1
|
Rossner C. Polymer-Grafted Gold Colloids and Supracolloids: From Mechanisms of Formation to Dynamic Soft Matter. Macromol Rapid Commun 2025:e2400851. [PMID: 39783139 DOI: 10.1002/marc.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Gold nanoparticles represent nanosized colloidal entities with high relevance for both basic and applied research. When gold nanoparticles are functionalized with polymer-molecule ligands, hybrid nanoparticles emerge whose interactions with the environment are controlled by the polymer coating layer: Colloidal stability and structure formation on the single particle level as well as at the supracolloidal scale can be enabled and engineered by tailoring the composition and architecture of this polymer coating. These possibilities in controlling structure formation may lead to synergistic and/or emergent functional properties of such hybrid colloidal systems. Eventually, the responsivity of the polymer coating to external triggers also enables the formation of hybrid supracolloidal systems with specific dynamic properties. This review provides an overview of fundamentals and recent developments in this vibrant domain of materials science.
Collapse
Affiliation(s)
- Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
2
|
Prajapati DG, Mishra A. Reusable semi-IPN polymer networks as long-term antibacterial coatings. Biomater Sci 2024; 12:5349-5360. [PMID: 39248605 DOI: 10.1039/d4bm00938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The current study aimed to develop a reusable antibacterial coating that can be employed for efficient bacterial killing. We synthesized a water-soluble methacrylamide-based copolymer consisting of cationic and hydrophobic groups and coated it onto a glass surface through the formation of semi-interpenetrating polymer networks (semi-IPN) of aminopropyl triethoxysilane and glutaraldehyde. The coated surface was exposed to Gram-negative and Gram-positive bacteria, where the surface exhibited rapid bacterial killing ability within 5-15 min. The substrates displayed a minimal loss of antibacterial activity even after two water rinse cycles. The coatings were able to kill both the bacterial strains even after 5 weeks, suggesting excellent longevity. The surfaces were stable after repeated wiping cycles with 70% IPA using Kim wipes and 5 min sonication in DI water as no bactericidal activity was lost. Thus, a sustainable antibacterial copolymer coating was developed, and it is stable and reusable against bacterial contamination and could be employed as a long-term antibacterial coating.
Collapse
Affiliation(s)
- Deepak G Prajapati
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, 382355-Gujarat, India.
| | - Abhijit Mishra
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, 382355-Gujarat, India.
| |
Collapse
|
3
|
Choi W, Kim YE, Yoo H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers (Basel) 2024; 16:2613. [PMID: 39339077 PMCID: PMC11435555 DOI: 10.3390/polym16182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of organic semiconductors in electronic devices, including transistors, sensors, and memories, unlocks innovative possibilities such as streamlined fabrication processes, enhanced mechanical flexibility, and potential new applications. Nevertheless, the increasing technical demand for patterning organic semiconductors requires greater integration and functional implementation. This paper overviews recent efforts to pattern organic semiconductors compatible with electronic devices. The review categorizes the contributions of organic semiconductor patterning approaches, such as surface-grafting polymers, capillary force lithography, wettability, evaporation, and diffusion in organic semiconductor-based transistors and sensors, offering a timely perspective on unconventional approaches to enable the patterning of organic semiconductors with a strong focus on the advantages of organic semiconductor utilization. In addition, this review explores the opportunities and challenges of organic semiconductor-based integration, emphasizing the issues related to patterning and interconnection.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Ivaldi C, Ospina Guarin VM, Antonioli D, Zuccheri G, Sparnacci K, Gianotti V, Perego M, Chiarcos R, Laus M. Polystyrene Brush Evolution by Grafting to Reaction on Deglazed and Not-Deglazed Silicon Substrates. Macromol Rapid Commun 2024; 45:e2400288. [PMID: 39012272 DOI: 10.1002/marc.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.
Collapse
Affiliation(s)
- Chiara Ivaldi
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Viviana Maria Ospina Guarin
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Diego Antonioli
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, V. San Donato 19/2, Bologna, 40127, Italy
| | - Katia Sparnacci
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Valentina Gianotti
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Michele Perego
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via C. Olivetti 2, Agrate-Brianza, 20864, Italy
| | - Riccardo Chiarcos
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Michele Laus
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
5
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
6
|
Chiarcos R, Perego M, Laus M. Polymer Brushes by Grafting to Reaction in Melt: New Insights into the Mechanism. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| | - Michele Perego
- CNR‐IMM Unit of Agrate Brianza Via C. Olivetti 2 Agrate Brianza 20864 Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| |
Collapse
|
7
|
Corrigan N, Boyer C. Living in the Moment: A Mathematically Verified Approach for Molecular Weight Distribution Analysis and Application to Data Storage. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| |
Collapse
|
8
|
Witzmann T, Ramsperger AFRM, Wieland S, Laforsch C, Kress H, Fery A, Auernhammer GK. Repulsive Interactions of Eco-corona-Covered Microplastic Particles Quantitatively Follow Modeling of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8748-8756. [PMID: 35736564 DOI: 10.1021/acs.langmuir.1c03204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The environmental fate and toxicity of microplastic particles are dominated by their surface properties. In the environment, an adsorbed layer of biomolecules and natural organic matter forms the so-called eco-corona. A quantitative description of how this eco-corona changes the particles' colloidal interactions is still missing. Here, we demonstrate with colloidal probe-atomic force microscopy that eco-corona formation on microplastic particles introduces a compressible film on the surface, which changes the mechanical behavior. We measure single particle-particle interactions and find a pronounced increase of long-range repulsive interactions upon eco-corona formation. These force-separation characteristics follow the Alexander-de Gennes (AdG) polymer brush model under certain conditions. We further compare the obtained fitting parameters to known systems like polyelectrolyte multilayers and propose these as model systems for the eco-corona. Our results show that concepts of fundamental polymer physics, like the AdG model, also help in understanding more complex systems like biomolecules adsorbed to surfaces, i.e., the eco-corona.
Collapse
Affiliation(s)
- Thomas Witzmann
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Günter K Auernhammer
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
9
|
Liang CX, Lu H, Huang BY, Xing JY, Gu FL, Liu H. Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wang YM, Kálosi A, Halahovets Y, Romanenko I, Slabý J, Homola J, Svoboda J, de los Santos Pereira A, Pop-Georgievski O. Grafting density and antifouling properties of poly[ N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym Chem 2022. [DOI: 10.1039/d2py00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(HPMA) brushes prepared by a grafting-from method suppress fouling from blood plasma by an order of magnitude better than the polymer brushes of the same molecular weight prepared by a grafting-to method.
Collapse
Affiliation(s)
- Yu-Min Wang
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Anna Kálosi
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| | | | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
11
|
Chiarcos R, Antonioli D, Gianotti V, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Short vs. long chains competition during “ grafting to” process from melt. Polym Chem 2022. [DOI: 10.1039/d2py00364c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A preferential grafting of short chains occurs during the “grafting to” reaction of hydroxy terminated P(S-st-MMA) blends consisting of short and long chains. The enrichment is enhanced when the chain length difference increases.
Collapse
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Scuola Superiore Meridionale, University of Naples Federico II, Largo S. Marcellino 10, Naples 80138, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
12
|
Chiarcos R, Antonioli D, Ospina V, Laus M, Perego M, Gianotti V. Quantification of molecular weight discrimination in grafting to reactions from ultrathin polymer films by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2021; 146:6145-6155. [PMID: 34487131 DOI: 10.1039/d1an01329g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present study, a reliable and robust method was developed to quantify the molecular weight discrimination that can occur in grafting to reactions via indirect MALDI-TOF quantification of the molecular weights of grafted chains by comparing the characteristics of the polymeric material before the grafting reaction with those of the unreacted material recovered after grafting. Two polystyrene samples with different molecular weights and narrow molecular weight distributions were employed to prepare model blends that were grafted to silicon wafers and an analytical method was developed and validated to assess and quantify the modification of the molecular weight distribution that takes place during the grafting to process. Particular attention was paid to the standardization of the sample treatment and to find the best data collection and calibration methodologies in order to have statistically significant data even in the presence of a very scarce amount of the sample. Furthermore, to evaluate the accuracy of the analytical procedure, the lack of suitable standard and certified materials required a further experiment to be carried out by comparing the new optimized MALDI-TOF method and direct measurements using TGA-GC-MS on a model blend containing deuterated and hydrogenated polystyrene samples with appropriate molecular weights and distributions. The optimized method was applied on samples obtained by a thermally induced grafting to reaction from ultrathin polymer films and, for the first time, to our knowledge, an enrichment effect occurring in the ultrathin grafted layer obtained from a melt was evidenced.
Collapse
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Viviana Ospina
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
13
|
Samant S, Hailu S, Singh M, Pradhan N, Yager K, Al‐Enizi AM, Raghavan D, Karim A. Alignment frustration in block copolymer films with block copolymer grafted
TiO
2
nanoparticles under
soft‐shear
cold zone annealing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Saumil Samant
- Department of Polymer Engineering The University of Akron Akron Ohio USA
| | - Shimelis Hailu
- Department of Chemistry Howard University Washington DC USA
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science Jackson State University Jackson Mississippi USA
| | - Kevin Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton New York USA
| | - Abdullah M. Al‐Enizi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | | | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering University of Houston Houston Texas USA
| |
Collapse
|
14
|
Antonioli D, Chiarcos R, Gianotti V, Terragno M, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Inside the brush: partition by molecular weight in grafting to reactions from melt. Polym Chem 2021. [DOI: 10.1039/d1py01303c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A substantial partition by molecular weight takes place during the grafting to reactions.
Collapse
Affiliation(s)
- Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Margherita Terragno
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, via G. Paolo II 134, 84084, Fisciano, SA, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
15
|
Michalek L, Krappitz T, Mundsinger K, Walden SL, Barner L, Barner-Kowollik C. Mapping Photochemical Reactivity Profiles on Surfaces. J Am Chem Soc 2020; 142:21651-21655. [PMID: 33337866 DOI: 10.1021/jacs.0c11485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we introduce a comprehensive methodology to map the reactivity of photochemical systems on surfaces. The reactivity of photoreactive groups in solution often departs from their corresponding solution absorption spectra. On surfaces, the relationship between the surface absorption spectra and reactivity remains unexplored. Thus, herein, the reactivity of an o-methylbenzaldehyde and a tetrazole, as ligation partners for maleimide functionalized polymers, was investigated when the reactive moieties are tethered to a surface. The ligation reaction of tetrazole functionalized surfaces was found to proceed rapidly leading to high grafting densities, while o-methylbenzaldehyde functionalized substrates required longer irradiation times and resulted in lower surface coverage at the same wavelength (330 nm). Critically, wavelength resolved reactivity profiles were found to closely match the surface absorption spectra, contrary to previously reported red shifts in solution for the same chromophores.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Tim Krappitz
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| |
Collapse
|
16
|
Laus M, Chiarcos R, Gianotti V, Antonioli D, Sparnacci K, Munaò G, Milano G, De Nicola A, Perego M. Evidence of Mechanochemical Control in “Grafting to” Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Gianmarco Munaò
- Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Antonio De Nicola
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Agrate Brianza 20864, Italy
| |
Collapse
|
17
|
Liu K, Corrigan N, Postma A, Moad G, Boyer C. A Comprehensive Platform for the Design and Synthesis of Polymer Molecular Weight Distributions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01954] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke Liu
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Almar Postma
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Graeme Moad
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
19
|
Rossner C. Consequences of End-Group Fidelity for the Quantitative Analysis of Surface Grafting of Polymers. ACS Macro Lett 2020; 9:422-425. [PMID: 35648541 DOI: 10.1021/acsmacrolett.0c00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
End-functional polymers are employed in a wide range of functionalization reactions, including, among others, polymer surface grafting. Herein, kinetic (PREDICI) simulations are used to investigate to what extent the molar mass distribution (MMD) of α-end-functional polymers derived from RAFT polymerization may differ from the MMD of nonfunctional chains and the overall polymeric material. The results indicate that the MMD of the overall polymeric material (as commonly accessed in experiments) may not provide a good estimate for the MMD of α-end-functional chains, if polymerization conditions deviate strongly from pseudoliving conditions. Careful consideration of this behavior is required when using α-end-functional RAFT polymers in quantitative studies.
Collapse
Affiliation(s)
- Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
20
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
21
|
Georgiou PG, Baker AN, Richards SJ, Laezza A, Walker M, Gibson MI. "Tuning aggregative versus non-aggregative lectin binding with glycosylated nanoparticles by the nature of the polymer ligand". J Mater Chem B 2019; 8:136-145. [PMID: 31778137 DOI: 10.1039/c9tb02004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur. Depending on the application area, either one of these responses are desirable (or undesirable) but methods to tune the aggregation state, independently from the overall extent/affinity of binding are currently missing. Herein, we use gold nanoparticles decorated with galactose-terminated polymer ligands, obtained by photo-initiated RAFT polymerization to ensure high end-group fidelity, to show the dramatic impact on agglutination behaviour due to the chemistry of the polymer linker. Poly(N-hydroxyethyl acrylamide) (PHEA)-coated gold nanoparticles, a polymer widely used as a non-ionic stabilizer, showed preference for aggregation with lectins compared to poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)-coated nanoparticles which retained colloidal stability, across a wide range of polymer lengths and particle core sizes. Using biolayer interferometry, it was observed that both coatings gave rise to similar binding affinity and hence provided conclusive evidence that aggregation rate alone cannot be used to measure affinity between nanoparticle systems with different stabilizing linkers. This is significant, as turbidimetry is widely used to demonstrate glycomaterial activity, although this work shows the most aggregating may not be the most avid, when comparing different polymer backbones/coating. Overall, our findings underline the potential of PHPMA as the coating of choice for applications where aggregation upon lectin binding would be problematic, such as in vivo imaging or drug delivery.
Collapse
Affiliation(s)
- Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Antonio Laezza
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
22
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
23
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
24
|
Michalek L, Mundsinger K, Barner L, Barner-Kowollik C. Quantifying Solvent Effects on Polymer Surface Grafting. ACS Macro Lett 2019; 8:800-805. [PMID: 35619509 DOI: 10.1021/acsmacrolett.9b00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When grafting polymers onto surfaces, the reaction conditions critically influence the resulting interface properties, including the grafting density and molar mass distribution (MMD) on the surface. Herein, we show theoretically and experimentally that the application of poor solvents is beneficial for the "grafting-to" approach. We demonstrate the effect by grafting poly(methyl methacrylate) chains on silica nanoparticles in different solvents and compare the MMD of the polymer in solution before and after grafting via size exclusion chromatography (SEC). The shorter polymer chains are preferentially grafted onto the surface, leading to a distortion effect between the MMD in solution and on surfaces. The molecular weight distortion effect is significantly higher for ethyl acetate (good solvent quality, difference in Mw surface to solution 14%) than for N,N-dimethylacetamide (poor solvent quality, 6%). The difference in MMD on the surface to the solution significantly affects both the surface properties (e.g. the grafting densities) and their determination.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
| |
Collapse
|