhao L. Mechanism of Abnormal Activation of MEK1 Induced by Dehydroalanine Modification. Int J Mol Sci 2024; 25:7482. [PMID: 39000589 PMCID: PMC11242638 DOI: 10.3390/ijms25137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Shan-Shan Du
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Chao-Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Tian-Long Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Si-Cheng Tong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| |
Collapse
|
8
|
Mori T, Sumida S, Sakata K, Shirakawa S. Efficient synthetic methods for α,β-dehydroamino acids as useful and environmentally benign building blocks in biological and materials science. Org Biomol Chem 2024; 22:4625-4636. [PMID: 38804977 DOI: 10.1039/d4ob00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Both natural and unnatural amino acids, peptides, and proteins are widely recognized as green and sustainable organic chemicals, not only in the field of biological sciences but also in materials science. It has been discovered that artificially designed unnatural peptides and proteins exhibit advanced properties in medical and materials science. In this context, the development of precise chemical modification methods for amino acids and peptides is acknowledged as an important research project in the field of organic synthesis. While a wide variety of modification methods for amino acid residues have been developed to artificially modify peptides and proteins, the representative methods for modifying amino acid residues have traditionally relied on the nucleophilic properties of the functionalities on the residues. In this context, the development of different modification methods using an umpolung-like approach by utilizing the electrophilic nature of amino acid derivatives appears to be very attractive. One of the promising electrophilic amino acid compounds for realizing important modification methods of amino acid derivatives is α,β-dehydroamino acids, which possess an α,β-unsaturated carbonyl structure. This review article summarizes methods for the preparation of α,β-dehydroamino acids derived from natural and unnatural amino acid derivatives. The utilities of α,β-dehydroamino acid derivatives, including peptides and proteins containing dehydroalanine units, in bioconjugations are also discussed.
Collapse
Affiliation(s)
- Taiki Mori
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Sao Sumida
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kazuki Sakata
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Seiji Shirakawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
9
|
Yu C, E R, An Y, Guo X, Bao G, Li Y, Xie J, Sun W. Michael Addition Reaction between Dehydroalanines and Phosphites Enabled the Introduction of Phosphonates into Oligopeptides. Org Lett 2024. [PMID: 38780227 DOI: 10.1021/acs.orglett.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
11
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Wang S, Wu K, Tang YJ, Deng H. Dehydroamino acid residues in bioactive natural products. Nat Prod Rep 2024; 41:273-297. [PMID: 37942836 PMCID: PMC10880069 DOI: 10.1039/d3np00041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Covering: 2000 to up to 2023α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
13
|
Teye-Kau JHG, Ayodele MJ, Pitre SP. Vitamin B 12 -Photocatalyzed Cyclopropanation of Electron-Deficient Alkenes Using Dichloromethane as the Methylene Source. Angew Chem Int Ed Engl 2024; 63:e202316064. [PMID: 38015966 DOI: 10.1002/anie.202316064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The cyclopropyl group is of great importance in medicinal chemistry, as it can be leveraged to influence a range of pharmaceutical properties in drug molecules. This report describes a Vitamin B12 -photocatalyzed approach for the cyclopropanation of electron-deficient alkenes using dichloromethane (CH2 Cl2 ) as the methylene source. The reaction proceeds in good to excellent yields under mild conditions, has excellent functional group compatibility, and is highly chemoselective. The scope could also be extended to the preparation of D2 -cyclopropyl and methyl-substituted cyclopropyl adducts starting from CD2 Cl2 and 1,1-dichloroethane, respectively.
Collapse
Affiliation(s)
- John Hayford G Teye-Kau
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - Mayokun J Ayodele
- Weaver Labs LLC, 1110 S. Innovation Way Dr., #130, Stillwater, OK 74074, USA
| | - Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
15
|
Bao G, Wang P, Guo X, Li Y, He Z, Song X, E R, Yu T, Xie J, Sun W. Visible-Light Mediated Deoxygenation of Carboxylic Acid for Late-Stage Peptide Modification Targeting Dehydroalanine. Org Lett 2023; 25:8338-8343. [PMID: 37966281 DOI: 10.1021/acs.orglett.3c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A visible-light mediated deoxygenative radical addition of carboxylic acids to dehydroalanines has been disclosed. The method can be used in β-acyl alanine derivative synthesis, including those chiral and deuterated variants, and late-stage peptide modification with various functional groups, both in the homogeneous phase and on the resin in SPPS. It provides a new tool kit for rapid construction of bioactive peptide analogues, which has been demonstrated by modification of the antimicrobial peptide Feleucin-K3.
Collapse
Affiliation(s)
- Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingli Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Palamini P, Allouche EMD, Waser J. Iron-Catalyzed Synthesis of α-Azido α-Amino Esters via the Alkylazidation of Alkenes. Org Lett 2023; 25:6791-6795. [PMID: 37684011 PMCID: PMC10521020 DOI: 10.1021/acs.orglett.3c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 09/10/2023]
Abstract
An iron-catalyzed alkylazidation of dehydroamino acids using peroxides as alkyl radical precursors is described. Non-natural azidated amino esters bearing an α-alkyl chain could be obtained in 18-94% yields using TMSN3 as an azide source. The obtained α-alkyl-α-azide α-amino esters could be further functionalized through cycloaddition or azide reduction with amide couplings to afford aminal-type peptides, α-triazolo amino acids, and tetrahydro-triazolopyridine, showing the great versatility of this now easily accessible class of amino acids.
Collapse
Affiliation(s)
- Pierre Palamini
- Laboratory of Catalysis and
Organic
Synthesis, Institut des Sciences et Ingénierie
Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Emmanuelle M. D. Allouche
- Laboratory of Catalysis and
Organic
Synthesis, Institut des Sciences et Ingénierie
Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and
Organic
Synthesis, Institut des Sciences et Ingénierie
Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang M, He P, Li Y. Light-initiated 1,3-dipolar cycloaddition between dehydroalanines and tetrazoles: application to late-stage peptide and protein modifications. Chem Sci 2023; 14:9418-9426. [PMID: 37712045 PMCID: PMC10498508 DOI: 10.1039/d3sc02818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
As an easily introduced noncoded amino acid with unique electrophilicity distinct from the 20 natural amino acids, dehydroalanine (Dha) is not only a precise protein post-translational modification (PTM) insertion tool, but also a promising multifunctional labelling site for peptides and proteins. However, achieving a balance between the reaction rate and mild reaction conditions has been a major challenge in developing novel Dha-modified strategies. Rapid, efficient, and mild Dha modification strategies are highly desired. Additionally, catalyst-free photocontrollable reactions for Dha-containing peptide and protein modification have yet to be developed. Here, we report a photoinitiated 1,3-dipolar cycloaddition reaction between Dha and 2,5-diaryl tetrazoles. Under low-power UV lamp irradiation, this reaction is completed within minutes without catalysis, resulting in a fluorescent pyrazoline-modified peptide or protein with excellent chemoselectivity for Dha residues. Notably, this reaction exhibits complete site-specificity in the modification of thiostrepton, a natural antimicrobial peptide containing multiple Dha residues (Dha3, Dha16, and Dha17), within 20 minutes in high yields. This is currently the fastest reaction for modifying the Dha residue in thiostrepton with clear site-specificity towards Dha16. This photoinitiated reaction also provides a chemoselective strategy for precise functionalization of proteins. Additionally, the rapidity and efficiency of the reaction minimize UV light damage to the biological reaction system. Combined with fluorogenic properties, this photo-controllable methodology can be applied to live cell imaging, further broadening the application scope of the Dha modification methodology.
Collapse
Affiliation(s)
- Mengqian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Peiyang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Yanmei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Beijing Institute for Brain Disorders Beijing 100069 P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
18
|
Malandain A, Molins M, Hauwelle A, Talbot A, Loreau O, D'Anfray T, Goutal S, Tournier N, Taran F, Caillé F, Audisio D. Carbon Dioxide Radical Anion by Photoinduced Equilibration between Formate Salts and [ 11C, 13C, 14C]CO 2: Application to Carbon Isotope Radiolabeling. J Am Chem Soc 2023. [PMID: 37486080 DOI: 10.1021/jacs.3c04679] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The need for carbon-labeled radiotracers is increasingly higher in drug discovery and development (carbon-14, β-, t1/2 = 5730 years) as well as in positron emission tomography (PET) for in vivo molecular imaging applications (carbon-11, β+, t1/2 = 20.4 min). However, the structural diversity of radiotracers is still systematically driven by the narrow available labeled sources and methodologies. In this context, the emergence of carbon dioxide radical anion chemistry might set forth potential unexplored opportunities. Based on a dynamic isotopic equilibration between formate salts and [13C, 14C, 11C]CO2, C-labeled radical anion CO2•- could be accessed under extremely mild conditions within seconds. This methodology was successfully applied to hydrocarboxylation and dicarboxylation reactions in late-stage carbon isotope labeling of pharmaceutically relevant compounds. The relevance of the method in applied radiochemistry was showcased by the whole-body PET biodistribution profile of [11C]oxaprozin in mice.
Collapse
Affiliation(s)
- Augustin Malandain
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Maxime Molins
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Alexandre Hauwelle
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Alex Talbot
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Olivier Loreau
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Timothée D'Anfray
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
20
|
Gausmann M, Kreidt N, Christmann M. Electrosynthesis of Protected Dehydroamino Acids. Org Lett 2023; 25:2228-2232. [PMID: 36952622 DOI: 10.1021/acs.orglett.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
A NaCl-mediated electrochemical oxidation of amino acid carbamates (R1 = Boc, Cbz) afforded α-methoxylated α-amino acids. Subsequent acid-catalyzed elimination delivered valuable dehydroamino acid derivatives. The simplicity of our setup using graphite-electrodes was showcased, producing N-Boc-ΔAla-OMe on a decagram scale.
Collapse
Affiliation(s)
- Marcel Gausmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Nadine Kreidt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
21
|
Kang X, Ye H, Liu S, Tu X, Zhu J, Sun H, Yi L. Insights into self-degradation of cysteine esters and amides under physiological conditions yield new cleavable chemistry. Chem Commun (Camb) 2023; 59:4233-4236. [PMID: 36942527 DOI: 10.1039/d3cc00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An unprecedented H2S release from cysteine esters and amides (CysO/NHR) under physiological conditions was discovered and the plausible mechanism was proposed. Alkylation of the amino moiety of cysteine esters enables the H2S release to be tuned and further provides support to the mechanistic insights. This discovery not only provides new insights into several fundamental science issues including non-enzymatic H2S-produced pathways, but also inspires new tunable cleavable motifs for sustained release of arylthiols and even for prodrug design.
Collapse
Affiliation(s)
- Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xiaoqiang Tu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Jiqin Zhu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 TatChee Avenue, Kowloon, Hong Kong, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
22
|
Gutiérrez-Bonet Á, Liu W. Synthesis of Alkyl Fluorides and Fluorinated Unnatural Amino Acids via Photochemical Decarboxylation of α-Fluorinated Carboxylic Acids. Org Lett 2023; 25:483-487. [PMID: 36652608 DOI: 10.1021/acs.orglett.2c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leveraging α-fluoroalkyl or fluorobenzyl radicals to introduce fluorinated motifs allows for the rapid preparation of fluorine-containing building blocks. Herein, we report the generation of α-fluoroalkyl or fluorobenzyl radicals from readily available α-fluorocarboxylic acids under mild reaction conditions and their utilization in the Giese-type addition on Michael acceptors and dehydroamino acids, resulting in the preparation of mono- and difluorinated Michael addition adducts and unnatural fluorinated amino acids.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Bonet
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wenbin Liu
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
23
|
Ongpipattanakul C, Liu S, Luo Y, Nair SK, van der Donk WA. The mechanism of thia-Michael addition catalyzed by LanC enzymes. Proc Natl Acad Sci U S A 2023; 120:e2217523120. [PMID: 36634136 PMCID: PMC9934072 DOI: 10.1073/pnas.2217523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.
Collapse
Affiliation(s)
| | - Shi Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Youran Luo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
24
|
Rehpenn A, Walter A, Storch G. Molecular flavin catalysts for C-H functionalisation and derivatisation of dehydroamino acids. Chem Sci 2022; 13:14151-14156. [PMID: 36540823 PMCID: PMC9728571 DOI: 10.1039/d2sc04341f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/04/2022] [Indexed: 03/12/2024] Open
Abstract
In nature, the isoalloxazine heterocycle of flavin cofactors undergoes reversible covalent bond formation with a variety of different reaction partners. These intermediates play a crucial role inter alia as the signalling states and in selective catalysis reactions. In the organic laboratory, covalent adducts with a new carbon-carbon bond have been observed with photochemically excited flavins but have, so far, only been regarded as dead-end side products. We have identified a series of molecular flavins that form adducts resulting in a new C-C bond at the C4a-position through allylic C-H activation and dehydroamino acid oxidation. Typically, these reactions are of radical nature and a stepwise pathway is assumed. We could demonstrate that these adducts are no dead-end and that the labile C-C bond can be cleaved by adding the persistent radical TEMPO leading to flavin regeneration and alkoxyamine-functionalised substrates. Our method allows for the catalytic oxidation of dehydroamino acids (16 examples) and we show that the acylimine products serve as versatile starting points for diversification. The present results are envisioned to stimulate the design of further catalytic reactions involving intermediates at the flavin C4a-position and their reactivity towards metal complexes or other persistent organic radicals. Our method for dehydrobutyrine derivatisation is orthogonal to the currently used methods (i.e., nucleophilic attack or radical addition) and offers new perspectives for peptide natural product diversification.
Collapse
Affiliation(s)
- Andreas Rehpenn
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM) Lichtenbergstr. 4 85747 Garching Germany
| | - Alexandra Walter
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM) Lichtenbergstr. 4 85747 Garching Germany
| | - Golo Storch
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM) Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
25
|
Gary S, Bloom S. Peptide Carbocycles: From -SS- to -CC- via a Late-Stage "Snip-and-Stitch". ACS CENTRAL SCIENCE 2022; 8:1537-1547. [PMID: 36439308 PMCID: PMC9686213 DOI: 10.1021/acscentsci.2c00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 05/28/2023]
Abstract
One way to improve the therapeutic potential of peptides is through cyclization. This is commonly done using a disulfide bond between two cysteine residues in the peptide. However, disulfide bonds are susceptible to reductive cleavage, and this can deactivate the peptide and endanger endogenous proteins through covalent modification. Substituting disulfide bonds with more chemically robust carbon-based linkers has proven to be an effective strategy to better develop cyclic peptides as drugs, but finding the optimal carbon replacement is synthetically laborious. We report a new late-stage platform wherein a single disulfide bond in a cyclic peptide can serve as the progenitor for any number of new carbon-rich groups, derived from organodiiodides, using a Zn:Cu couple and a hydrosilane. We show that this platform can furnish entirely new carbocyclic scaffolds with enhanced permeability and structural integrity and that the stereochemistry of the new cycles can be biased by a judicious choice in silane.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
26
|
Ji P, Chen J, Meng X, Gao F, Dong Y, Xu H, Wang W. Design of Photoredox-Catalyzed Giese-Type Reaction for the Synthesis of Chiral Quaternary α-Aryl Amino Acid Derivatives via Clayden Rearrangement. J Org Chem 2022; 87:14706-14714. [PMID: 36264622 DOI: 10.1021/acs.joc.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chiral quaternary α-aryl amino acids are biologically valued but synthetically challenging building blocks. Herein, we report a strategy for the synthesis of molecular architectures by unifying a photoredox catalytic asymmetric Giese-type reaction and Clayden rearrangement. A new class of chiral Karady-Beckwith dehydroalanines is designed and serves as a versatile handle for the photoredox-mediated highly stereoselective Giese-type reaction with feedstock carboxylic acids and tertiary amines. Subsequent Clayden rearrangement delivers chiral quaternary α-aryl amino acid derivatives with high stereoselectivity. The versatile approach offers a reliable source for the assembly of highly demanding chiral building blocks.
Collapse
Affiliation(s)
- Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Jing Chen
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Xiang Meng
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Feng Gao
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Yue Dong
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Hang Xu
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| |
Collapse
|
27
|
Retini M, Bartolucci S, Bartoccini F, Piersanti G. Asymmetric Alkylation of Cyclic Ketones with Dehydroalanine via H-Bond-Directing Enamine Catalysis: Straightforward Access to Enantiopure Unnatural α-Amino Acids. Chemistry 2022; 28:e202201994. [PMID: 35916657 PMCID: PMC9805190 DOI: 10.1002/chem.202201994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/09/2023]
Abstract
The growing importance of structurally diverse and functionalized enantiomerically pure unnatural amino acids in the design of drugs, including peptides, has stimulated the development of new synthetic methods. This study reports the challenging direct asymmetric alkylation of cyclic ketones with dehydroalanine derivatives via a conjugate addition reaction for the synthesis of enantiopure ketone-based α-unnatural amino acids. The key to success was the design of a bifunctional primary amine-thiourea catalyst that combines H-bond-directing activation and enamine catalysis. The simultaneous dual activation of the two relatively unreactive partners, confirmed by mass spectrometry studies, results in high reactivity while securing high levels of stereocontrol. A broad substrate scope is accompanied by versatile downstream chemical modifications. The mild reaction conditions and consistently excellent enantioselectivities (>95 % ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical enantiopure α-amino-acid building blocks.
Collapse
Affiliation(s)
- Michele Retini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Silvia Bartolucci
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Francesca Bartoccini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Giovanni Piersanti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| |
Collapse
|
28
|
Patteson JB, Fortinez CM, Putz AT, Rodriguez-Rivas J, Bryant LH, Adhikari K, Weigt M, Schmeing TM, Li B. Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. J Am Chem Soc 2022; 144:14057-14070. [PMID: 35895935 DOI: 10.1021/jacs.1c13404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydroamino acids are important structural motifs and biosynthetic intermediates for natural products. Many bioactive natural products of nonribosomal origin contain dehydroamino acids; however, the biosynthesis of dehydroamino acids in most nonribosomal peptides is not well understood. Here, we provide biochemical and bioinformatic evidence in support of the role of a unique class of condensation domains in dehydration (CmodAA). We also obtain the crystal structure of a CmodAA domain, which is part of the nonribosomal peptide synthetase AmbE in the biosynthesis of the antibiotic methoxyvinylglycine. Biochemical analysis reveals that AmbE-CmodAA modifies a peptide substrate that is attached to the donor carrier protein. Mutational studies of AmbE-CmodAA identify several key residues for activity, including four residues that are mostly conserved in the CmodAA subfamily. Alanine mutation of these conserved residues either significantly increases or decreases AmbE activity. AmbE exhibits a dimeric conformation, which is uncommon and could enable transfer of an intermediate between different protomers. Our discovery highlights a central dehydrating function for CmodAA domains that unifies dehydroamino acid biosynthesis in diverse nonribosomal peptide pathways. Our work also begins to shed light on the mechanism of CmodAA domains. Understanding CmodAA domain function may facilitate identification of new natural products that contain dehydroamino acids and enable engineering of dehydroamino acids into nonribosomal peptides.
Collapse
Affiliation(s)
- Jon B Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Camille Marie Fortinez
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Andrew T Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Juan Rodriguez-Rivas
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - L Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kamal Adhikari
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - T Martin Schmeing
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Nanjo T, Oshita T, Matsumoto A, Takemoto Y. Late‐Stage Installation of Dehydroamino Acid Motifs into Peptides Enabled by an
N
‐Chloropeptide Strategy. Chemistry 2022; 28:e202201120. [DOI: 10.1002/chem.202201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Takuma Oshita
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Ayaka Matsumoto
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| |
Collapse
|
30
|
Vinogradov AA, Chang JS, Onaka H, Goto Y, Suga H. Accurate Models of Substrate Preferences of Post-Translational Modification Enzymes from a Combination of mRNA Display and Deep Learning. ACS CENTRAL SCIENCE 2022; 8:814-824. [PMID: 35756369 PMCID: PMC9228559 DOI: 10.1021/acscentsci.2c00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 05/15/2023]
Abstract
Promiscuous post-translational modification (PTM) enzymes often display nonobvious substrate preferences by acting on diverse yet well-defined sets of peptides and/or proteins. Understanding of substrate fitness landscapes for PTM enzymes is important in many areas of contemporary science, including natural product biosynthesis, molecular biology, and biotechnology. Here, we report an integrated platform for accurate profiling of substrate preferences for PTM enzymes. The platform features (i) a combination of mRNA display with next-generation sequencing as an ultrahigh throughput technique for data acquisition and (ii) deep learning for data analysis. The high accuracy (>0.99 in each of two studies) of the resulting deep learning models enables comprehensive analysis of enzymatic substrate preferences. The models can quantify fitness across sequence space, map modification sites, and identify important amino acids in the substrate. To benchmark the platform, we performed profiling of a Ser dehydratase (LazBF) and a Cys/Ser cyclodehydratase (LazDEF), two enzymes from the lactazole biosynthesis pathway. In both studies, our results point to complex enzymatic preferences, which, particularly for LazBF, cannot be reduced to a set of simple rules. The ability of the constructed models to dissect such complexity suggests that the developed platform can facilitate a wider study of PTM enzymes.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyasu Onaka
- Department
of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative
Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Nakamura R, Sumida Y, Ohmiya H. Direct photoexcitable iodomethylborate enabling cyclopropanation of reactive alkenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rikako Nakamura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
32
|
Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Synthesis of Tetrapeptides Containing Dehydroalanine, Dehydrophenylalanine and Oxazole as Building Blocks for Construction of Foldamers and Bioinspired Catalysts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092611. [PMID: 35565962 PMCID: PMC9102237 DOI: 10.3390/molecules27092611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described. Peptides containing serine were used as substrates for their conversion into peptides containing dehydroalanine and aminomethyloxazole-4-carboxylic acid while considering possible requirements for the introduction of these fragments into long-chain peptides at the last steps of synthesis.
Collapse
|
34
|
Yasuno Y, Okamura H, Shinada T. Stereoselective Synthesis of Dehydroamino Acids and Its Application to the Synthesis of Nitrogen-containing Natural Products. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Yang A, Tao H, Szymczak LC, Lin L, Song J, Wang Y, Bai S, Modica J, Huang SY, Mrksich M, Feng X. Efficient Enzymatic Incorporation of Dehydroalanine Based on SAMDI-Assisted Identification of Optimized Tags for OspF/SpvC. ACS Chem Biol 2022; 17:414-425. [PMID: 35129954 DOI: 10.1021/acschembio.1c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific modification of proteins has important applications in biological research and drug development. Reactive tags such as azide, alkyne, and tetrazine have been used extensively to achieve the abovementioned goal. However, bulky side-chain "ligation scars" are often left after the labeling and may hinder the biological application of such engineered protein products. Conjugation chemistry via dehydroalanine (Dha) may provide an opportunity for "traceless" ligation because the activated alkene moiety on Dha can then serve as an electrophile to react with radicalophile, thiol/amine nucleophile, and reactive phosphine probe to introduce a minimal linker in the protein post-translational modifications. In this report, we present a mild and highly efficient enzymatic approach to incorporate Dha with phosphothreonine/serine lyases, OspF and SpvC. These lyases originally catalyze an irreversible elimination reaction that converts a doubly phosphorylated substrate with phosphothreonine (pT) or phosphoserine (pS) to dehydrobutyrine (Dhb) or Dha. To generate a simple monophosphorylated tag for these lyases, we conducted a systematic approach to profile the substrate specificity of OspF and SpvC using peptide arrays and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry. The optimized tag, [F/Y/W]-pT/pS-[F/Y/W] (where [F/Y/W] indicates an aromatic residue), results in a ∼10-fold enhancement of the overall peptide labeling efficiency via Dha chemistry and enables the first demonstration of protein labeling as well as live cell labeling with a minimal ligation linker via enzyme-mediated incorporation of Dha.
Collapse
Affiliation(s)
- Anming Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lindsey C. Szymczak
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liang Lin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Yi Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Justin Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| |
Collapse
|
36
|
Ikeda T, Ochiishi H, Yoshida M, Yazaki R, Ohshima T. Catalytic Dehydrogenative β-Alkylation of Amino Acid Schiff Bases with Hydrocarbon. Org Lett 2022; 24:369-373. [PMID: 34918939 DOI: 10.1021/acs.orglett.1c04042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic method for the synthesis of a highly congested α,β-dehydroamino acid through the β-C-H bond activation of an amino acid Schiff base is described. Abundant hydrocarbon feedstock could be used as an alkylating reagent to afford an α,β-dehydroamino acid bearing a quaternary carbon at the γ-position with an exclusively (Z)-geometry. Notably, a tetrasubstituted olefin could be constructed from saturated starting materials. The transformation of the synthesized α,β-dehydroamino acid into unnatural α-amino acid derivatives was also demonstrated.
Collapse
Affiliation(s)
- Tetsu Ikeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Haruka Ochiishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mana Yoshida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
37
|
Aminoacyl chain translocation catalysed by a type II thioesterase domain in an unusual non-ribosomal peptide synthetase. Nat Commun 2022; 13:62. [PMID: 35013184 PMCID: PMC8748450 DOI: 10.1038/s41467-021-27512-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Non-Ribosomal Peptide Synthetases (NRPSs) assemble a diverse range of natural products with important applications in both medicine and agriculture. They consist of several multienzyme subunits that must interact with each other in a highly controlled manner to facilitate efficient chain transfer, thus ensuring biosynthetic fidelity. Several mechanisms for chain transfer are known for NRPSs, promoting structural diversity. Herein, we report the first biochemically characterized example of a type II thioesterase (TEII) domain capable of catalysing aminoacyl chain transfer between thiolation (T) domains on two separate NRPS subunits responsible for installation of a dehydrobutyrine moiety. Biochemical dissection of this process reveals the central role of the TEII-catalysed chain translocation event and expands the enzymatic scope of TEII domains beyond canonical (amino)acyl chain hydrolysis. The apparent co-evolution of the TEII domain with the NRPS subunits highlights a unique feature of this enzymatic cassette, which will undoubtedly find utility in biosynthetic engineering efforts. Non-Ribosomal Peptide Synthetases (NRPSs) are responsible for the construction of many types of natural products. Here the authors characterize a key type II thioesterase domain that sheds light on the chain translocation processes of legonmycin NRPSs.
Collapse
|
38
|
Paulus C, Zapp J, Luzhetskyy A. New Scabimycins A-C Isolated from Streptomyces acidiscabies (Lu19992). Molecules 2021; 26:5922. [PMID: 34641466 PMCID: PMC8513078 DOI: 10.3390/molecules26195922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Peptide natural products displaying a wide range of biological activities have become important drug candidates over the years. Microorganisms have been a powerful source of such bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed thoroughly. Three new compounds, scabimycins A-C (1-3), were discovered, and their chemical structures were elucidated by NMR spectroscopy. The relative and absolute configurations were determined using ROESY NMR experiments and advanced Marfey's method.
Collapse
Affiliation(s)
- Constanze Paulus
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany;
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany;
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany;
- AMEG Department, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
| |
Collapse
|
39
|
Vinogradov AA, Nagano M, Goto Y, Suga H. Site-Specific Nonenzymatic Peptide S/O-Glutamylation Reveals the Extent of Substrate Promiscuity in Glutamate Elimination Domains. J Am Chem Soc 2021; 143:13358-13369. [PMID: 34392675 DOI: 10.1021/jacs.1c06470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Formation of dehydroalanine and dehydrobutyrine residues via tRNA-dependent dehydration of serine and threonine is a key post-translational modification in the biosynthesis of lanthipeptide and thiopeptide RiPPs. The dehydration process involves two reactions, wherein the O-glutamyl Ser/Thr intermediate, accessed by a dedicated enzyme utilizing Glu-tRNAGlu as the acyl donor, is recognized by the second enzyme, referred to as the glutamate elimination domain (ED), which catalyzes the eponymous reaction yielding a dehydroamino acid. Many details of ED catalysis remain unexplored because the scope of available substrates for testing is limited to those that the upstream enzymes can furnish. Here, we report two complementary strategies for direct, nonenzymatic access to diverse ED substrates. We establish that a thiol-thioester exchange reaction between a Cys-containing peptide and an α thioester of glutamic acid leads an S-glutamylated intermediate which can act as a substrate for EDs. Furthermore, we show that the native O-glutamylated substrates can be accessible from S-glutamylated peptides upon a site-specific S-to-O acyl transfer reaction. Combined with flexible in vitro translation utilized for rapid peptide production, these chemistries enabled us to dissect the substrate recognition requirements of three known EDs. Our results establish that EDs are uniquely promiscuous enzymes capable of acting on substrates with arbitrary amino acid sequences and performing retro-Michael reaction beyond the canonical glutamate elimination. To facilitate substrate recruitment, EDs apparently engage in nonspecific hydrophobic interactions with their substrates. Altogether, our results establish the substrate scope of EDs and provide clues to their catalysis.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
41
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
42
|
Liu L, Deng Z, Xu K, Jiang P, Du H, Tan J. Access to Deuterated Unnatural α-Amino Acids and Peptides by Photochemical Acyl Radical Addition. Org Lett 2021; 23:5299-5304. [PMID: 34170137 DOI: 10.1021/acs.orglett.1c01448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-enabled, photocatalyst-free conjugate addition reaction of dehydroamino acids is disclosed. Employing 4-acyl-1,4-dihydropyridines as both a radical reservoir and reductant, various β-acyl α-amino acids and their deuterated analogues were obtained in good results. Both late-stage peptide modification and stereoselective synthesis of chiral oxazolidinones are successfully achieved. The protocol is characterized by mild conditions and efficient derivatization, thus unlocking a novel blueprint to access unnatural amino acid derivatives, important building blocks with potential application in the peptidomimetic toolbox.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, People's Republic of China
| | - Zikun Deng
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, People's Republic of China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Pengxing Jiang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, People's Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, People's Republic of China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, People's Republic of China
| |
Collapse
|
43
|
Delgado JAC, Correia JTM, Pissinati EF, Paixão MW. Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids. Org Lett 2021; 23:5251-5255. [PMID: 34152782 DOI: 10.1021/acs.orglett.1c01781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A site-selective alkylation of dehydroalanine to access protected unnatural amino acids is described. The protocol is characterized by the wide nature of alkyl radicals employed, mild conditions, and functional group compatibility. This protocol is further extended to access peptides, late-stage functionalization of pharmaceuticals, and enantioenriched amino acids.
Collapse
Affiliation(s)
- José A C Delgado
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - José T M Correia
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - Emanuele F Pissinati
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| |
Collapse
|
44
|
Myeloperoxidase Inhibitory and Antioxidant Activities of ( E)-2-Hydroxy-α-aminocinnamic Acids Obtained through Microwave-Assisted Synthesis. Pharmaceuticals (Basel) 2021; 14:ph14060513. [PMID: 34071735 PMCID: PMC8229396 DOI: 10.3390/ph14060513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/15/2023] Open
Abstract
Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis of a new series of stable (E)-(2-hydroxy)-α-aminocinnamic acids, in good yields, which are structurally analogous to the natural products (Z)-2-hydroxycinnamic acids. The radical scavenging activity (RSA), MPO inhibitory activity and cytotoxicity of the reported compounds were evaluated. The hydroxy derivatives showed the most potent RSA, reducing the presence of DPPH and ABTS radicals by 77% at 0.32 mM and 100% at 0.04 mM, respectively. Their mechanism of action was modeled with BDEOH, IP and ΔEH-L theoretical calculations at the B3LYP/6 − 31 + G(d,p) level. Compounds showed in vitro inhibitory activity of MPO with IC50 values comparable to indomethacin and 5-ASA, but cytotoxicities below 15% at 100–200 µM. Docking calculations revealed that they reach the amino acid residues present in the distal cavity of the MPO active site, where both the amino and carboxylic acid groups of the α-aminopropenoic acid arm are structural requirements for anchoring. (E)-2-hydroxy-α-aminocinnamic acids have been synthesized for the first time with a reliable method and their antioxidant properties demonstrated.
Collapse
|
45
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
46
|
Kärkäs MD, Shatskiy A. Photoredox-Enabled Decarboxylative Synthesis of Unnatural α-Amino Acids. Synlett 2021. [DOI: 10.1055/a-1499-8679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractRecently, development of general synthetic routes to unnatural α-amino acids has gained significant momentum, driven by the high demand for such building blocks in fundamental research within molecular and structural biology, as well as for development of new pharmaceuticals. Herein, we highlight the recent progress in employing photoredox-mediated synthetic methods for accessing unnatural α-amino acids with a focus on various decarboxylative radical-based strategies.
Collapse
|
47
|
Dai ZY, Nong ZS, Song S, Wang PS. Asymmetric Photocatalytic C(sp 3)-H Bond Addition to α-Substituted Acrylates. Org Lett 2021; 23:3157-3161. [PMID: 33780255 DOI: 10.1021/acs.orglett.1c00801] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asymmetric functionalization of inert C(sp3)-H bonds is a straightforward approach to realize versatile bond-forming events, allowing the precise assembly of molecular complexity with minimal functional manipulations. Here, we describe an asymmetric photocatalytic C(sp3)-H bond addition to α-substituted acrylates by using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst and chiral phosphoric acid as a chiral proton-transfer shuttle. This protocol is supposed to occur via a radical/ionic relay process, including a TBADT-mediated HAT to cleave the inert C(sp3)-H bond, a 1,4-radical addition, a back hydrogen abstraction, and an enantioselective protonation. A variety of inert C-H bond patterns and α-substituted acrylates are well tolerated to enable the rapid synthesis of enantioenriched α-stereogenic esters from simple raw materials.
Collapse
Affiliation(s)
- Zhen-Yao Dai
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Sheng Nong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shun Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
48
|
Song S, Li Y, Chen D, Wang X, Liu Y, Chen L. Synthesis of α‐Amidoacrylates Containing a 3‐Ylideneoxindole Motif. ChemistrySelect 2021. [DOI: 10.1002/slct.202100578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuai Song
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ya Li
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - De‐Yin Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Xiao‐Ping Wang
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Yong‐Liang Liu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| |
Collapse
|
49
|
Banwell MG, Pollard B, Liu X, Connal LA. Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chem Asian J 2021; 16:604-620. [PMID: 33463003 DOI: 10.1002/asia.202001451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Indexed: 12/16/2022]
Abstract
The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.
Collapse
Affiliation(s)
- Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou/Zhuhai, 510632/519070, P. R. China.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Brett Pollard
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
50
|
Jervis PJ, Amorim C, Pereira T, Martins JA, Ferreira PMT. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. Int J Mol Sci 2021; 22:2528. [PMID: 33802425 PMCID: PMC7959283 DOI: 10.3390/ijms22052528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.
Collapse
Affiliation(s)
- Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.A.); (T.P.); (J.A.M.); (P.M.T.F.)
| | | | | | | | | |
Collapse
|