1
|
Acosta-Angulo B, Lara-Ramos J, Niño-Vargas A, Diaz-Angulo J, Benavides-Guerrero J, Bhattacharya A, Cloutier S, Machuca-Martínez F. Unveiling the potential of machine learning in cost-effective degradation of pharmaceutically active compounds: A stirred photo-reactor study. CHEMOSPHERE 2024; 358:142222. [PMID: 38714249 DOI: 10.1016/j.chemosphere.2024.142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.
Collapse
Affiliation(s)
- B Acosta-Angulo
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - J Lara-Ramos
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - A Niño-Vargas
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - J Diaz-Angulo
- Research and Technological Development in Water Treatment, Processes Modelling and Disposal of Residues - GITAM, Cauca, Colombia
| | - J Benavides-Guerrero
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - A Bhattacharya
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - S Cloutier
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - F Machuca-Martínez
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia.
| |
Collapse
|
2
|
Chaturvedi A, Jaiswal RP. Optimization for minimizing the cost of ozonation of highly concentrated textile dyeing wastewater in a bubble column reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88018-88026. [PMID: 35821332 DOI: 10.1007/s11356-022-21800-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ozonation is one of the advanced oxidation methods that provide effective decolorization and detoxification of the dyeing wastewater without causing any sludge formation. Despite being a good alternative to biodegradation, ozonation suffers from a high operating cost. This study conducted the ozonation process at high initial dye concentrations and optimized the process parameters (such as initial ozone concentration, initial dye concentration, and pH) to minimize the operating cost in terms of the overall power consumption of the process. The ozonation of Reactive Blue dye was performed in a bubble column reactor at various process conditions. A central composite design (CCD)-based response surface method (RSM) statistical tool was used to optimize the process. An empirical correlation for the specific power consumption (defined as electricity consumed per unit mass of dye removed from a unit volume of dyeing wastewater) was developed and verified. It was found that the specific power consumption during ozonation can be lowered significantly (by ~25-30%) if the dyeing water was treated at high initial dye concentrations.
Collapse
Affiliation(s)
- Anuj Chaturvedi
- Department of Chemical Engineering & Technology Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology Indian Institute of Technology (IIT), BHU, Varanasi, 221005, India.
| |
Collapse
|
3
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
4
|
Acosta-Angulo B, Lara-Ramos J, Diaz-Angulo J, Torres-Palma R, Martínez-Pachon D, Moncayo-Lasso A, Machuca-Martínez F. Analysis of the Applications of Particle Swarm Optimization and Genetic Algorithms on Reaction Kinetics: A Prospective Study for Advanced Oxidation Processes. ChemElectroChem 2022. [DOI: 10.1002/celc.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jose Lara-Ramos
- Universidad del Valle Escuela de Ingeniería Química COLOMBIA
| | | | - Ricardo Torres-Palma
- Universidad de Antioquía: Universidad de Antioquia Facultad de Ciencias Exactas y Naturales COLOMBIA
| | - Diana Martínez-Pachon
- Universidad Antonio Nariño: Universidad Antonio Narino Facultad de Ciencias COLOMBIA
| | | | | |
Collapse
|
5
|
Karim MAH, Aziz BK. Catalytic photodegradation of diclofenac from synthetic wastewater using MgO nanoparticles synthesized by direct precipitation method. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Lara-Ramos JA, Constain-Escobar AM, Rojas-Ortiz KV, Diaz-Angulo J, Machuca-Martínez F. A novel high rotation bubble reactor for the treatment of a model pollutant in ozone/goethite/H 2O 2 and UV/goethite coupled processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24079-24091. [PMID: 33439445 DOI: 10.1007/s11356-020-12299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR), which improves utilization of the ozone and hydrogen peroxide through bubble generation and axial and radial dispersion of the flow. The HRBR integrates the rotor and the diffuser in the same device facilitating the generation and dispersion of the ozone bubbles inside the reaction tank. Thus, the mass transfer to the liquid phase is enhanced. Most of the experiments were carried out under neutral pH and 1580 rpm of agitation during the 20 min of reaction. Total ibuprofen degradation was achieved within 20 min of operation for most of the couplings and individual processes evaluated. It was successfully demonstrated that the HRBR can be used as a reactive system for heterogeneous Fenton and ozonation coupling because it presents a high synergy. For the ozonation process, the reactor also displayed a good performance because the residual ozone in the gas is lower than 0.4 mg/L, which indicates that there is a suitable ozone utilization. Ibuprofen degradation by other processes like oxidation direct by H2O2 and heterogeneous Fenton was 28.0% and 73.1%, respectively. It was determined that the reaction rate, synergy, OUI (ozone utilized index), and consumption of electrical energy (EE/O) of the coupled processes could be improved by using the HRBR depending on the experimental conditions.
Collapse
Affiliation(s)
- Jose Antonio Lara-Ramos
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia
| | | | - Karen Vanessa Rojas-Ortiz
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia
| | - Jennyfer Diaz-Angulo
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia
- Investigación y desarrollo tecnológico en tratamiento de aguas, modelado de procesos y gestión de residuos, GITAM, Cauca, Colombia
| | - Fiderman Machuca-Martínez
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia.
- Centro de Excelencia en Nuevos Materiales CENM, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia.
| |
Collapse
|
7
|
Prada-Vásquez MA, Estrada-Flórez SE, Serna-Galvis EA, Torres-Palma RA. Developments in the intensification of photo-Fenton and ozonation-based processes for the removal of contaminants of emerging concern in Ibero-American countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142699. [PMID: 33071126 DOI: 10.1016/j.scitotenv.2020.142699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Contaminants of emerging concern (CECs), such as pharmaceuticals, personal care products, pesticides, synthetic and natural hormones and industrial chemicals, are frequently released into the environment because of the inability of conventional processes in municipal wastewater treatment plants to remove them. Some examples of alternative options to remove such pollutants are photo-Fenton and ozone-based processes, which are two techniques widely studied in Ibero-American countries. In fact, this region has been responsible for delivering frequently publications and conferences on advanced oxidation processes. This work is a critical review of recent developments in the intensification of the two aforementioned advanced oxidation techniques for CECs elimination in the Ibero-American region. Specifically for the photo-Fenton process (pF), this study analyses strategies such as iron-complexation with artificial substances (e.g., oxalic acid and ethylenediamine-N,N'-disuccinic acid) and natural compounds (such as humic-like substances, orange juice or polyphenols) and hybrid processes with ultrasound. Meanwhile, for ozonation, the enhancement of CECs degradation by adding hydrogen peroxide (i.e., peroxone), ultraviolet or solar light, and combining (i.e., photolytic ozonation) with catalysts (i.e., catalytic ozonation) was reviewed. Special attention was paid to how efficient these techniques are for removing contaminants from water matrices, and any potentialities and weak points of the intensified processes.
Collapse
Affiliation(s)
- María A Prada-Vásquez
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Geociencias y Medioambiente, Colombia
| | - Sandra E Estrada-Flórez
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
8
|
Bui DN, Minh TT. Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143852. [PMID: 33248762 DOI: 10.1016/j.scitotenv.2020.143852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Different types of advanced oxidation processes and their combinations such as O3/H2O2/UV, O3/Fenton/UV, O3/TiO2/UV, Fenton/H2O2/UV, Fenton/TiO2/UV, TiO2/H2O2/UV, TiO2/H2O2/O3/UV, TiO2/O3/Fenton/UV, TiO2/H2O2/Fenton/UV and O3/H2O2/Fenton/UV were studied for the treatment of undiluted red wastewater from Z113 Factory. The treatment efficiency was evaluated by analyzing chemical oxygen demand (COD) reduction, % degradation of α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na. Among studied processes Fenton/TiO2/O3/UV was the most effective technology to treat red wastewater. It allows to reduce >99% of COD, α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na after 30 h of treatment with optimum operating conditions: rotation speed of 600 rpm, pH of 4 and temperature of 40 °C. According to the chromatograms obtained by gas chromatograph/mass spectrometer (GC/MS), intermediates of the decomposition of pollutants in red wastewater were identified. GC/MS, HPLC, UV-vis and Bacterial Toxicity test were used to assess effluent quality changes before and after treatment. By economic analysis, the studied process had the potential to apply in practice to treat real wastewater at the Z113 Factory.
Collapse
Affiliation(s)
- Dinh Nhi Bui
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam.
| | - Thi Thao Minh
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam
| |
Collapse
|
9
|
Otálvaro-Marín HL, Machuca-Martínez F. Sizing of reactors by charts of Damköhler's number for solutions of dimensionless design equations. Heliyon 2020; 6:e05386. [PMID: 33195840 PMCID: PMC7644903 DOI: 10.1016/j.heliyon.2020.e05386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 10/28/2022] Open
Abstract
The reaction kinetic rate and mass transport play an important role in the sizing and scale-up of reactors. The Damköhler's dimensionless number ( D a ) is the quotient of these effects. A new interpretation of D a as a local property is introduced D a ( x , y , z , t ) . A new graphical methodology is proposed for the sizing and scale-up of unidirectional flow reactors and CSTRs. The partial differential equation (PDE) and algebraic that describe the continuity within these reactors transform into dimensionless variables, and the conversion at the output is expressed as a function of the conditions at the input D a 0 . The operating conditions as volumetric flow, residence time; design variables as reactor volume; and intrinsic reaction rate are involved in D a 0 . The equations are solved numerically to develop the design charts D a 0 vs X. The design volume is linear with D a 0 , and the conversion is obtained from the charts ( D a 0 vs X) or vice versa. Using these charts avoids the analytical or numerical solution of the PDE that governs the unidirectional flow reactors becoming an easy tool for scale-up. The article portrays how to use these diagrams. Reactors with D a 0 < 0.1 have a low conversion per pass, the charts also allow estimating the number of recirculations required as a function of the overall conversion. Reactors with the same conversion have the same D a 0 , both laboratory and industrial scale. Then, the D a number is presented as a fundamental parameter for design and scaling-up these reactors.
Collapse
Affiliation(s)
- Héctor L Otálvaro-Marín
- GAOX, Escuela de Ingeniería Química, Universidad del Valle, A.A. 25360, Cali, Colombia.,MADE Group, Food Engineering Program, Universidad de la Amazonia, Florencia, Colombia.,IDEI Group, I+D Educación e Ingeniería, Cali, Colombia
| | | |
Collapse
|
10
|
|
11
|
Lara-Ramos J, Saez C, Machuca-Martínez F, Rodrigo M. Electro-ozonizers: A new approach for an old problem. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Diaz-Angulo J, Porras J, Mueses M, Torres-Palma R, Hernandez-Ramirez A, Machuca-Martinez F. Coupling of heterogeneous photocatalysis and photosensitized oxidation for diclofenac degradation: role of the oxidant species. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|