1
|
Savarimuthu Selvan C, Rengan R, Malecki JG. One-Pot Sustainable Synthesis of Highly Substituted Pyrimidines via Acceptorless Dehydrogenative Annulation of Alcohols Using Pincer Ni(II)-NNS Catalysts. J Org Chem 2024; 89:11148-11160. [PMID: 39087691 DOI: 10.1021/acs.joc.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We report an efficient and sustainable synthesis of highly substituted pyrimidines promoted by nickel(II)-NNS pincer-type complexes via acceptorless dehydrogenative annulations of readily available alcohols, malononitrile, and guanidine/benzamidine salt under eco-friendly conditions for the first time. Different sets of Ni(II) complexes (C1-C3) encapsulated in NNS pincer-type thiosemicarbazone ligands have been synthesized and authenticated by analytical and spectroscopic (Fourier transform infrared, nuclear magnetic resonance, and high-resolution mass spectrometry) techniques. The solid state three-dimensional structure of a representative complex (C2) has been determined with the aid of single crystal XRD analysis and confirms a square planar architecture around the nickel ion. Further, the well-defined Ni(II) complexes have been employed as efficient catalysts for the fabrication of a wide range of 4-aminopyrimidine-5-carbonitrile derivatives (33 examples) from readily available alcohols with suitable coupling partners such as malononitrile and guanidine/benzamidine under eco-friendly conditions. The current catalytic approach affords maximum yields up to 95% utilizing 3 mol % catalyst loading and water/hydrogen as the only byproduct. A feasible catalytic pathway has been proposed based on the different control experiment reactions, which clearly indicate that the coupling reaction proceeds via aldehyde and benzylidenemalononitrile intermediates. The practicability of the current protocol has been demonstrated by the large-scale synthesis of one of the products, 4-amino-2,6-diphenylpyrimidine-5-carbonitrile, and a short synthesis of a cytosine antifungal analogue.
Collapse
Affiliation(s)
- Clinton Savarimuthu Selvan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
2
|
Gao S, Cao CQ, Liu ZJ, Yao ZJ. Half-Sandwich Iridium Complexes: A Recyclable and Stable Catalyst for Dehydrogenation of Alcohols to Carboxylic Acids. Inorg Chem 2024; 63:13311-13320. [PMID: 38977684 DOI: 10.1021/acs.inorgchem.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A series of acylhydrazone-based N,N-chelate half-sandwich iridium complexes have been synthesized through a facile route in good yields. The dehydrogenation of a series of aromatic and aliphatic primary alcohols to corresponding carboxylic acids has been accomplished catalyzed by the prepared air stable iridium complexes under mild reaction conditions. Carboxylic acids were obtained in high yields under open flask condition with broad substrates and good tolerance to sensitive functional groups. Such a half-sandwich iridium catalyst system exhibited high catalytic activity and stability, and a high TOF of 316.7 h-1 could be achieved with a catalyst loading as low as 0.05 mol %. Furthermore, the sustainable catalyst could be reused at least five times without obviously losing its activity, highlighting its potential application in industry. Molecular structure of iridium complex 1 was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Song Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chuan-Qi Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Zhang X, Zhang Y, Ding J, Wang L, Chen W, Li X, Cui B, Zhao M, Shao Z. Synthesis of Thiophene-Substituted Ketones via Manganese-Catalyzed Dehydrogenative Coupling Reaction. Chem Asian J 2023; 18:e202300725. [PMID: 37789733 DOI: 10.1002/asia.202300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
This study reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. The manganese complex demonstrated a broad applicability under mild conditions and extended the range of usable substrates. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, β-unsaturated ketones in good isolated yields.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yujie Zhang
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Jiaqiao Ding
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Liusheng Wang
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Weihua Chen
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Xinyan Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Zhihui Shao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
6
|
Al-Romaizan AN, Gangwar MK, Verma A, Bawaked SM, Saleh TS, Al-Ammari RH, Butcher RJ, Siddiqui IR, Mostafa MMM. Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)-NHC Complexes. Molecules 2023; 28:4992. [PMID: 37446653 PMCID: PMC10343575 DOI: 10.3390/molecules28134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
For the creation of adaptable carbonyl compounds in organic synthesis, the oxidation of alcohols is a crucial step. As a sustainable alternative to the harmful traditional oxidation processes, transition-metal catalysts have recently attracted a lot of interest in acceptorless dehydrogenation reactions of alcohols. Here, using well-defined, air-stable palladium(II)-NHC catalysts (A-F), we demonstrate an effective method for the catalytic acceptorless dehydrogenation (CAD) reaction of secondary benzylic alcohols to produce the corresponding ketones and molecular hydrogen (H2). Catalytic acceptorless dehydrogenation (CAD) has been successfully used to convert a variety of alcohols, including electron-rich/electron-poor aromatic secondary alcohols, heteroaromatic secondary alcohols, and aliphatic cyclic alcohols, into their corresponding value-added ketones while only releasing molecular hydrogen as a byproduct.
Collapse
Affiliation(s)
- Abeer Nasser Al-Romaizan
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Manoj Kumar Gangwar
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Ankit Verma
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Salem M. Bawaked
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21959, Saudi Arabia
| | - Rahmah H. Al-Ammari
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA;
| | - Ibadur Rahman Siddiqui
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Mohamed Mokhtar M. Mostafa
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| |
Collapse
|
7
|
Paul T, Saikia PP, Borah D, Mahanta N, Baruah A, Borah JM, Saikia BJ, Raidongia K, Gogoi RK, Gogoi R. Ni(OH)
2
nanoparticles as a recyclable catalyst in acceptorless dehydrogenation of alcohols to acids/acid salts under aerobic conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Tumpa Paul
- Department of Chemistry Darrang College 784001 Tezpur India
| | | | | | | | - Arabinda Baruah
- Department of Chemistry Gauhati University 781014 Guwahati India
| | | | | | | | | | - Raktim Gogoi
- Department of Chemistry IIT Guwahati 781039 Guwahati India
| |
Collapse
|
8
|
Rational design of cobalt catalysts embedded in N-Doped carbon for the alcohol dehydrogenation to carboxylic acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Zeolitic Imidazolate Framework-8 as an Efficient and Facile Heterogeneous Catalyst for the Acceptorless Alcohol Dehydrogenation to Carboxylates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Kar S, Milstein D. Oxidation of Organic Compounds Using Water as the Oxidant with H 2 Liberation Catalyzed by Molecular Metal Complexes. Acc Chem Res 2022; 55:2304-2315. [PMID: 35881940 PMCID: PMC9386904 DOI: 10.1021/acs.accounts.2c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidation reactions of organic compounds play a central role in both industrial chemical and material synthesis as well as in fine chemical and pharmaceutical synthesis. While traditional laboratory-scale oxidative syntheses have relied on the use of strong oxidizers, modern large-scale oxidation processes preferentially utilize air or pure O2 as an oxidant, with other oxidants such as hydrogen peroxide, nitric acid, and aqueous chlorine solution also being used in some processes. The use of molecular oxygen or air as an oxidant has been very attractive in recent decades because of the abundance of air and the lack of wasteful byproduct generation. Nevertheless, the use of high-pressure air or, in particular, pure oxygen can lead to serious safety concerns with improper handling and also necessitates the use of sophisticated high-pressure reactors for the processes.Several research groups, including ours, have investigated in recent times the possibility of carrying out catalytic oxidation reactions using water as the formal oxidant, with no added conventional oxidants. Along with the abundant availability of water, these processes also generate dihydrogen gas as the reaction coproduct, which is a highly valuable fuel. Several well-defined molecular metal complexes have been reported in recent years to catalyze these unusual oxidative reactions with water. A ruthenium bipyridine-based PNN pincer complex was reported by us to catalyze the oxidation of primary alcohols to carboxylate salts with alkaline water along with H2 liberation, followed by reports by other groups using other complexes as catalysts. At the same time, ruthenium-, iridium-, and rhodium-based complexes have been reported to catalyze aldehyde oxidation to carboxylic acids using water. Our group has combined the catalytic aqueous alcohol and aldehyde oxidation activity of a ruthenium complex to achieve the oxidation of biomass-derived renewable aldehydes such as furfural and 5-hydroxymethylfurfural (HMF) to furoic acid and furandicarboxylic acid (FDCA), respectively, using alkaline water as the oxidant, liberating H2. Ruthenium complexes with an acridine-based PNP ligand have also been employed by our group for the catalytic oxidation of amines to the corresponding lactams, or to carboxylic acids via a deaminative route, using water. Similarly, we also reported molecular complexes for the catalytic Markovnikov oxidation of alkenes to ketones using water, similar to Wacker-type oxidation, which, however, does not require any terminal oxidant and produces H2 as the coproduct. At the same time, the oxidation of enol ethers to the corresponding esters with water has also been reported. This account will highlight these recent advances where water was used as an oxidant to carry out selective oxidation reactions of organic compounds, catalyzed by well-defined molecular complexes, with H2 liberation. The oxidation of alcohols, aldehydes, amines, alkenes, and enol ethers will be discussed to provide an outlook toward other functional groups' oxidation. We hope that this will aid researchers in devising other oxidative dehydrogenative catalytic systems using water, complementing traditional oxidative processes involving strong oxidants and molecular oxygen.
Collapse
|
11
|
Tabasi NS, Genç S, Gülcemal D. Tuning the selectivity in iridium-catalyzed acceptorless dehydrogenative coupling of primary alcohols. Org Biomol Chem 2022; 20:6582-6592. [PMID: 35913502 DOI: 10.1039/d2ob01142e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acceptorless dehydrogenative coupling of primary alcohols to carboxylic acids/carboxylates, esters, and Guerbet alcohols (via both homo- and cross-β-alkylation of the alcohols) in the presence of an N-heterocyclic carbene iridium(I) catalyst was developed under aerobic conditions. The product selectivity can be easily tuned among the products with a single catalyst through simple modification of the reaction conditions, such as the catalyst and base amounts, the choice of base, and the reaction temperature.
Collapse
Affiliation(s)
- Nihal S Tabasi
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Sertaç Genç
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Derya Gülcemal
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
12
|
Li X, Shao X, Zhang X, Zhao Q, Lai H, Cui B, Shao Z, Zhao M. Synthesizing carbonyl furan derivatives by a dehydrogenative coupling reaction. Org Biomol Chem 2022; 20:6542-6546. [PMID: 35912951 DOI: 10.1039/d2ob01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the development of an efficient green procedure for synthesizing carbonyl furan derivatives by dehydrogenative coupling of furfuryl alcohol with carbonyl compounds. The reaction is performed under mild reaction conditions in the presence of iPrPNP-Mn as the catalyst and a weak base (Cs2CO3). A range of ketones and aldehydes were efficiently diversified with furfuryl alcohol to afford furyl-substituted saturated ketones, and α,β-unsaturated ketones and aldehydes in good isolated yields.
Collapse
Affiliation(s)
- Xinyan Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiulan Shao
- Xi'an Urban Drainage Monitoring Station, Xi'an 710016, China
| | - Xiaoyu Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qiaoyue Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hongtao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhihui Shao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
13
|
Zhao M, Li X, Zhang X, Shao Z. Efficient Synthesis of C3-Alkylated and Alkenylated Indoles via Manganese-Catalyzed Dehydrogenation. Chem Asian J 2022; 17:e202200483. [PMID: 35771722 DOI: 10.1002/asia.202200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The catalytic dehydrogenation of alcohols is essential for the sustainable production of valuable products. This provids a new strategy for green organic synthesis in chemical industries. Herein, we describe a manganese-based catalytic system that enables the efficient synthesis of C3-alkylated indoles from benzyl alcohols and indoles via the borrowing hydrogen process. Furthermore, dehydrogenative coupling of 2-arylethanols and indoles yields C3-alkenylated indoles. Meanwhile, reacting 2-aminophenethanol instead of indoles can also obtain the corresponding indole products with high selectivity under the same conditions.
Collapse
Affiliation(s)
- Mingqin Zhao
- Henan University, College of Tobacco Science, CHINA
| | - Xinyan Li
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Xiaoyu Zhang
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Zhihui Shao
- Henan Agricultural University, College of Tobacco Science, Wenhua Road, 450002, Zhengzhou, CHINA
| |
Collapse
|
14
|
Bordoloi K, Kalita GD, Das P. Acceptorless dehydrogenation of alcohols to carboxylic acids by palladium nanoparticles supported on NiO: delving into metal-support cooperation in catalysis. Dalton Trans 2022; 51:9922-9934. [PMID: 35723167 DOI: 10.1039/d2dt01311h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we have developed a simple NiO-supported Pd nanocatalyst (Pd@NiO) for oxidant-free dehydrogenative oxidation of primary alcohols to carboxylic acids along with hydrogen gas as a byproduct. The catalyst has been characterized by techniques like XRD, HRTEM, SEM-EDX, XPS and ICP-AES. The nanostructured Pd@NiO material showed excellent dehydrogenative oxidation activity and outperformed the activity of free NiO or Pd nanoparticles supported on silica/carbon as a catalyst, which could be attributed to synergistic effect of Pd and NiO. A diverse range of aromatic and aliphatic primary alcohols could be efficiently converted to their corresponding carboxylates in high yields with a catalyst loading as low as 0.08 mol%. Notably, highly challenging biomass derived heterocyclic alcohols such as furfuryl alcohol and piperonyl alcohol can also be efficiently converted to their corresponding acids. Moreover, our catalyst can convert benzyl alcohol to benzoic acid on a gram scale with 89% yield. Interestingly, the H2 gas liberated in the reaction can also be used as a substrate for the hydrogenation of 3a to 4a in 65% yield. The nanostructured catalyst is highly reusable and no significant decrease in activity was observed after six reaction cycles. A kinetic study revealed that the reaction followed first-order kinetics with a rate constant of k = 1.47 × 10-4 s-1, under optimized conditions. The extent of reactivity of different functionalities towards dehydrogenation was also investigated using a Hammett plot showing good linearity.
Collapse
Affiliation(s)
- Krisangi Bordoloi
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India.
| | | | - Pankaj Das
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India.
| |
Collapse
|
15
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
16
|
Waiba S, Maiti M, Maji B. Manganese-Catalyzed Reformation of Vicinal Glycols to α-Hydroxy Carboxylic Acids with the Liberation of Hydrogen Gas. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Mamata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
17
|
Acceptorless Dehydrogenation of Primary Alcohols to Carboxylic Acids by Self-Supported NHC-Ru Single-Site Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Wen X, He J, Xi H, Zheng Q, Liu W. Hydration of nitriles enabled by PNP‐manganese pincer catalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoting Wen
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Jingxi He
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Hui Xi
- Zhengzhou Tobacco Research Institute Key laboratory of tobacco flavor basic research CHINA
| | - Qi Zheng
- Donghua University - Songjiang Campus: Donghua University State key laboratory for modification of chemical fibers and polymer materials, College of materials science and engineering CHINA
| | - Weiping Liu
- college of chemistry, chemical engineering and biotechnology Chemistry North Renmin Road NO.2999 201620 Shanghai CHINA
| |
Collapse
|
19
|
Shao Z, Yuan S, Li Y, Liu Q. Using Methanol as a Formaldehyde Surrogate for Sustainable Synthesis of
N
‐Heterocycles
via
Manganese‐Catalyzed
Dehydrogenative Cyclization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| | - Shanshan Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yibiao Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Shen L, Chen ZN, Zheng Q, Wu J, Xu X, Tu T. Selective Transformation of Vicinal Glycols to α-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Tan WY, Lu Y, Zhao JF, Chen W, Zhang H. Oxidation of Primary Alcohols and Aldehydes to Carboxylic Acids via Hydrogen Atom Transfer. Org Lett 2021; 23:6648-6653. [PMID: 34474568 DOI: 10.1021/acs.orglett.1c02188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of primary alcohols and aldehydes to the corresponding carboxylic acids is a fundamental reaction in organic synthesis. In this paper, we report a new chemoselective process for the oxidation of primary alcohols and aldehydes. This metal-free reaction features a new oxidant, an easy to handle procedure, high isolated yields, and good to excellent functional group tolerance even in the presence of vulnerable secondary alcohols and tert-butanesulfinamides.
Collapse
Affiliation(s)
- Wen-Yun Tan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Yi Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Jing-Feng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| |
Collapse
|
22
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
23
|
|
24
|
Yu M, Wu C, Zhou L, Zhu L, Yao X. Aerobic Oxidation of Aldehydes to Carboxylic Acids Catalyzed by Recyclable Ag/C3N4 Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807210137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Collapse
Affiliation(s)
- Min Yu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Chaolong Wu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhou
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 210029,China
| | - Xiaoquan Yao
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| |
Collapse
|
25
|
Seo CSG, Tsui BTH, Gradiski MV, Smith SAM, Morris RH. Enantioselective direct, base-free hydrogenation of ketones by a manganese amido complex of a homochiral, unsymmetrical P–N–P′ ligand. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00446h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Base-free direct hydrogenation of ketones using a Mn(PNP′)(CO)2 complex is more enantioselective than that of a related base-activated iron complex.
Collapse
|
26
|
Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Toyooka G, Fujita KI. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex. CHEMSUSCHEM 2020; 13:3820-3824. [PMID: 32449604 DOI: 10.1002/cssc.202001052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
A catalytic system for the synthesis of dicarboxylic acids from aqueous solutions of diols accompanied by the evolution of hydrogen was developed. An iridium complex bearing a functional bipyridonate ligand with N,N-dimethylamino substituents exhibited a high catalytic performance for this type of dehydrogenative reaction. For example, adipic acid was synthesized from an aqueous solution of 1,6-hexanediol in 97 % yield accompanied by the evolution of four equivalents of hydrogen by the present catalytic system. It should be noted that the simultaneous production of industrially important dicarboxylic acids and hydrogen, which is useful as an energy carrier, was achieved. In addition, the selective dehydrogenative oxidation of vicinal diols to give α-hydroxycarboxylic acids was also accomplished.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
28
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
29
|
Abstract
Valorization of biomass has become an area of intense focus because of the diminishing reserves of crude oil and the ongoing problem of climate change. The principal strategies for the utilization of biomass as a feedstock are (i) to produce biofuels for the transportation sector and (ii) to produce organic commodity chemicals. In this respect, we have developed a serious of manganese-catalyzed dehydrogenative/deoxygenative coupling reactions of lower alcohols, obtainable from oxygen-rich lignocellulosic biomass, to deliver advanced liquid fuels and valuable chemicals.1 Introduction2 Manganese-Catalyzed Upgrading of Ethanol to Butan-1-ol3 Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol to Isobutanol4 Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols with Hydroxides to Give Carboxylates5 Manganese-Catalyzed Dual-Deoxygenative Coupling of Primary Alcohols with 2-Arylethanols6 Conclusion
Collapse
|
30
|
Recent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213241] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, WB India
| | - Biplab Maji
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, WB India
| |
Collapse
|
32
|
Rohit KR, Radhika S, Saranya S, Anilkumar G. Manganese‐Catalysed Dehydrogenative Coupling – An Overview. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| |
Collapse
|
33
|
Pradhan DR, Pattanaik S, Kishore J, Gunanathan C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Alcohols to Carboxylate Salts and Hydrogen. Org Lett 2020; 22:1852-1857. [DOI: 10.1021/acs.orglett.0c00193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Deepak Ranjan Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Jugal Kishore
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
34
|
Shao Z, Li Y, Liu C, Ai W, Luo SP, Liu Q. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nat Commun 2020; 11:591. [PMID: 32001679 PMCID: PMC6992753 DOI: 10.1038/s41467-020-14380-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 01/31/2023] Open
Abstract
The development of cost-effective, sustainable, and efficient catalysts for liquid organic hydrogen carrier systems is a significant goal. However, all the reported liquid organic hydrogen carrier systems relied on the use of precious metal catalysts. Herein, a liquid organic hydrogen carrier system based on non-noble metal catalysis was established. The Mn-catalyzed dehydrogenative coupling of methanol and N,N’-dimethylethylenediamine to form N,N’-(ethane-1,2-diyl)bis(N-methylformamide), and the reverse hydrogenation reaction constitute a hydrogen storage system with a theoretical hydrogen capacity of 5.3 wt%. A rechargeable hydrogen storage could be achieved by a subsequent hydrogenation of the resulting dehydrogenation mixture to regenerate the H2-rich compound. The maximum selectivity for the dehydrogenative amide formation was 97%. The development of cost-effective, sustainable, and efficient catalysts for liquid organic hydrogen carrier systems is a significant goal. Herein, authors present a system based on manganese catalysis with a theoretical H2 capacity of 5.3 wt% and high selectivity for the dehydrogenation reaction.
Collapse
Affiliation(s)
- Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenying Ai
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529090, China.
| |
Collapse
|
35
|
Highly Efficient N-Heterocyclic Carbene/Ruthenium Catalytic Systems for the Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Effects of Ancillary and Additional Ligands. Catalysts 2019. [DOI: 10.3390/catal10010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transition-metal-catalyzed alcohol dehydrogenation to carboxylic acids has been identified as an atom-economical and attractive process. Among various catalytic systems, Ru-based systems have been the most accessed and investigated ones. With our growing interest in the discovery of new Ru catalysts comprising N-heterocyclic carbene (NHC) ligands for the dehydrogenative reactions of alcohols, we designed and prepared five NHC/Ru complexes ([Ru]-1–[Ru]-5) bearing different ancillary NHC ligands. Moreover, the effects of ancillary and additional ligands on the alcohol dehydrogenation with KOH were thoroughly explored, followed by the screening of other parameters. Accordingly, a highly active catalytic system, which is composed of [Ru]-5 combined with an additional NHC precursor L5, was discovered, affording a variety of acid products in a highly efficient manner. Gratifyingly, an extremely low Ru loading (125 ppm) and the maximum TOF value until now (4800) were obtained.
Collapse
|
36
|
Leischner T, Artús Suarez L, Spannenberg A, Junge K, Nova A, Beller M. Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chem Sci 2019; 10:10566-10576. [PMID: 32110342 PMCID: PMC7020655 DOI: 10.1039/c9sc03453f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022] Open
Abstract
A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic hydrogenation of amides.
A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic hydrogenation of amides. Among the tested catalysts, Mo-1a proved to be particularly well suited for the selective C–N hydrogenolysis of N-methylated formanilides. Notably, high chemoselectivity was observed in the presence of certain reducible groups including even other amides. The general catalytic performance as well as selectivity issues could be rationalized taking an anionic Mo(0) as the active species. The interplay between the amide C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O reduction and the catalyst poisoning by primary amides accounts for the selective hydrogenation of N-methylated formanilides. The catalyst resting state was found to be a Mo–alkoxo complex formed by reaction with the alcohol product. This species plays two opposed roles – it facilitates the protolytic cleavage of the C–N bond but it encumbers the activation of hydrogen.
Collapse
Affiliation(s)
- Thomas Leischner
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Lluis Artús Suarez
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 , Oslo , Norway .
| | - Anke Spannenberg
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Kathrin Junge
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 , Oslo , Norway .
| | - Matthias Beller
- Leibniz Institut für Katalyse e. V. , Albert-Einstein-Straße 29a , Rostock , 18059 , Germany .
| |
Collapse
|
37
|
Awasthi MK, Singh SK. Ruthenium Catalyzed Dehydrogenation of Alcohols and Mechanistic Study. Inorg Chem 2019; 58:14912-14923. [DOI: 10.1021/acs.inorgchem.9b02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahendra K. Awasthi
- Catalysis Group, Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sanjay K. Singh
- Catalysis Group, Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
38
|
Synthesis and characterization of unsaturated Manganese(I) and Rhenium(I) dicarbonyl complexes supported by an anionic PNP pincer. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Liu Y, Shao Z, Wang Y, Xu L, Yu Z, Liu Q. Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. CHEMSUSCHEM 2019; 12:3069-3072. [PMID: 30724026 DOI: 10.1002/cssc.201802689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Isobutanol serves as an ideal gasoline additive owing to its good compatibility with current engine technology, high energy density, and high octane number. Herein, an efficient and selective Mn-catalyzed upgrading of ethanol with methanol into isobutanol is reported. This is the first example of deoxygenative coupling of lower alcohols to isobutanol by using a homogeneous non-noble-metal catalyst. This transformation proceeded at very low catalyst loading with a high turnover number (9233) and up to 96 % isobutanol selectivity.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Zhiyong Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
40
|
Manganese‐Mediated Formic Acid Dehydrogenation. Chemistry 2019; 25:10557-10560. [DOI: 10.1002/chem.201901177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Indexed: 02/05/2023]
|
41
|
Liu HM, Jian L, Li C, Zhang CC, Fu HY, Zheng XL, Chen H, Li RX. Dehydrogenation of Alcohols to Carboxylic Acid Catalyzed by in Situ-Generated Facial Ruthenium-CPP Complex. J Org Chem 2019; 84:9151-9160. [DOI: 10.1021/acs.joc.9b01100] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hui-Min Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Jian
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chun-Chun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Hai-Yan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xue-Li Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rui-Xiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
42
|
Lu Y, Zhao R, Guo J, Liu Z, Menberu W, Wang Z. A Unified Mechanism to Account for Manganese‐ or Ruthenium‐Catalyzed Nitrile α‐Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study. Chemistry 2019; 25:3939-3949. [DOI: 10.1002/chem.201806016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Lu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruihua Zhao
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheyuan Liu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wasihun Menberu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
43
|
Gong D, Hu B, Chen D. Bidentate Ru(ii)-NC complexes as catalysts for the dehydrogenative reaction from primary alcohols to carboxylic acids. Dalton Trans 2019; 48:8826-8834. [DOI: 10.1039/c9dt01414d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complex 1 is active for alcohol dehydrogenative reactions, and two critical intermediates were isolated and characterized.
Collapse
Affiliation(s)
- Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| |
Collapse
|
44
|
Budweg S, Junge K, Beller M. Transfer-dehydrogenation of secondary alcohols catalyzed by manganese NNN-pincer complexes. Chem Commun (Camb) 2019; 55:14143-14146. [DOI: 10.1039/c9cc07337j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel catalytic systems based on pentacarbonylmanganese bromide and stable NNN-pincer ligands are presented for the transfer-dehydrogenation of secondary alcohols to give the corresponding ketones in good to excellent isolated yields.
Collapse
Affiliation(s)
- Svenja Budweg
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Albert-Einstein Straße 29a
- Rostock 18059
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Albert-Einstein Straße 29a
- Rostock 18059
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Albert-Einstein Straße 29a
- Rostock 18059
- Germany
| |
Collapse
|
45
|
Jiang X, Zhang J, Zhao D, Li Y. Aldehyde effect and ligand discovery in Ru-catalyzed dehydrogenative cross-coupling of alcohols to esters. Chem Commun (Camb) 2019; 55:2797-2800. [DOI: 10.1039/c8cc10315a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aldehyde effect was discovered and utilized for ligand design in dehydrogenation reactions using PN(H)P pincer ligands.
Collapse
Affiliation(s)
- Xiaolin Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Jiahui Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
46
|
Wang ZQ, Tang XS, Yang ZQ, Yu BY, Wang HJ, Sang W, Yuan Y, Chen C, Verpoort F. Highly active bidentate N-heterocyclic carbene/ruthenium complexes performing dehydrogenative coupling of alcohols and hydroxides in open air. Chem Commun (Camb) 2019; 55:8591-8594. [DOI: 10.1039/c9cc03519b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A highly active and robust bidentate NHC/Ru complex for the acceptorless dehydrogenative coupling of alcohols and hydroxides in open air.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- School of Materials Science and Engineering
| | - Xiao-Sheng Tang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education) College of Optoelectronic Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhao-Qi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China)
- Ministry of Agriculture
- Beijing University of Agriculture
- Beijing 102206
- P. R. China
| | - Hua-Jing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- School of Materials Science and Engineering
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- National Research Tomsk Polytechnic University
| |
Collapse
|
47
|
Anderson NH, Boncella JM, Tondreau AM. Investigation of Nitrile Hydration Chemistry by Two Transition Metal Hydroxide Complexes: Mn–OH and Ni–OH Nitrile Insertion Chemistry. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nickolas H. Anderson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - James M. Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Aaron M. Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
48
|
Transition metal free one pot synthesis of aryl carboxylic acids via dehomologative oxidation of styrenes. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018; 57:15143-15147. [DOI: 10.1002/anie.201809333] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|
50
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|