1
|
Mei YT, Zhang H, Jiang Y, Gu YJ, Deng JL, Yang D, Jing LH, Shi MS. Modular access to diarylmethyl sulfonamides via visible light-promoted cross-coupling reactions. Chem Commun (Camb) 2024; 60:8589-8592. [PMID: 39045678 DOI: 10.1039/d4cc02571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We report a novel and efficient method for the preparation of diarylmethyl sulfonamide derivatives through visible-light-induced sulfamoylation of para-quinone methides with sulfamoyl chlorides under mild, metal-free conditions. This protocol demonstrates excellent tolerance toward a wide range of functional groups, affording the corresponding products in moderate to high yields. Preliminary mechanism studies revealed that the excited photocatalyst rhodamine 6G* was mainly quenched by para-quinone methides and the generated diarylmethyl radical intermediates then underwent radical-radical cross-coupling with sulfamoyl radicals to yield the diarylmethyl sulfonamides.
Collapse
Affiliation(s)
- Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Jia Gu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jiang-Lai Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China.
| |
Collapse
|
2
|
Chen D, Huang L, Liang M, Chen X, Cao D, Xiao P, Ni C, Hu J. 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me 3SiCF 2H/Me 3SiCF 3 Facilitated by CsF/18-Crown-6. Molecules 2024; 29:2905. [PMID: 38930971 PMCID: PMC11206660 DOI: 10.3390/molecules29122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalkylation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluoromethyl products in good yields. The products can then be further converted into fluoroalkylated para-quinone methides and α-fluoroalkylated diarylmethanes.
Collapse
Affiliation(s)
- Dingben Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ling Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Mingyu Liang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaojing Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Dongdong Cao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Pan Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
3
|
Yang K, Yin D, Sun Y, Yang Z, Li Y, Xu L, Du Y. Synthesis of Fluoromethylated Chromones and Their Heteroatom Analogues via Sodium Fluoromethanesulfinate-Enabled Direct Fluoromethylation. J Org Chem 2024; 89:565-575. [PMID: 38115769 DOI: 10.1021/acs.joc.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An array of biologically interesting tri/difluoromethylated chromones and their heteroatom analogues were conveniently synthesized from the reaction of chromones and their heteroatom analogues with CF3SO2Na or HCF2SO2Na in the presence of tert-butyl hydroperoxide under mild conditions. A mechanistic pathway involving the generation of the electrophilic tri/difluoromethyl radical, followed with the radical substitution of chromones and their heteroatom analogues, was postulated.
Collapse
Affiliation(s)
- Kaiyue Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Dongxue Yin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Shang W, Zhu L, Li Z, Xu W, Xiong B, Liu Y, Tang KW, Qian PC, Yin SF, Wong WY. Ruthenium-Catalyzed 1,6-Hydroalkylation of para-Quinone Methides with Ketones via the in Situ Activation of C( sp3)-H Bonds. J Org Chem 2023; 88:16196-16215. [PMID: 37955519 DOI: 10.1021/acs.joc.3c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.
Collapse
Affiliation(s)
- Wenli Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| |
Collapse
|
5
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
6
|
Ye ZP, Yang JS, Yang SJ, Guo M, Yuan CP, Ye YQ, Chen HB, Xiang HY, Chen K, Yang H. Visible-Light-Induced, Catalyst-Free Monofluoromethyl Sulfonylation of Alkenes with Iodine(III) Reagent and DABSO. Org Lett 2023; 25:7062-7066. [PMID: 37726866 DOI: 10.1021/acs.orglett.3c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A visible-light-induced radical relay strategy to access heterocycles bearing a monofluoromethylsufonyl moiety is reported, with PhI(OCOCH2F)2 as the CH2F radical precursor and DABSO as the SO2 source. A range of oxindoles, containing a CH2FSO2CH2- group at the C3 position, were synthesized from N-arylacrylamides in up to 97% yields. The protocol features catalyst-free photochemical tandem, mild reaction conditions, broad functional group compatibility, and good to excellent yields.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing-Song Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Si-Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Meng Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
7
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
8
|
Rostoll-Berenguer J, García-García V, Blay G, Pedro JR, Vila C. Organophotoredox 1,6-Addition of 3,4-Dihydroquinoxalin-2-ones to para-Quinone Methides Using Visible Light. ACS ORGANIC & INORGANIC AU 2023; 3:130-135. [PMID: 37303504 PMCID: PMC10251499 DOI: 10.1021/acsorginorgau.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/13/2023]
Abstract
An organophotoredox 1,6-radical addition of 3,4-dihidroquinoxalin-2-ones to para-quinone methides catalyzed by Fukuzumi's photocatalyst is described under the irradiation of a HP Single LED (455 nm). The corresponding 1,1-diaryl compounds bearing a dihydroquinoxalin-2-one moiety (20 examples) are obtained with good to excellent yields under mild reaction conditions. Several experiments have been carried out in order to propose a reaction mechanism.
Collapse
Affiliation(s)
- Jaume Rostoll-Berenguer
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Víctor García-García
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
9
|
Singh T, Upreti GC, Arora S, Chauhan H, Singh A. Visible Light-Mediated Carbamoylation of para-Quinone Methides. J Org Chem 2023. [PMID: 36792547 DOI: 10.1021/acs.joc.2c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report a photocatalytic approach for the installation of the amide moiety onto para-quinone methides. This transformation features a net reductive approach for the generation of carbamoyl radicals from amide-substituted Hantzsch ester derivatives under transition metal-free conditions. This protocol exhibits wide scope and allows access to diarylacetamides employing a C-C bond formation approach.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Shivani Arora
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
10
|
Shen L, Yuan JW, Zhang B, Song SY, Yang LR, Xiao YM, Zhang SR, Qu LB. Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1 H)-ones with unactivated vinylarenes and BrCF 2CO 2Et/HCF 2CO 2H. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Sai-Yi Song
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications , Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou 450006 , P. R. China
| | - Ling-Bo Qu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
11
|
Azeem Z, Mandal PK. Atom-Economic Synthesis of Unsymmetrical gem-Diarylmethylthio/Seleno Glycosides via Base Mediated C(O)-S/Se Bond Cleavage and Acyl Transfer Approach of Glycosylthio/Selenoacetates. J Org Chem 2023; 88:1695-1712. [PMID: 36633914 DOI: 10.1021/acs.joc.2c02704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we invented the Cs2CO3-mediated atom economic method that streamlines the scission of the C(O)-S/Se bond involving the in situ generation of an anomeric thiolate/selenolate anion, which reacted with p-QMs to yield novel unsymmetrical gem-diarylmethylthio/seleno glycosides while retaining the anomeric stereochemistry. Notably, the key features of this protocol involve unprecedented long-range acyl transfer (from S/Se to O), thus affording acylation of the final product which is not yet reported by classical methods. This straightforward protocol offers a mild, short reaction time, synthetically simple approach, and compatibility with 8 types of sugar along with phenylthio/benzylseleno esters.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Cao L, Hu F, Dong J, Zhang XM, Li SS. Aromatization-driven cascade [1,5]-hydride transfer/cyclization for synthesis of spirochromanes. Org Chem Front 2023. [DOI: 10.1039/d3qo00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An aromatization-driven hydride transfer-involved α-C(sp3)–H bond functionalization of the oxygen atom was developed. Easily prepared p-quinone methides were applied to initiate [1,5]-hydride transfer/cyclization for generating spirochromanes.
Collapse
|
13
|
Kim S, Hwang KH, Park HG, Kwak J, Lee H, Kim H. Radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Commun Chem 2022; 5:96. [PMID: 36697867 PMCID: PMC9814520 DOI: 10.1038/s42004-022-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023] Open
Abstract
Due to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C-C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.
Collapse
Affiliation(s)
- Seonyoung Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Keon Ha Hwang
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Hyeong Gyu Park
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Jaesung Kwak
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyuk Lee
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyunwoo Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
14
|
Xiong B, Shang W, Xu W, Liu Y, Tang KW, Wong WY. Acid‐catalyzed Regioselective Synthesis of α‐Diarylmethyl Substituted Phenols and para‐Quinone Methides in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wenli Shang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology Hung Hom Hong Kong HONG KONG
| |
Collapse
|
15
|
Qu CH, Gao LX, Tang Y, Liu Y, Luo XQ, Song GT. Metal-Free Reductive Coupling of para-Quinone Methides with 4-Cyanopyridines Enabled by Pyridine-Boryl Radicals: Access to Pyridylated Diarylmethanes with Anti-Cancer Activity. Chemistry 2022; 28:e202200264. [PMID: 35301762 DOI: 10.1002/chem.202200264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a streamlined protocol to produce pyridylated diarylmethanes through pyridine-boryl radical induced reductive coupling between para-quinone methides (p-QMs) and 4-cyanopyridines using bis(pinacolato)diboron (B2 pin2 ) as a templated reagent. The metal-free process is characterized by an operationally simple approach, excellent chemoselectivity (1,2- vs. 1,6-selectivity), and a broad substrate scope with good functional group compatibility. The mechanistic studies provided important insights into the reductive cross-coupling process between diarylmethyl radical and pyridine-boryl radical. Moreover, part of the obtained pyridylated diarylmethane products were screened against a panel of cancer cell lines, and 3 v was confirmed to significantly inhibit the proliferation of head and neck squamous cell carcinoma (HNSCC) cells. This method offers a platform for the preparation of new lead compounds with antitumor activity.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Li-Xia Gao
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yan Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Xiao-Qin Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| |
Collapse
|
16
|
Venkatesh R, Shankar G, Narayanan AC, Modi G, Sabiah S, Kandasamy J. Multicomponent Synthesis of S-Benzyl Dithiocarbamates from para-Quinone Methides and Their Biological Evaluation for the Treatment of Alzheimer's Disease. J Org Chem 2022; 87:6730-6741. [PMID: 35545917 DOI: 10.1021/acs.joc.2c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multicomponent synthesis of biologically relevant S-benzyl dithiocarbamates from para-quinone methides, amines, and carbon disulfide are described under catalyst and additive-free conditions. The reactions proceeded at room temperature in a short span of time with excellent yields. One of the synthesized compounds, 3e showed considerable acetylcholinesterase (AChE) inhibitory (51.70 + 5.63% at 20 μm) and antioxidant (63.52 ± 1.15 at 20 μm) activities.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Aswathi C Narayanan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
18
|
Luo C, Lu WH, Wang GQ, Zhang ZB, Li HQ, Han P, Yang D, Jing LH, Wang C. Photocatalytic Synthesis of Diarylmethyl Silanes via 1,6-Conjugate Addition of Silyl Radicals to p-Quinone Methides. J Org Chem 2022; 87:3567-3576. [PMID: 35133837 DOI: 10.1021/acs.joc.1c03125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel photocatalytic method for the preparation of diarylmethyl silanes was reported through silyl radicals addition strategy to p-QMs (p-quinone methides). This protocol could tolerate a variety of functional groups affording the corresponding silylation products with moderate to excellent yields. The resulting silylation products could be easily converted into a series of bioactive GPR40 agonists and useful p-QMs precursors for the synthesis of compounds possessing both quaternary carbon centers and silicon substituents through simple operation. A plausible mechanism of silyl radicals to p-QMs was proposed on the basis of experimental results and previous literature.
Collapse
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Wen-Hua Lu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hai-Qiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Chen Wang
- Petro China Southwest Oil & Gas Field Company, Chengdu 610000, China
| |
Collapse
|
19
|
Xiong B, Xu S, Xu W, Liu Y, Zhang L, Tang K, Yin SF, Wong WYR. Silver-Catalyzed Regioselective 1,6-Hydroarylation of para-Quinone Methides with Anilines and Phenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00541g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient method for the silver-catalyzed regioselective 1,6-hydroarylation of para-quinone methides (p-QMs) with anilines and phenols has been established. Without the need for pre-protection, a broad range of...
Collapse
|
20
|
He C, Zhong Y, Han H, Wang Q, Xu L, Zhang T, Hu Y, Huang Q, Liu J, Yang M. Photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids: an eco-friendly approach to α,α′-diarylated ketones. NEW J CHEM 2022. [DOI: 10.1039/d2nj04562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids in an eco-friendly approach to α,α′-diarylated ketones is developed.
Collapse
Affiliation(s)
- Chen He
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yingfang Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Huiqi Han
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Lijing Xu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Ting Zhang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yaqiong Hu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qitong Huang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jun Liu
- Department of Neurosurgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, 341000, China
| | - Min Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
21
|
Wan Y, Liu Q, Wu H, Zhang Z, Zhang G. 2,11-Dimethoxyldipyridopurinone as an efficient reducing visible-light photocatalyst for organic transformations. Org Chem Front 2022. [DOI: 10.1039/d1qo01914g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2,11-Dimethoxyldipyridopurinone (DP4) was demonstrated as a potent reducing visible-light PC that can efficiently catalyze three prototypic photoreactions: the redox-neutral, net oxidative and reductive reactions via oxidative-quenching mechanisms.
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Mane BB, Waghmode SB. Iron-Catalyzed Ring Opening of Cyclopropanols and Their 1,6-Conjugate Addition to p-Quinone Methides. J Org Chem 2021; 86:17774-17781. [PMID: 34813312 DOI: 10.1021/acs.joc.1c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel iron-catalyzed ring opening of cyclopropanols and their 1,6-conjugate addition to p-quinone methides for accessing substituted phenols is disclosed. In this protocol, various cyclopropanols are converted to alkyl radicals and undergo 1,6-conjugate addition to p-quinone methides toward C-C bond formation. The salient features of this methodology include operationally simple and mild reaction conditions, environmentally benign protocol, high efficiency, inexpensive catalyst, good to excellent yield, and a wide range of substrate scope.
Collapse
Affiliation(s)
- Baliram B Mane
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
23
|
Shirsath SR, Chandgude SM, Muthukrishnan M. Iron catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols with p-quinone methides: new access to γ,γ-diaryl ketones. Chem Commun (Camb) 2021; 57:13582-13585. [PMID: 34846388 DOI: 10.1039/d1cc05997a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron(III) catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols to p-quinone methides leading to γ,γ-diaryl ketones has been described. This catalytic protocol provides a novel and efficient method to access γ,γ-diaryl ketone derivatives in good to excellent yields with high functional group tolerance. Importantly, γ,γ-diaryl ketone can be further functionalized to give a versatile set of useful products.
Collapse
Affiliation(s)
- Sachin R Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar M Chandgude
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Xu S, Xie J, Liu Y, Xu W, Tang KW, Xiong B, Wong WY. Silver-Catalyzed Regioselective Phosphorylation of para-Quinone Methides with P(III)-Nucleophiles. J Org Chem 2021; 86:14983-15003. [PMID: 34665625 DOI: 10.1021/acs.joc.1c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and efficient method for the silver-catalyzed regioselective phosphorylation of para-quinone methides (p-QMs) with P(III)-nucleophiles (P(OR)3, ArP(OR)2, Ar2P-OR) has been established via Michaelis-Arbuzov-type reaction. A broad range of P(III)-nucleophiles and para-quinone methides are well tolerated under the mild conditions, giving the expected diarylmethyl-substituted organophosphorus compounds with good to excellent yields. Moreover, a series of corresponding enantiomers can be obtained by employing dialkyl arylphosphonite (ArP(OR)2) as substrates. The control experiments and 31P NMR tracking experiments were also performed to gain insights for the plausible reaction mechanism. This protocol may have significant implications for the formation of C(sp3)-P bonds in Michaelis-Arbuzov-type reactions.
Collapse
Affiliation(s)
- Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
25
|
Yang M, Han H, Jiang H, Ye S, Fan X, Wu J. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1,6-addition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Luo C, Zhou T, Wang W, Han P, Jing L. An Efficient Approach to Access 2,2‐Diarylanilines via Visible‐Light‐Promoted Decarboxylative Cross‐Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| |
Collapse
|
27
|
Dai L, Yu Q, Zhang J, Wu F, Wang C, Zhang J, Rong L. Electrochemical Radical δ-H Sulfonylation Reaction for the Synthesis of 4-((Aryl,Arylsul fonyl)methylene)-2,5-Cyclohexadiene Derivatives. J Org Chem 2021; 86:10568-10579. [PMID: 34291953 DOI: 10.1021/acs.joc.1c01213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel and efficient electrochemical radical δ-H sulfonylation reaction of para-quinone methides (p-QMs) and sodium sulfinates has been achieved under common laboratory conditions. In this strategy, a new C(sp2)-S bond was constructed for the synthesis of 4-((aryl,arylsulfonyl)methylene)-2,5-cyclohexadiene derivatives with a broad substrate scope, good functional group tolerance, and mild conditions. Further studies showed that the reaction had an excellent regional selectivity.
Collapse
Affiliation(s)
- Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Qiuyu Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinghang Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Fan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
28
|
Liang J, Wang G, Dong L, Pang X, Qin J, Xu X, Shao X, Li Z. CF 2DSO 2Na: An Effective Precursor Reagent for Deuteriodifluoromethylthiolation and Deuteriodifluoromethylation. Org Lett 2021; 23:5545-5548. [PMID: 34231355 DOI: 10.1021/acs.orglett.1c01882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deuteriodifluoromethythio (SCF2D) and deuteriodifluoromethyl (CF2D) are important functional groups in pharmaceutical and agrochemical compounds, and the introduction of these functional groups remains a challenging. We herein report a robust reagent for deuteriodifluoromethylthiolation and deuteriodifluoromethylation. Its potentials were successfully showcased by deuteriodifluoromethylation and deuteriodifluoromethylthiolation of indoles with high-level deuterium incorporation. The reagent also has potential for deuteriodifluoromethylation and deuteriodifluoromethylthiolation of wide range of other natural or synthetic bioactive molecules.
Collapse
Affiliation(s)
- Junqing Liang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Gangao Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwen Pang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Qin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
30
|
Li X, He S, Song Q. Rapid incorporation of a difluoroacetate radical into para-quinone methides via radical 1,6-conjugate addition. Chem Commun (Camb) 2021; 57:6035-6038. [PMID: 34037000 DOI: 10.1039/d1cc02149d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a newly designed strategy that rapidly introduces ethyl difluoroacetate radicals through a dialkylzincs induced radical 1,6-conjugate addition pathway. Besides achieving high yields and excellent functional group compatibility, this protocol allowed the incorporation of a gem-difluoromethylene motif to be accomplished within minutes.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.
| | - Songtao He
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China. and State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Terashima K, Kawasaki-Takasuka T, Yamazaki T. Construction of fully substituted carbon centers containing a heteroatom and a CF 3 group via in situ generated p-quinone methides. Org Biomol Chem 2021; 19:1305-1314. [PMID: 33503080 DOI: 10.1039/d0ob02469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,6-Conjugate additions of in situ generated δ-CF3-δ-substituted p-quinone methides have been achieved with a variety of heteronucleophiles under mild conditions, which led to facile and practical construction of fully substituted carbon centers including a heteroatom and a CF3 group. In particular, it was revealed that some amines themselves worked for efficient cleavage of the TBS protective group, and addition of a catalytic amount of an appropriate Brønsted acid was found to sometimes improve the progress of the desired process.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| |
Collapse
|
32
|
Yu J, Chen S, Liu K, Yuan L, Mei L, Chai Z, Shi W. Uranyl-catalyzed hydrosilylation of para-quinone methides: access to diarylmethane derivatives. Org Biomol Chem 2021; 19:1575-1579. [PMID: 33514996 DOI: 10.1039/d0ob02455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient uranyl-catalyzed reductive hydrosilylation reaction of para-quinone methides (p-QMs) was developed by employing silane as the reductant. The hydrosilylation procedure using the UO2(NO3)2·6H2O/Et3SiH catalytic system proceeded smoothly and provided an expedient method for the construction of various diarylmethane derivatives in one step with good to excellent yields.
Collapse
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Siyu Chen
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China. and Engineering Laboratory of Advanced Energy materials, Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
33
|
Xiong B, Xu S, Liu Y, Tang KW, Wong WY. Metal-Free, Acid/Phosphine-Induced Regioselective Thiolation of p-Quinone Methides with Sodium Aryl/Alkyl Sulfinates. J Org Chem 2021; 86:1516-1527. [PMID: 33406835 DOI: 10.1021/acs.joc.0c02390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple and efficient method for the regioselective thiolation of p-quinone methides with sodium aryl/alkyl sulfinates has been established using an acid/phosphine-induced radical route under transition-metal-free conditions. A broad range of sodium aryl/alkyl sulfinates and p-quinone methides (p-QMs) are compatible for the reaction, giving the expected products with good to excellent yields. Control experiments were also performed to gain insights into the generation mechanism of thiyl radicals and hydrogen-atom transfer process. This protocol provides a safe and feasible way for the formation of carbon-sulfur bonds.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
34
|
Li H, Pang J, Liu H, Zhao C, Li S, Wang H, Liu X. Sc(OTf) 3-Catalyzed 1,6-Conjugate Addition of Thiols to δ-CF 3- δ-aryl-disubstituted para-Quinone Methides: Efficient Construction of Diarylmethane Thioethers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zhao Y, Zhang Y, Liu Y, Zhu T, Wu J. Photoredox-catalyzed direct C(sp 2)–H difluoromethylation of enamides or heterocycles with [bis(difluoroacetoxy)iodo]benzene. Org Chem Front 2021. [DOI: 10.1039/d1qo00995h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalyzed direct C(sp2)–H difluoromethylation of enamides and heterocycles is accomplished by using easily accessible [bis(difluoroacetoxy)iodo]benzene as the CF2H source.
Collapse
Affiliation(s)
- Yun Zhao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yating Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
36
|
Yu J, Zhao C, Zhou R, Gao W, Wang S, Liu K, Chen S, Hu K, Mei L, Yuan L, Chai Z, Hu H, Shi W. Visible-Light-Enabled C-H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry 2020; 26:16521-16529. [PMID: 32901978 DOI: 10.1002/chem.202003431] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Indexed: 11/11/2022]
Abstract
The development of the uranyl cation as a powerful photocatalyst is seriously delayed in comparison with the advances in its fundamental and structural chemistry. However, its characteristic high oxidative capability in the excited state ([UO2 ]2+ * (+2.6 V vs. SHE; SHE=standard hydrogen electrode) combined with blue-light absorption (hv=380-500 nm) and a long-lived fluorescence lifetime up to microseconds have reveals that the uranyl cation approaches an ideal photocatalyst for visible-light-driven organic transformations. Described herein is the successful use of uranyl nitrate as a photocatalyst to enable C(sp3 )-H activation and C-C bond formation through hydrogen atom transfer (HAT) under blue-light irradiation. In particular, this operationally simple strategy provides an appropriate approach to the synthesis of diverse and valuable diarylmethane motifs. Mechanistic studies and DFT calculations have provided insights into the detailed mechanism of the photoinduced HAT pathway. This research suggests a general platform that could popularize promising uranyl photocatalytic performance.
Collapse
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chongyang Zhao
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and, Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Rong Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Wenchao Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Shuai Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Siyu Chen
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Hanshi Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and, Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
37
|
Das D, Ghosh KG, Chandu P, Sureshkumar D. Ammonium Chloride-Mediated Trifluoromethylthiolation of p-Quinone Methides. J Org Chem 2020; 85:14201-14209. [PMID: 33107737 DOI: 10.1021/acs.joc.0c01752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ammonium chloride-mediated trifluoromethylthiolation of p-quinone methides is reported using inexpensive and bench stable AgSCF3 as a nucleophilic trifluoromethylthiolating (-SCF3) reagent. This method is an efficient strategy for the construction of the benzylic C(sp3)-SCF3 bond to synthesize trifluoromethylthio-diarylmethane derivatives by 1,6-conjugate addition/aromatization under mild reaction conditions without any metal catalyst, oxidants, or additives. This is the first report of trifluoromethylthiolation of p-quinone methides. In addition, di-trifluoromethylthiolation of δ-chloro-p-quinone methide and scalability are demonstrated.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246, West Bengal, India
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246, West Bengal, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246, West Bengal, India
| |
Collapse
|
38
|
Qu CH, Song GT, Tang DY, Shao JW, Li HY, Xu ZG, Chen ZZ. Microwave-Assisted Copper Catalysis of α-Difluorinated gem-Diol toward Difluoroalkyl Radical for Hydrodifluoroalkylation of para-Quinone Methides. J Org Chem 2020; 85:12785-12796. [PMID: 32847359 DOI: 10.1021/acs.joc.0c01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a unified strategy to generate difluoroalkyl radicals from readily prepared α-difluorinated gem-diols by single electron oxidation. Under microwave irradiation, a catalytic amount of oxidant Cu(OAc)2 succeeds in the formation of transient difluoroalkyl radicals in situ, for the first time. The reaction features a simple protocol, short reaction time, scalability, and high yield. The synthetic utility of this new methodology was also explored for the synthesis of difluoroalkylated spiro-cyclohexadienones, which is an important core structure in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.,Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jing-Wei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
39
|
Kanchupalli V, Shukla RK, Singh A, Volla CMR. Rh(III)-Catalyzed Redox-Neutral Cascade Annulation of Benzamides with p
-Quinone Methides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vinaykumar Kanchupalli
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Rahul K. Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Anurag Singh
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Chandra M. R. Volla
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
40
|
Winter M, Schütz R, Eitzinger A, Ofial AR, Waser M. CF 3-Containing para-Quinone Methides for Organic Synthesis. European J Org Chem 2020; 2020:3812-3817. [PMID: 32624681 PMCID: PMC7335660 DOI: 10.1002/ejoc.202000295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/31/2022]
Abstract
A new family of CF3-containing para-quinone methides (CF3-QMs) was systematically investigated for its suitability in organic synthesis. Addition of different nucleophiles gives access to target molecules with a benzylic CF3-containing stereogenic center straightforwardly. The electrophilicity parameter E of the prototypical CF3-QM 2,6-di-tert-butyl-4-(2,2,2-trifluoroethylidene)cyclohexa-2,5-dien-1-one was determined to be -11.68 according to the Mayr scale, making it one of the most reactive quinone methides known so far.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Roman Schütz
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Armin R. Ofial
- Department ChemieLudwig‐Maximilians‐Universität MünchenButenandtstraße 5‐1381377MünchenGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| |
Collapse
|
41
|
Yu J, Chen S, Liu K, Yuan L, Zhao Y, Chai Z, Mei L. Facile construction of diverse diarylmethane scaffolds via uranyl-catalyzed 1,6-addition reaction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Lima CGS, Pauli FP, Costa DCS, de Souza AS, Forezi LSM, Ferreira VF, de Carvalho da Silva F. para
-Quinone Methides as Acceptors in 1,6-Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901796] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carolina G. S. Lima
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Fernanda P. Pauli
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Dora C. S. Costa
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Acácio S. de Souza
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Luana S. M. Forezi
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica; Universidade Federal Fluminense; 24241-000 Niterói RJ Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica; Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho 24020-150 Niterói RJ Brazil
| |
Collapse
|
43
|
Koike T. Frontiers in Radical Fluoromethylation by Visible‐Light Organic Photocatalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science Institute of Innovative ResearchTokyo Institute of Technology R1-27, 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
44
|
Wang JY, Hao WJ, Tu SJ, Jiang B. Recent developments in 1,6-addition reactions of para-quinone methides (p-QMs). Org Chem Front 2020. [DOI: 10.1039/d0qo00387e] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we provide a comprehensive overview of recent progress in this rapidly growing field by summarizing the 1,6-conjugate addition and annulation reactions of p-QMs with consideration of their mechanisms and applications.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
45
|
Qi Y, Zhang F, Wang L, Feng A, Zhu R, Sun S, Li W, Liu L. δ-Cyano substituted para-quinone methides enable access to unsymmetric tri- and tetraarylmethanes containing all-carbon quaternary stereocenters. Org Biomol Chem 2020; 18:3522-3526. [DOI: 10.1039/d0ob00551g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Placing an electron-withdrawing cyano group into the δ-position of para-quinone methides enables facile access to unsymmetrical tri- and tetraarylmethanes bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Yue Qi
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Fang Zhang
- Department of pharmacy
- Jinan Central Hospital Affiliated to Shandong First Medical University
- Jinan 250013
- China
| | - Lin Wang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Aili Feng
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Shutao Sun
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Wei Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Lei Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
46
|
Microwave-promoted solvent-free synthesis of para-quinone methides (p-QMs) derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Terashima K, Kawasaki-Takasuka T, Agou T, Kubota T, Yamazaki T. Construction of trifluoromethylated quaternary stereocenters via p-quinone methides. Chem Commun (Camb) 2020; 56:3031-3034. [DOI: 10.1039/c9cc08936e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of a new synthetic method for the construction of quaternary centers with a CF3 group was realized by way of 1,6-addition of various nucleophiles to highly reactive δ-trifluoromethylated p-quinone methides generated in situ.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomohiro Agou
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Toshio Kubota
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Takashi Yamazaki
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| |
Collapse
|
48
|
Wu QL, Guo J, Huang GB, Chan ASC, Weng J, Lu G. Visible-light-promoted radical cross-coupling of para-quinone methides with N-substituted anilines: an efficient approach to 2,2-diarylethylamines. Org Biomol Chem 2020; 18:860-864. [DOI: 10.1039/c9ob02600b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 2,2-diarylethylamines were accessed via visible-light-promoted radical cross-coupling of p-QMs with N-alkyl anilines.
Collapse
Affiliation(s)
- Qiao-Lei Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gong-Bin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
49
|
Jung HI, Kim Y, Kim DY. Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of β-CF 3-substituted ketones. Org Biomol Chem 2019; 17:3319-3323. [PMID: 30869722 DOI: 10.1039/c9ob00373h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical oxidative radical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols were developed in this study. This approach is environmentally benign and uses the shelf-stable Langlois reagent as a trifluoromethyl radical precursor and electrons as the oxidizing reagents. The present protocol offers a facile route to prepare β-trifluoromethylated ketone derivatives.
Collapse
Affiliation(s)
- Hye Im Jung
- Department of Chemistry, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea.
| | | | | |
Collapse
|
50
|
Ghosh KG, Chandu P, Mondal S, Sureshkumar D. Visible-light mediated trifluoromethylation of p-quinone methides by 1,6-conjugate addition using pyrylium salt as organic photocatalyst. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|