1
|
Liu Y, Yuan Y, He J, Han S, Liu Y. Iodophor-catalyzed sulfenylation of indoles with sulfonyl hydrazides for the synthesis of 3-sulfenylindoles. RSC Adv 2024; 14:29891-29895. [PMID: 39301243 PMCID: PMC11411503 DOI: 10.1039/d4ra05383d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
An iodophor-catalyzed sulfenylation of indoles using sulfonyl hydrazides as sulfur source to synthesize 3-sulfenylindoles in aqueous phase has been achieved. Notably, iodophor as catalyst and solvent is inexpensive, commercially available and no innocuous to the environment. The method is also easy to operate. Moreover, the synthetic strategy features a wide range of substrates with excellent tolerance to diverse functional groups. A plausible mechanism for the iodophor-mediated 3-sulfenylation of indoles with sulfonyl hydrazides has been proposed. In addition, 3-(phenylthio)-1H-indole was obtained on a multi-gram scale.
Collapse
Affiliation(s)
- Yashuai Liu
- Basic Sciences Department, Shanxi Agricultural University Jinzhong 030800 P. R. China
| | - Yutong Yuan
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi City 832004 China
| | - Jing He
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi City 832004 China
| | - Sheng Han
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi City 832004 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi City 832004 China
| |
Collapse
|
2
|
Selladurai V, Karuthapandi S. Competing electrophilic substitution and oxidative polymerization of arylamines with selenium dioxide. Beilstein J Org Chem 2024; 20:1221-1235. [PMID: 38887588 PMCID: PMC11181186 DOI: 10.3762/bjoc.20.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
This article describes the detailed analysis of the reaction between arylamines, such as aniline, o-anisidine, and methyl anthranilate, with selenium dioxide in acetonitrile. A systematic analysis of the reaction products with the help of 77Se NMR and single-crystal X-ray crystallography revealed that the reaction progress follows three major reaction pathways, electrophilic selenation, oxidative polymerization, and solvent oxidation. For aniline and o-anisidine, predominant oxidative polymerization occurred, leading to the formation of the respective polyaniline polymers as major products. For methyl anthranilate, the oxidative polymerization was suppressed due to the delocalization of amine lone pair electrons over the adjacent carboxylate function, which prompted the selenation pathway, leading to the formation of two of the isomeric diorganyl selenides of methyl anthranilate. The diaryl selenides were structurally characterized using single-crystal X-ray diffraction. Density functional theory calculations suggest that the highest occupied molecular orbital of methyl anthranilate was deeply buried, which suppressed the oxidative polymerization pathway. Due to solvent oxidation, oxamide formation was also noticed to a considerable extent. This study provides that utmost care must be exercised while using SeO2 as an electrophile source in aromatic electrophilic substitution reactions.
Collapse
Affiliation(s)
- Vishnu Selladurai
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati-522237, Andhra Pradesh, India
| | - Selvakumar Karuthapandi
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati-522237, Andhra Pradesh, India
| |
Collapse
|
3
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
4
|
Xalxo A, Jyoti Goswami U, Sarkar S, Kandasamy T, Mehta K, Ghosh SS, Bharatam PV, Khan AT. Synthesis of 3-sulfenylindole derivatives from 4-hydroxy-2H-chromene-2-thione and indole using oxidative cross-dehydrogenative coupling reaction and anti-proliferative activity study of some of their sulfone derivatives. Bioorg Chem 2023; 141:106900. [PMID: 37813073 DOI: 10.1016/j.bioorg.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of hitherto unreported 3-sulfenylindole derivatives is achieved from 4-hydroxy-2H-chromene-2-thione (1) and indole (2) by employing an oxidative cross-dehydrogenative coupling reaction using a combination of 10 mol% of molecular iodine and 1 equivalent of TBHP in DMSO at room temperature. Then, the 3-sulfenylindole derivatives 3a, 3b, 3d, 3f, 3 h, and 3 k were converted into their corresponding sulfone derivatives because of lead likeness properties. Subsequently, a target prediction and docking study of six sulfone derivatives (5a-f) was performed, and four sulfones, namely 5a, 5d, 5e, and 5f, were selected for further in-vitro studies. The four sulfones mentioned above exhibited prominent anti-proliferative activity on breast cancer (MCF7) cell lines. In addition, this reaction was exergonic through quantum chemical analysis of the mechanistic steps. The salient features of this reaction are mild reaction conditions, good yields, and broad substrate scope.
Collapse
Affiliation(s)
- Anjela Xalxo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Ujjwal Jyoti Goswami
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shilpi Sarkar
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kriti Mehta
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab
| | - Siddhartha S Ghosh
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab.
| | - Abu T Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
5
|
Synthesis of 3-chalcogenyl-indoles mediated by the safer reagent urea-hydrogen peroxide (UHP). Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Han SS, Thacharon A, Kim J, Chung K, Liu X, Jang W, Jetybayeva A, Hong S, Lee KH, Kim Y, Cho EJ, Kim SW. Boosted Heterogeneous Catalysis by Surface-Accumulated Excess Electrons of Non-Oxidized Bare Copper Nanoparticles on Electride Support. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204248. [PMID: 36394076 PMCID: PMC9839873 DOI: 10.1002/advs.202204248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Engineering active sites of metal nanoparticle-based heterogeneous catalysts is one of the most prerequisite approaches for the efficient production of chemicals, but the limited active sites and undesired oxidation on the metal nanoparticles still remain as key challenges. Here, it is reported that the negatively charged surface of copper nanoparticles on the 2D [Ca2 N]+ ∙e- electride provides the unrestricted active sites for catalytic selective sulfenylation of indoles and azaindoles with diaryl disulfides. Substantial electron transfer from the electride support to copper nanoparticles via electronic metal-support interactions results in the accumulation of excess electrons at the surface of copper nanoparticles. Moreover, the surface-accumulated excess electrons prohibit the oxidation of copper nanoparticle, thereby maintaining the metallic surface in a negatively charged state and activating both (aza)indoles and disulfides under mild conditions in the absence of any further additives. This study defines the role of excess electrons on the nanoparticle-based heterogeneous catalyst that can be rationalized in versatile systems.
Collapse
Affiliation(s)
- Sung Su Han
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Athira Thacharon
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Jun Kim
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Kyungwha Chung
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Xinghui Liu
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Woo‐Sung Jang
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Albina Jetybayeva
- Department of Materials Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Eun Jin Cho
- Department of ChemistryChung‐Ang UniversitySeoul06974Republic of Korea
| | - Sung Wng Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
7
|
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022; 27:772. [PMID: 35164036 PMCID: PMC8839487 DOI: 10.3390/molecules27030772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles employing visible-light irradiation with graphene oxide as a promoter at room temperature has been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Hong Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Haiping He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| |
Collapse
|
8
|
Qi P, Sun F, Chen N, Du H. Direct Bis-Alkyl Thiolation for Indoles with Sulfinothioates under Pummerer-Type Conditions. J Org Chem 2022; 87:1133-1143. [PMID: 35014848 DOI: 10.1021/acs.joc.1c02502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A base-free bis-alkyl thiolation reaction of indoles with sulfinothioates under Pummerer-type conditions is described. Sulfinothioates, activated with 2,2,2-trifluoroacetic anhydride, are demonstrated to be an efficient thiolation reagent for wide applications. This approach enabled double C-H thiolation at the C2 and C3 of the indole in one pot. The mechanism studies suggested the thiolation was realized through the sulfoxonium salt rather than sulfenyl carboxylate.
Collapse
Affiliation(s)
- Peng Qi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
9
|
Talukdar R. Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account. Beilstein J Org Chem 2021; 17:2102-2122. [PMID: 34476017 PMCID: PMC8381850 DOI: 10.3762/bjoc.17.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Two or more indole molecules tailored to a single non-metal central atom, through any of their C2–7 positions are not only structurally engaging but also constitute a class of important pharmacophores. Although the body of such multi-indolyl non-metallide molecules are largely shared to the anticancer agent bis(indolyl)methane, other heteroatomic analogs also possess similar medicinal properties. This concise review will discuss various catalytic and uncatalytic synthetic strategies adopted for the synthesis of the non-ionic (non-metallic) versions of these important molecules till date.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal - 721302, India
| |
Collapse
|
10
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
11
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
12
|
NH4I-catalyzed C–S bond formation via an oxidation relay strategy: Efficient access to dithioether decorated indolizines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Flavin/I2
-Catalyzed Aerobic Oxidative C-H Sulfenylation of Aryl-Fused Cyclic Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zongchen Zhao
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zhifeng Shen
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
14
|
Li W, Wang H, Liu S, Feng H, Benassi E, Qian B. Iodine/Manganese Catalyzed Sulfenylation of Indole via Dehydrogenative Oxidative Coupling in Anisole. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weihe Li
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Hao Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Shengping Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Hua Feng
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Enrico Benassi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Bo Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
15
|
Pandey A, Chand S, Singh R, Kumar S, Singh KN. Iodine-Catalyzed Synthesis of 3-Arylthioindoles Employing a 1-Aryltriazene/CS 2 Combination as a New Sulfenylation Source. ACS OMEGA 2020; 5:7627-7635. [PMID: 32280906 PMCID: PMC7144174 DOI: 10.1021/acsomega.0c00472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
A practical approach for the regioselective synthesis of 3-arylthioindoles has been accomplished using a combination of 1-aryltriazene/CS2 as a new sulfenylation source. The methodology employs molecular iodine as a catalyst and is compatible with a variety of structurally diverse reactants.
Collapse
|
16
|
Penteado F, Gomes CS, Monzon LI, Perin G, Silveira CC, Lenardão EJ. Photocatalytic Synthesis of 3-Sulfanyl- and 1,3-Bis(sulfanyl)indolizines Mediated by Visible Light. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Filipe Penteado
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Caroline S. Gomes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Loana I. Monzon
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Claudio C. Silveira
- Departamento de Química; Universidade Federal de Santa Maria - UFSM; CEP: 97105-900 Santa Maria RS Brazil
| | - Eder J. Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| |
Collapse
|
17
|
Obah Kosso AR, Kabri Y, Broggi J, Redon S, Vanelle P. Sequential Regioselective Diorganochalcogenations of Imidazo[1,2-a]pyrimidines Using I2/H3PO4 in Dimethylsulfoxide. J Org Chem 2020; 85:3071-3081. [DOI: 10.1021/acs.joc.9b02963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anne Roly Obah Kosso
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Youssef Kabri
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Sébastien Redon
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
18
|
Liu C, Peng X, Hu D, Shi F, Huang P, Luo J, Liu Q, Liu L. The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. NEW J CHEM 2020. [DOI: 10.1039/d0nj00747a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green methodology for the construction of carbon–chalcogen (S and Se) bonds via a GO-promoted and metal-free light-induced synergistic effect is demonstrated.
Collapse
Affiliation(s)
- Chunping Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Feng Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Juanjuan Luo
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
19
|
Liu S, Yang H, Jiao LY, Zhang JH, Zhao C, Ma Y, Yang X. Regioselective deoxygenative chalcogenation of 7-azindole N-oxides promoted by I 2/PEG-200. Org Biomol Chem 2019; 17:10073-10087. [PMID: 31750499 DOI: 10.1039/c9ob02044f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a general and sustainable approach for the regioselective deoxygenative chalcogenation of 7-azindole N-oxides; the combination of an internal oxidant and a green solvent has been used successfully for the synthesis of mono- and dichalcogenyl 7-azaindoles which are of pharmaceutical interest. The regioselectivity is tunable by the variation of the reaction conditions. I2/PEG was established as an efficient and reusable catalytic system for C-H chalcogenation. This developed methodology has great potential for practical utility, with a broad substrate scope, green reaction conditions, and operational simplicity.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang W, Zhu F, Yan Z, He M, Lin S. I2O5 promoted iodosulfenylation of indoles under metal-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Palladium(II)/Copper(II)-Catalyzed C-H Sulfidation or Selenation of Arenes Leading to Unsymmetrical Sulfides and Selenides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Abstract
Selenium-based catalysts, including organo- and inorganoselenium ones, in organic synthesis in the recent decade are reviewed.
Collapse
Affiliation(s)
- Lixiong Shao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Chashan University Town
- Wenzhou
- P. R. China
| | - Yiming Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Jianmei Lu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Chashan University Town
- Wenzhou
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
23
|
Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Using SeO2 as a selenium source to make RSe-substituted aniline and imidazo[1,2-a]pyridine derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00299e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and practical method is developed for the synthesis of ArSe-substituted aniline and imidazo[1,2-a]pyridine derivatives using SeO2 as a selenium agent.
Collapse
Affiliation(s)
- Yaokun Ren
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Baojun Xu
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Zijian Zhong
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | | | - Aihua Zhou
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| |
Collapse
|
24
|
Talukdar R. A Study on the Reactions of SeO2
with Pyrroles and N-Substituted Indoles in Non-Anhydrous Ethanol under Non-Inert Atmosphere. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranadeep Talukdar
- Department of Chemistry; Indian Institute of Technology Kharagpur; Midnapore, West Bengal - 721302 India
| |
Collapse
|