1
|
Wang YR, Yue M, Liu G, Zhang JL, Li Q, Shi JW, Weng JY, Li RH, Chen Y, Li SL, Lan YQ. Solid-Liquid-Gas Three-Phase Indirect Electrolysis Enabled by Affinity Auxiliary Imparted Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202413030. [PMID: 39313470 DOI: 10.1002/anie.202413030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
The design of efficient heterogeneous redox mediators with favorable affinity to substrate and electrolyte are much desired yet still challenging for the development of indirect electrolysis system. Herein, for the first time, we have developed a solid-liquid-gas three-phase indirect electrolysis system based on a covalent organic framework (Dha-COF-Cu) as heterogeneous redox mediator for S-S coupling reaction. Dha-COF-Cu with the integration of high porosity, nanorod morphology, abundant hydroxyl groups and active Cu sites is much beneficial for the adsorption/activation of thiols, uniform dispersion and high wettability in electrolyte, and efficient interfacial electron transfer. Notably, Dha-COF-Cu as solid-phase redox mediator exhibits excellent electrocatalytic efficiency for the formation of value-added liquid-phase S-S bond product (yields up to 99 %) coupling with the generation of gas-phase product of H2 (~1.40 mmol g-1 h-1), resulting in a powerful three-phase indirect electrolysis system. This is the first work about COFs that can be applied in three-phase indirect electrolysis system, which might promote the development of porous crystalline materials in this field.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ming Yue
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Gang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, Shandong, P. R. China
| | - Jia-Li Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jia-Yong Weng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
2
|
Liu Q, Feng X, Xie F, Lai Y, Jiang H, Jiao Y, Wang J. Synthesis of Sulfenamides via Photoredox N-S Coupling of Dialkyl Azodicarboxylates and Thiols. Org Lett 2024. [PMID: 39729373 DOI: 10.1021/acs.orglett.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
We herein report a photoredox N-S coupling reaction between dialkyl azodicarboxylates and thiols to access sulfenamide scaffolds. This reaction proceeds under mild, green, and operationally simple conditions, offering a broad scope of sulfenamides with high yields and excellent atom efficiency. Mechanistic investigations revealed this reaction followed a photoinitiated radical pathway in which iodide plays a crucial role as both a radical initiator and a single-electron reductant.
Collapse
Affiliation(s)
- Qun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoyun Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghao Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingchao Lai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Haokun Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yujing Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Xu J, Huang W, Li M, Kang C, Jiang G, Ji F. Selective Synthesis of Amides and α-Ketoamides via Electrochemical Decarboxylation and Dehydration. J Org Chem 2024; 89:10498-10510. [PMID: 39010800 DOI: 10.1021/acs.joc.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
An electrochemical and selective decarboxylation and dehydration using α-keto acids with amines is accomplished, which leads to the easy accessibility of amides and α-ketoamides, which are not only ubiquitous and valuable structure motifs found in pharmaceuticals, but also versatile building blocks in synthetic chemistry. Notably, for this efficient and green protocol, neither metal catalysts nor external oxidants are required. The process exhibits a broad scope and functional group tolerance to deliver various amides and α-ketoamides. Moreover, these two reactions have also been applied to late-stage derivatization and can be safely conducted on gram scale.
Collapse
Affiliation(s)
- Jiawei Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Wenxiu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
4
|
Shalamu M, Saimi N, Luo S, Maihemuti M, Abudu Rexit A. Electrochemical Direct Synthesis of N-Sulfenylimines from Amines in the Presence of Thiophenols. J Org Chem 2024; 89:3696-3701. [PMID: 38393326 DOI: 10.1021/acs.joc.3c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
N-Sulfenylimines are important molecules owing to their value in organic synthesis. Herein, we developed an electrochemical oxidative cross-coupling reaction between amines and thiols to synthesize N-sulfenylimines without a transition-metal catalyst and external oxidant. Various amines and thiols were compatible, generating the desired products in up to 86% yield.
Collapse
Affiliation(s)
- Maidina Shalamu
- Department of Chemistry, Xinjiang Normal University, Urumqi 830054, China
| | - Naibijiang Saimi
- Department of Chemistry, Xinjiang Normal University, Urumqi 830054, China
| | - Shiwei Luo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | | | | |
Collapse
|
5
|
Feng R, Li ZY, Liu YJ, Dong ZB. Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines. J Org Chem 2024; 89:1736-1747. [PMID: 38215479 DOI: 10.1021/acs.joc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
An effective method was explored for the selective synthesis of sulfonamides and sulfenamides using sodium sulfinates and amines as starting materials. This method offers mild reaction conditions, a broad substrate scope, high efficiency, and readily accessible materials, making it suitable and an alternative strategy for the preparation of a variety of biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhong-Yu Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Jin Liu
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Wang P, Li S, Wen H, Lei Y, Huang S, Wang Z, Su J, Guan W, Lei J. Thiosuccinimide enabled S-N bond formation to access N-sulfenylated sulfonamide derivatives with synthetic diversity. Org Biomol Chem 2024; 22:990-997. [PMID: 38180390 DOI: 10.1039/d3ob01848b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A thiosuccinimide enabled S-N cross-coupling strategy has been established for the intermolecular N-sulfenylation of clinically approved sulfa drugs under additive-free conditions. This approach features simple operation, high chemoselectivity for sulfenylating the phenylamino group of sulfonamides, wide substrate scope, and easy scale production, affording N-sulfenylated products in moderate to excellent yields (up to 90%). In addition, we also found that this transformation can be realized in a one-pot manner by employing readily available thiols as starting materials, and the obtained sulfonamide derivatives are capable of various late-stage functionalizations, including oxidation, arylation, benzylation, and methylation.
Collapse
Affiliation(s)
- Peifeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Huiling Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yin Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shujuan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jialong Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Wenxiang Guan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
7
|
Liu G, Chen Y, Chen Y, Shi Y, Zhang M, Shen G, Qi P, Li J, Ma D, Yu F, Huang X. Indirect Electrocatalysis S─N/S─S Bond Construction by Robust Polyoxometalate Based Foams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304716. [PMID: 37392073 DOI: 10.1002/adma.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Indirect electrocatalytic conversion of cheap organic raw materials via the activation of S─H and N─H bonds into the value-added S─N/S─S bonds chemicals for industrial rubber production is a promising strategy to realize the atomic economic reaction, during which the kinetic inhibition that is associated with the electron transfer at the electrode/electrolyte interface in traditional direct electrocatalysis can be eliminated to achieve higher performance. In this work, a series of di-copper-substituted phosphotungstatebased foams (PW10 Cu2 @CMC) are fabricated with tunable loadings (17 to 44 wt%), which can be successfully applied in indirect electrocatalytic syntheses of sulfenamides and disulfides. Specifically, the optimal PW10 Cu2 @CMC (44 wt%) exhibits excellent electrocatalytic performance for the construction of S─N/S─S bonds (yields up to 99%) coupling with the efficient production of H2 (≈50 µmol g-1 h-1 ). Remarkably, it enables the scale-up production (≈14.4 g in a batch experiment) and the obtained products can serve as rubber vulcanization accelerators with superior properties to traditional industrial rubber additives in real industrial processes. This powerful catalysis system that can simultaneously produce rubber vulcanization accelerator and H2 may inaugurate a new electrocatalytic avenue to explore polyoxometalate-based foam catalysts in electrocatalysis field.
Collapse
Affiliation(s)
- Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yulu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yanqi Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Meiyu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Pengfei Qi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271021, P. R. China
| | - Delong Ma
- National Rubber Additive Engineering Technology Center, Liaocheng, Shandong, 252059, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| |
Collapse
|
8
|
Synthesis of N-acyl sulfenamides via copper catalysis and their use as S-sulfenylating reagents of thiols. Nat Commun 2022; 13:6445. [PMID: 36307408 PMCID: PMC9616856 DOI: 10.1038/s41467-022-34223-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfur-heteroatom bonds such as S-S and S-N are found in a variety of natural products and often play important roles in biological processes. Despite their widespread applications, the synthesis of sulfenamides, which feature S-N bonds that may be cleaved under mild conditions, remains underdeveloped. Here, we report a method for synthesis of N-acyl sulfenamides via copper-catalyzed nitrene-mediated S-amidation reaction of thiols with dioxazolones. This method is efficient, convenient, and broadly applicable. Moreover, the resulting N-acetyl sulfenamides are highly effective S-sulfenylation reagents for the synthesis of unsymmetrical disulfides under mild conditions. The S-sulfenylation protocol enables facile access to sterically demanding disulfides that are difficult to synthesize by other means.
Collapse
|
9
|
Hu ZC, Wu YX, Ye L, Cui JJ, Dong ZB. An Efficient and Practical Construction of S‐N Bond from Aryl Thioureas and Amines under Metal‐free Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Chao Hu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Yue-Xiao Wu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Lei Ye
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Jing-Jing Cui
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
10
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Zhaoxin W, Renjie W, Yonghong Z, Bin W, Yu X, Weiwei J, Chenjiang L. Electrochemical Synthesis of N-Acyl/Sulfonylsulfenamides Using Potassium Iodide as Mediator. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wu Y, Peng K, Hu Z, Fan Y, Shi Z, Hao E, Dong Z. Iodine‐Mediated Cross‐Dehydrogenative Coupling of Heterocyclic Thiols with Amines: An Easy and Practical Formation of S−N Bond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xiao Wu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhi‐Chao Hu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Yong‐Hao Fan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
| | - Er‐Jun Hao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Key Laboratory of Green Chemical Process, Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
13
|
Jang HY. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects. Org Biomol Chem 2021; 19:8656-8686. [PMID: 34596196 DOI: 10.1039/d1ob01368h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the reactive intermediates (disulfides, sulfenyl halides, thiyl radicals, sulfenium cations, and metal-organosulfur species) and the mechanisms of the recently reported oxidative couplings of thiols. These intermediates are generated by chemical oxidants, transition metal catalysts, electrochemistry, and photochemistry. Chemical oxidant-mediated reactions involve radical, halogenated, or cationic intermediates, or disulfides. Transition metal-catalyzed mechanisms proposed various metal-organosulfur intermediates to elucidate the reactivity and selectivity of metal catalysts. In electro- and photooxidation, direct oxidation/reduction mechanisms of reactants at the electrode or indirect oxidation/reduction of reactants in the presence of redox catalysts have been reported. The following sections are based on the products, thiosulfonates (S-S bond), sulfenamides, sulfinamides, and sulfonamides (S-N bond), sulfinates (S-O bond), thiophosphine oxides and thiophosphates (S-P bond), and sulfides, sulfoxides, and sulfones (S-C bond) and discuss the reaction mechanisms and the above-mentioned key intermediates for product formation. The contents of this review will provide helpful information, guiding the choice of oxidative coupling conditions for the synthesis of various organosulfur compounds with high yields and selectivity.
Collapse
Affiliation(s)
- Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
14
|
Cao Y, Abdolmohammadi S, Ahmadi R, Issakhov A, Ebadi AG, Vessally E. Direct synthesis of sulfenamides, sulfinamides, and sulfonamides from thiols and amines. RSC Adv 2021; 11:32394-32407. [PMID: 35495485 PMCID: PMC9042206 DOI: 10.1039/d1ra04368d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Needless to say that organosulfur compounds with sulfur–nitrogen bonds have found various applications in diverse fields such as pharmaceuticals, agrochemicals, polymers, and so forth. Three major groups of such compounds are sulfenamides, sulfinamides, and sulfonamides which have been widely applied as building blocks in medical chemistry. Owing to their significant role in drug design and discovery programs, the search for and development of efficient, environmentally friendly, and economic processes for the preparation of the title compounds is of great importance in the pharmaceutical industry. Recently, oxidative coupling of thiols and amines, two readily available low-cost commodity chemicals, has emerged as a highly useful method for synthesizing structurally diverse sulfenamides, sulfinamides, and sulfonamides in a single step. Since this strategy does not require additional pre-functionalization and de-functionalization steps, it considerably streamlines synthetic routes and substantially reduces waste generation. This review will focus on recent advances and achievements in this attractive research arena. This review provides a concise overview of the synthesis of biologically and synthetically valuable sulfenamide, sulfinamide, and sulfonamide derivatives through the direct oxidative coupling of readily available low-cost thiols and amines.![]()
Collapse
Affiliation(s)
- Yan Cao
- School of Mechatronic Engineering, Xi'an Technological University Xi'an 710021 China
| | - Shahrzad Abdolmohammadi
- Department of Chemistry, South Tehran Branch, Islamic Azad University P.O. Box 11365-4435 Tehran Iran
| | - Roya Ahmadi
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University Tehran Iran
| | - Alibek Issakhov
- Department of Mathematical and Computer Modelling, Al-Farabi Kazakh National University Almaty 050040 Kazakhstan.,Department of Mathematics and Cybernetics, Kazakh British Technical University Almaty 050000 Kazakhstan
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
15
|
Zálešák F, Kováč O, Lachetová E, Št'astná N, Pospíšil J. Unified Approach to Benzo[ d]thiazol-2-yl-Sulfonamides. J Org Chem 2021; 86:11291-11309. [PMID: 34479409 DOI: 10.1021/acs.joc.1c00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we report a unified approach to N-substituted and N,N-disubstituted benzothiazole (BT) sulfonamides. Our approach to BT-sulfonamides starts from simple commercially available building blocks (benzo[d]thiazole-2-thiol and primary and secondary amines) that are connected via (a) a S oxidation/S-N coupling approach, (b) a S-N coupling/S-oxidation sequence, or via (c) a S-oxidation/S-F bond formation/SuFEx approach. The labile N-H bond in N-monoalkylated BT-sulfonamides (pKa (BTSO2N(H)Bn) = 3.34 ± 0.05) further allowed us to develop a simple weak base-promoted N-alkylation method and a stereoselective microwave-promoted Fukuyama-Mitsunobu reaction. N-Alkyl-N-aryl BT-sulfonamides were accessed with the help of the Chan-Lam coupling reaction. Developed methods were further used in stereo and chemoselective transformations of podophyllotoxin and several amino alcohols.
Collapse
Affiliation(s)
- František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Ondřej Kováč
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Eliška Lachetová
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Nikola Št'astná
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Jiří Pospíšil
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.,Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany AS CR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
16
|
Wei Z, Wang R, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Direct Thiolation of Lactams with Mercaptans: An Efficient Access to
N
‐Acylsulfenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Renjie Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
17
|
He M, Cheng S, Pan Y, Tang H, Pan Y. Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Ryu SH, Ra J, Ko HM. Efficient Synthesis of Sulfenamides through Mitsunobu‐type Coupling Reaction of Thiols with Amines using Dibenzyl Azodicarboxylate. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se Hwan Ryu
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Jongmin Ra
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Haye Min Ko
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| |
Collapse
|
19
|
|
20
|
Li J, Ren X, Li G, Liang H, Zhao Y, Wang Z, Li H, Yuan B. Mixed bases mediated synthesis of thioamides in water. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1722818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jiao Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xuanhe Ren
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ganzhong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Helong Liang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajie Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhiwu Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Heng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bingxin Yuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
21
|
Yang Z, Zhang J, Hu L, Li L, Liu K, Yang T, Zhou C. Electrochemical Oxidative Intramolecular N–S Bond Formation: Synthesis of 3-Substituted 5-Amino-1,2,4-Thiadiazoles. J Org Chem 2020; 85:3358-3363. [DOI: 10.1021/acs.joc.9b03155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zan Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiaqi Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liping Hu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Lijun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
22
|
Li J, Xie X, Yang P, Jiang S, Tao L, Li Z, Lu C, Liu W. Electrochemical Synthesis of 1,2,4‐Thiadiazoles through Intermolecular Dehydrogenative S‐N Coupling. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiang‐Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Xin‐Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Pan‐Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Li Tao
- State Grid Hunan Electric Power Company Limited Research Institute Changsha 410004 People's Republic of China
| | - Zhi‐Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Cui‐Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Wei‐Dong Liu
- National Engineering Research Center for AgrochemicalsHunan Research Institute of Chemical Industry Changsha 410007 People's Republic of China
| |
Collapse
|