1
|
Zhou H, Zhang Y, Zheng Z, Wan J, Zhang H, Lin K, Sessler JL, Wang H. Internally diketopyrrolopyrrole-bridged bis-anthracene macrocycle: a multifunctional fluorescent platform. Chem Sci 2025; 16:910-919. [PMID: 39660291 PMCID: PMC11626631 DOI: 10.1039/d4sc06067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
A covalently bridged macrocycle (5) comprising two anthracene strands connected at the lactam positions of a diketopyrrolopyrrole (DPP) chromophore has been constructed. The crystal structure reveals that the central DPP chromophore is wrapped with the externally twisted bis-anthracene macrocycle. The internally bridged macrocycle architecture endows 5 with multifunctional properties. Due to shielding by the double anthracene straps, 5a and a polymer derived from it, DPP-Cycle, display strong fluorescence emission features in both organic media and the solid state. Moreover, the emission colors of these macrocyclic materials can be effectively tuned through external stimuli such as mechanical and thermal treatments, as well as solvent fuming. Compound 5a is stable in the presence of most metal cations but degrades rapidly when it comes in contact with Cu2+ in acetonitrile. This decomposition, which is thought to involve a reaction at the central DPP via a radical-mediated mechanism, was found to be accelerated in 5a compared to the non-cyclic analogue 2a. This leads us to suggest that internally bridged macrocycles, such as those described here, may have a role to play as fluorescent Cu2+ sensors. Finally, the high fluorescence of 5a in the solid state enables its use in the area of latent fingerprint (LFP) imaging.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Yuxuan Zhang
- Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Zhiye Zheng
- Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Junhua Wan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou P. R. China
| | - Hui Zhang
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University Shanghai 200444 P. R. China
| | - Kunhua Lin
- Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Hongyu Wang
- Department of Chemistry, College of Science, Center for Supramolecular Chemistry & Catalysis, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| |
Collapse
|
2
|
Núñez-Villanueva D, Hunter CA. Replication of a synthetic oligomer using chameleon base-pairs. Chem Commun (Camb) 2022; 58:11005-11008. [PMID: 36094173 DOI: 10.1039/d2cc04580j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt bridges were used to attach polymerisable amidine monomers to an oligomeric benzoic acid template. CuAAC oligomerisation reactions in the presence of a benzoic acid 3-mer template gave the amidine 3-mer copy as the major product. Cleavage of ester linkers was used to hydrolyse off the amidine recognition units and convert the product into a benzoic acid 3-mer copy of the original template.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Borodin O, Shchukin Y, Schmid J, von Delius M. Anion-assisted amidinium exchange and metathesis. Chem Commun (Camb) 2022; 58:10178-10181. [PMID: 35997205 PMCID: PMC9469691 DOI: 10.1039/d2cc03425e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Dynamic covalent chemistry has become an invaluable tool for the design and preparation of adaptable yet robust molecular systems. Herein we explore the scope of a largely overlooked dynamic covalent reaction - amidinium exchange - and report on conditions that allow formal amidinium metathesis reactions.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jonas Schmid
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
4
|
van der Tol JB, Vantomme G, Palmans ARA, Meijer EW. Controlling the Processability and Stability of Supramolecular Polymers Using the Interplay of Intra- and Intermolecular Interactions. Macromolecules 2022; 55:6820-6829. [PMID: 35966115 PMCID: PMC9367003 DOI: 10.1021/acs.macromol.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Polymer networks crosslinked via non-covalent interactions afford interesting materials for a wide range of applications due to their self-healing capability, recyclability, and tunable material properties. However, when strong non-covalent binding motifs in combination with high crosslink density are used, processing of the materials becomes troublesome because of high viscosities and the formation of insoluble gels. Here, we present an approach to control the processability of grafted polymers containing strong non-covalent interactions by balancing the interplay of intra- and intermolecular hydrogen bonding. A library of copolymers with different degrees of polymerization and content of protected ureido-pyrimidinone-urea (UPy-urea) grafts was prepared. Photo-deprotection in a good solvent like tetrahydrofuran (THF) at low concentrations (≤1 mg mL-1) created intramolecularly assembled nanoparticles. Remarkably, the intrinsic viscosity of these nanoparticle solutions was an order of magnitude lower compared to solutions of the intermolecularly assembled analogues, highlighting the crucial role of intra- versus intermolecular interactions. Due to the strong hydrogen bonds between UPy dimers, the intramolecularly assembled structures were kinetically trapped. As a result, the polymer nanoparticles were readily processed into a bulk material, without causing major changes in the morphology as verified by atomic force microscopy. Subsequent intermolecular crosslinking of the nanoparticle film, by heating to temperatures where the hydrogen-bond exchange becomes fast, resulted in a crosslinked network. The reversibility of the hereby obtained polymer networks was shown by retrieving the intramolecularly assembled nanoparticles via redissolution and sonication of the intermolecularly crosslinked film in THF with a small amount of acid. Our results highlight that the stability and processability of highly supramolecularly crosslinked polymers can be controlled both in solution and in bulk by using the interplay of intra- and intermolecular non-covalent interactions in grafted polymers.
Collapse
Affiliation(s)
- Joost
J. B. van der Tol
- Institute for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Joseph J, Bauroth S, Charisiadis A, Charalambidis G, Coutsolelos AG, Guldi DM. Cascades of energy and electron transfer in a panchromatic absorber. NANOSCALE 2022; 14:9304-9312. [PMID: 35758634 DOI: 10.1039/d2nr02404g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The investigation of molecular model systems is fundamental towards a deeper understanding of key photochemical steps in natural photosynthesis. Herein, we report an entirely non-covalent triad consisting of boron dipyrromethene (BDP), porphyrin (ZnP), and fullerene (C60). Non-covalent binding motifs such as an amidinium-carboxylate salt bridge as well as axial pyridyl-metal coordination offer substantial electronic coupling and establish efficient pathways for photoactivated energy and electron transfer processes along a well-tuned gradient. Experimental findings from steady-state and time-resolved spectroscopic assays, as well as (spectro-)electrochemical measurements corroborate the formation of BDP|ZnP|C60 in solution, on one hand, and significant communication in the excited states, on the other hand. BDP acts as an energy harvesting antenna towards ZnP, which eventually undergoes charge separation with C60 by electron transfer from ZnP to C60. Notably, full spectral deconvolution of the transient species was achieved, supporting the successful self-assembly as well as giving a clear view onto the occurring photophysical processes and their spectral footprints upon photoexcitation.
Collapse
Affiliation(s)
- Jan Joseph
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität, 91058 Erlangen, Germany.
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität, 91058 Erlangen, Germany.
| | - Asterios Charisiadis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Crete, Greece
| | - Georgios Charalambidis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Crete, Greece
| | - Athanassios G Coutsolelos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Crete, Greece
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, GR 70013 Heraklion, Crete, Greece
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
Shi Q, Pei Z, Song J, Li SJ, Wei D, Coote ML, Lan Y. Diradical Generation via Relayed Proton-Coupled Electron Transfer. J Am Chem Soc 2022; 144:3137-3145. [PMID: 35133141 DOI: 10.1021/jacs.1c12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diradical generation followed by radical-radical cross-coupling is a powerful synthetic tool, but its detailed mechanism has yet to be established. Herein, we proposed and confirmed a new model named relayed proton-coupled electron transfer (relayed-PCET) for diradical generation, which could open a door for new radical-radical cross-coupling reactions. Quantum mechanics calculations were performed on a selected carbene-mediated diradical cross-coupling reaction model and a designed model, and the exact electronic structural changes during the radical processes have been observed for the first time.
Collapse
Affiliation(s)
- Qianqian Shi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhipeng Pei
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Jiang H, Xie L, Duan Z, Lin K, He Q, Lynch VM, Sessler JL, Wang H. Fluorescent Supramolecular Organic Frameworks Constructed by Amidinium-Carboxylate Salt Bridges. Chemistry 2021; 27:15006-15012. [PMID: 34288158 DOI: 10.1002/chem.202102296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/14/2022]
Abstract
We report here a set of fluorescent supramolecular organic frameworks (SOFs) that incorporate aggregation-induced emission (AIE) units within their frameworks. The fluorescent SOFs of this study were constructed by linking the tetraphenylethylene (TPE)-based tetra(amidinium) cation TPE4+ and aromatic dicarboxylate anions through amidinium-carboxylate salt bridges. The resulting self-assembled structures are characterized by fluorescence quantum yields in the range of 4.6∼14 %. This emissive behavior is ascribed to a combination of electrostatic interactions and hydrogen bonds that operate in concert to impede motions that would otherwise lead to excited state energy dissipation. Single-crystal X-ray diffraction analyses revealed that the length of the dicarboxylate anion bridges has a considerable impact on the structural features of the resulting frameworks. Nevertheless, all SOFs prepared in the context of the present study were found to display emissive features characteristic of TPE-based AIE luminogens with only a modest dependence on the structural specifics being seen. The SOFs reported here could be reversibly "broken up" and "reformed" in response to acid/base stimuli. This reversible structural behavior is consistent with their SOF nature.
Collapse
Affiliation(s)
- Hongqin Jiang
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Linhuang Xie
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Kunhua Lin
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.,Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| | - Hongyu Wang
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|