1
|
Kaboutari M, Asle-Rousta M, Mahmazi S. Protective effect of menthol against thioacetamide-induced hepatic encephalopathy by suppressing oxidative stress and inflammation, augmenting expression of BDNF and α7-nACh receptor, and improving spatial memory. Eur J Pharmacol 2024; 981:176916. [PMID: 39154831 DOI: 10.1016/j.ejphar.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that can occur in people with acute or chronic liver disease. Here, we investigated the effects of menthol, a natural monoterpene, on HE induced by thioacetamide (TA) in male Wistar rats. The rats received 200 mg/kg of TA twice a week for four weeks and were administered 10 mg/kg of menthol intraperitoneally daily for the same period. The results showed that menthol treatment reduced oxidative stress and inflammation in the livers and hippocampi of the rats that received TA. It also lowered the levels of ammonium and liver enzymes AST, ALT, ALP, and GGT in the serum of these animals and prevented liver histopathological damage. In addition, the expression and activity of acetylcholinesterase in the hippocampus of HE model rats were decreased by menthol. Likewise, this monoterpene reduced the expression of TLR4, MyD88, and NF-κB in the hippocampus while increasing the expression of BDNF and α7-nACh receptor. Menthol also reduced neuronal death in the hippocampal cornu ammonis-1 and dentate gyrus regions and reduced astrocyte swelling, which led to improved learning and spatial memory in rats with HE. In conclusion, the study suggests that menthol may have strong protective effects on the liver and brain, making it a potential treatment for HE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Masoud Kaboutari
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
2
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Krishnan M, Kumaresan M, Ravi S, Martin LC, Duraisamy P, Manikandan B, Munusamy A, Ramar M. Therapeutic potential of monoterpene molecules acts against 7KCh-mediated oxidative stress and neuroinflammatory amyloidogenic signalling pathways. Prostaglandins Other Lipid Mediat 2024; 175:106910. [PMID: 39343044 DOI: 10.1016/j.prostaglandins.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterised by amyloid-beta aggregates activated by the accumulation of lipid molecules and their derivatives, especially 7-ketocholesterol (7KCh), an oxidised lipid that plays a great part in the progression of AD. The current therapeutics need bio-potential molecules and their biomedical application preventing 7KCh-induced cytotoxicity. In this study, bornyl acetate (BA) and menthol (ME), the natural monoterpenes were investigated for their neuroprotective effects against 7KCh-induced SH-SY5Y cells and their effects were compared to the standard drug galantamine (GA). 7KCh-induced changes like lipid accumulation, amyloid generation, free radical generation, acetylcholinesterase levels, calcium accumulation and mitochondrial membrane integrity were analysed in SH-SY5Y cells with or without BA and ME treatment. Furthermore, various mediators involved in the amyloidogenic, inflammatory and apoptotic pathways were studied. In our results, the cells induced with 7KCh upon co-treatment with BA and ME significantly reduced lipid accumulation and amyloid generation through toll-like receptor (TLR) 4 suppression and enhanced ATP binding cassette (ABCA) 1-mediated clearance. Co-treatment with BA and ME concurrently regulated oxidative stress, acetylcholinesterase activity, mitochondrial membrane potential and intracellular calcification altered by 7KCh-induced SH-SY5Y cells. Moreover, 7KCh-induced cells showed elevated mRNA levels of misfolded protein markers and apoptotic mediators which were significantly downregulated by BA and ME co-treatment. In addition, the protein expression of amyloidogenic, proinflammatory as well as pro-apoptotic markers was decreased by BA and ME co-treatment in 7KCh-induced cells. Overall, BA and ME mediated inhibition of amyloidogenic activation and cell survival against 7KCh-induced inflammation, thereby preventing the onset and progression of AD in comparison to GA.
Collapse
Affiliation(s)
- Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
4
|
Zhang L, Wang X, Wang W, Ning E, Chen L, Li Z, Yu L, Li X, Zong W. Metabolomic analysis reveals the changing trend and differential markers of volatile and nonvolatile components of Artemisiae argyi with different aging years. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1286-1293. [PMID: 38665054 DOI: 10.1002/pca.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 03/24/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Artemisia argyi Folium (AAF) is a traditional medicinal herb and edible plant. Analyzing the differential metabolites that affect the efficacy of AAF with different aging years is necessary. OBJECTIVE The aim of the study was to investigate the changing trend and differential markers of volatile and nonvolatile metabolites of AAF from different aging years, which are necessary for application in clinical medicine. METHODOLOGY Metabolites were analyzed using a widely targeted metabolomic approach based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS). RESULTS A total of 153 volatile metabolites and 159 nonvolatile metabolites were identified. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish AAF aged for 1 year (AF-1), 3 years (AF-3), and 5 years (AF-5). Seven flavonoids and nine terpenoids were identified as biomarkers for tracking the aging years. CONCLUSIONS The metabolomic method provided an effective strategy for tracking and identifying biomarkers of AAF from different aging years. This study laid the foundation for analysis of the biological activity of Artemisia argyi with different aging years.
Collapse
Affiliation(s)
- Lixian Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | | | - Wei Wang
- Henan Academy of Sciences, Zhengzhou, China
| | | | - Ling Chen
- Henan Academy of Sciences, Zhengzhou, China
| | - Zhining Li
- Henan Academy of Sciences, Zhengzhou, China
| | - Liqin Yu
- Henan Academy of Sciences, Zhengzhou, China
| | - Xiao Li
- Henan Academy of Sciences, Zhengzhou, China
| | - Wei Zong
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
5
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Plant-Based Approaches for Rheumatoid Arthritis Regulation: Mechanistic Insights on Pathogenesis, Molecular Pathways, and Delivery Systems. Crit Rev Ther Drug Carrier Syst 2024; 41:39-86. [PMID: 38305341 DOI: 10.1615/critrevtherdrugcarriersyst.2023048324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is classified as a chronic inflammatory autoimmune disorder, associated with a varied range of immunological changes, synovial hyperplasia, cartilage destructions, as well as bone erosion. The infiltration of immune-modulatory cells and excessive release of proinflammatory chemokines, cytokines, and growth factors into the inflamed regions are key molecules involved in the progression of RA. Even though many conventional drugs are suggested by a medical practitioner such as DMARDs, NSAIDs, glucocorticoids, etc., to treat RA, but have allied with various side effects. Thus, alternative therapeutics in the form of herbal therapy or phytomedicine has been increasingly explored for this inflammatory disorder of joints. Herbal interventions contribute substantial therapeutic benefits including accessibility, less or no toxicity and affordability. But the major challenge with these natural actives is the need of a tailored approach for treating inflamed tissues by delivering these bioactive agentsat an appropriate dose within the treatment regimen for an extended periodof time. Drug incorporated with wide range of delivery systems such as liposomes, nanoparticles, polymeric micelles, and other nano-vehicles have been developed to achieve this goal. Thus, inclinations of modern treatment are persuaded on the way to herbal therapy or phytomedicines in combination with novel carriers is an alternative approach with less adverse effects. The present review further summarizes the significanceof use of phytocompounds, their target molecules/pathways and, toxicity and challenges associated with phytomolecule-based nanoformulations.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
6
|
Sul OJ, Choi HW, Oh J, Ra SW. GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food Chem Toxicol 2023; 177:113795. [PMID: 37116776 DOI: 10.1016/j.fct.2023.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Cigarette smoke can enhance reactive oxygen species (ROS) production in inflammatory and epithelial cells. Subsequently, ROS enhance autophagy-induced inflammation due to alveolar macrophages (AMs), the primary source of cytokines implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, we hypothesized that grape seed proanthocyanidin extract (GSPE), an effective antioxidant, could inhibit emphysema and airway inflammation by ameliorating cigarette smoke extract (CSE)-induced autophagy via suppressing oxidative stress in macrophages. We observed that GSPE significantly attenuated histological changes observed in CSE-induced emphysema and airway inflammation in the lungs of mice. Moreover, GSPE ameliorated lung inflammation by reducing the number of cells, macrophages, and neutrophils and the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels measured in bronchioloalveolar lavage fluid. ROS levels increased after CSE instillation and significantly decreased with in vitro GSPE treatment. GSPE decreased transcription factor EB (TFEB) oxidation by reducing ROS, inhibiting TFEB nuclear translocation. Furthermore, GSPE inhibited ROS-induced autophagy in RAW 264.7 cells, bone marrow-derived macrophages, and AMs. Inhibiting autophagy through GSPE treatment diminishes CSE-induced lung inflammation by inhibiting the NLRP3 inflammasome. This study demonstrates that GSPE can ameliorate CSE-induced inflammation and emphysema via autophagy-induced NLRP3 inflammasome regulation through the ROS/TFEB signaling pathway in a COPD mouse model.
Collapse
Affiliation(s)
- Ok Joo Sul
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, 44033, Republic of Korea
| | - Hye Won Choi
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, 44033, Republic of Korea
| | - Jimi Oh
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Seung Won Ra
- Department of Pulmonary and Critical Care Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea.
| |
Collapse
|
7
|
Cheng H, An X. Cold stimuli, hot topic: An updated review on the biological activity of menthol in relation to inflammation. Front Immunol 2022; 13:1023746. [DOI: 10.3389/fimmu.2022.1023746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
BackgroundRising incidence of inflammation-related diseases is an increasing concern nowadays. However, while menthol is a wildly-used and efficacious complementary medicine, its pharmacological mechanism still remains uncertain. Superimposed upon that, the aim of this review is to summarize the contemporary evidence of menthol’s anti-inflammatory activity.MethodsUsing the pharmacopeias and electronic databases, including Web of Science, PubMed, and CNKI, this study analyzed the relevant research articles and review articles from 2002 to 2022 and concluded those results and conjectures to finish this article.ResultsThe decrease in pro-inflammatory cytokines and related inflammatory markers, as well as associated pathway activation, was found to play the greatest role in the protective effects of menthol against inflammatory damage or association with protection against chronic inflammation.ConclusionThis review mainly concludes the progress in menthol’s anti-inflammatory activity. Further studies are needed to establish relationships between the mechanisms of action and to clarify the clinical relevance of any anti-inflammatory effects.
Collapse
|
8
|
Anter A, Ahmed ASF, Hammad ASA, Almalki WH, Abdel Hafez SMN, Kasem AW, El-Moselhy MA, Alrabia MW, Ibrahim ARN, El-Daly M. The Severity of Acute Kidney and Lung Injuries Induced by Cecal Ligation and Puncture Is Attenuated by Menthol: Role of Proliferating Cell Nuclear Antigen and Apoptotic Markers. Front Med (Lausanne) 2022; 9:904286. [PMID: 35814769 PMCID: PMC9260148 DOI: 10.3389/fmed.2022.904286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Sepsis-induced acute lung injury (ALI) and acute kidney injury (AKI) are major causes of mortality. Menthol is a natural compound that has anti-inflammatory and antioxidative actions. Since exaggerated inflammatory and oxidative stress are characteristics of sepsis, the aim of this study was to evaluate the effect of menthol against sepsis-induced mortality, ALI, and AKI. Methods The cecal ligation and puncture (CLP) procedure was employed as a model of sepsis. Rats were grouped into sham, sham-Menthol, CLP, and CLP-Menthol (100 mg/kg, p.o). Key Findings A survival study showed that menthol enhanced the survival after sepsis from 0% in septic group to 30%. Septic rats developed histological evidence of ALI and AKI. Menthol markedly suppressed sepsis induced elevation of tissue TNF-a, ameliorated sepsis-induced cleavage of caspase-3 and restored the antiapoptotic marker Bcl2. Significance We introduced a role of the proliferating cell nuclear antigen (PCNA) in these tissues with a possible link to the damage induced by sepsis. PCNA level was markedly reduced in septic animals and menthol ameliorated this effect. Our data provide novel evidence that menthol protects against organ damage and decreases mortality in experimental sepsis.
Collapse
Affiliation(s)
- Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| | - Asmaa S. A. Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - AlShaimaa W. Kasem
- Department of Pathology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Mohamed A. El-Moselhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Mohammad W. Alrabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| |
Collapse
|
9
|
Menthae Herba Attenuates Neuroinflammation by Regulating CREB/Nrf2/HO-1 Pathway in BV2 Microglial Cells. Antioxidants (Basel) 2022; 11:antiox11040649. [PMID: 35453334 PMCID: PMC9029636 DOI: 10.3390/antiox11040649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation and oxidative stress cause microglia to be abnormally activated in the brain, resulting in neurodegenerative diseases such as Alzheimer’s disease (AD). Menthae Herba (MH) has been widely used as a medicinal plant with antimicrobial, anti-inflammatory, and antioxidant properties. In this study, we sought to evaluate the effects of MH on the inflammatory response and possible molecular mechanisms in microglia stimulated with lipopolysaccharide (LPS). Transcriptional and translational expression levels of the proinflammatory factors were measured using ELISA, RT-qPCR, and Western blot analysis. MH extract inhibited the production of proinflammatory enzymes and mediators nitric oxide (NO), NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6 in LPS-stimulated cells. Our molecular mechanism study showed that MH inhibited the production of reactive oxygen species (ROS) and the phosphorylation of mitogen-activated protein kinase and nuclear factor (NF)-κB. In contrast, MH activated HO-1 and its transcriptional factors, cAMP response element-binding protein (CREB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thus, MH reduces ROS and NF-κB-mediated inflammatory signaling and induces CREB/Nrf2/HO-1-related antioxidant signaling in microglia. Together, these results may provide specific prospects for the therapeutic use of MH in the context of neuroinflammatory diseases, including AD.
Collapse
|
10
|
Santo SGE, Romualdo GR, Santos LAD, Grassi TF, Barbisan LF. Modifying effects of menthol against benzo(a)pyrene-induced forestomach carcinogenesis in female Swiss mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:2245-2255. [PMID: 34331502 DOI: 10.1002/tox.23338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon widespread in the environment and closely associated to tobacco use, which is an important risk factor for highly incident stomach cancer. Menthol, a monoterpene extracted from Mentha genus species, has multiple biological properties, including anti-inflammatory and gastroprotective properties, but its effects on carcinogenesis are still to be fully understood. Thus, we evaluated the modifying effects of Ment against BaP-induced forestomach carcinogenesis. Female Swiss mice received BaP by intragastrical (i.g.) administration (50 mg/kg of body weight [b wt], 2×/week), from weeks 1-5 weeks. Concomitantly, mice received Menthol at 25 (Ment25) or 50 (Ment50) mg/kg b wt (i.g, 3×/week). Animals were euthanized at weeks 5 (n = 5 mice/group) or 30 (n = 10 mice/group). At week 5, both Ment doses reduced peripheral leukocyte blood genotoxicity 4 h after the last BaP administration, but only Ment50 attenuated this biomarker 8 h after the last BaP administration. In accordance to these findings, both Ment interventions attenuated BaP-induced increase in the percentage of H2A.X-positive forestomach epithelial cells. Moreover, Ment50 reduced cell proliferation and apoptosis (i.e., Ki-67 and caspase-3, respectively) in forestomach epithelium but exerted no significant effects on NFκB, and Nrf2 protein levels. At week 30, Ment50 reduced by ~55% the incidence of BaP-induced forestomach diffuse hyperplasia and multiplicity of forestomach tumors (squamous cell papillomas and carcinomas). Our findings indicate that Ment50, administered during initiation phase, attenuates forestomach carcinogenesis by reducing early genotoxicity, cell proliferation, and apoptosis induced by BaP.
Collapse
Affiliation(s)
- Sara Gomes Espírito Santo
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Guilherme Ribeiro Romualdo
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Leandro Alves Dos Santos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tony Fernando Grassi
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
11
|
Kim J, Joshi HP, Kim KT, Kim YY, Yeo K, Choi H, Kim YW, Choi UY, Kumar H, Sohn S, Shin DA, Han IB. Combined Treatment with Fasudil and Menthol Improves Functional Recovery in Rat Spinal Cord Injury Model. Biomedicines 2020; 8:E258. [PMID: 32751905 PMCID: PMC7460054 DOI: 10.3390/biomedicines8080258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroprotective measures by preventing secondary spinal cord injury (SCI) are one of the main strategies for repairing an injured spinal cord. Fasudil and menthol may be potent neuroprotective agents, which act by inhibiting a rho-associated protein kinase (ROCK) and suppressing the inflammatory response, respectively. We hypothesized that combined treatment of fasudil and menthol could improve functional recovery by decreasing inflammation, apoptosis, and glial scar formation. We tested our hypothesis by administering fasudil and menthol intraperitoneally (i.p.) to female Sprague Dawley rats after moderate static compression (35 g of impounder for 5 min) of T10 spinal cord. The rats were randomly divided into five experimental groups: (i) sham animals received laminectomy alone, (ii) injured (SCI) and untreated (saline 0.2 mL/day, i.p.) rats, (iii) injured (SCI) rats treated with fasudil (10 mg/kg/day, i.p.) for two weeks, (iv) injured (SCI) rats treated with menthol (10 mg/kg/day, i.p.) for twoweeks, (v) injured (SCI) rats treated with fasudil (5 mg/kg/day, i.p.) and menthol (10 mg/kg/day, i.p.) for two weeks. Compared to single treatment groups, combined treatment of fasudil and menthol demonstrated significant functional recovery and pain amelioration, which, thereby, significantly reduced inflammation, apoptosis, and glial/fibrotic scar formation. Therefore, combined treatment of fasudil and menthol may provide effective amelioration of spinal cord dysfunction by a synergistic effect of fasudil and menthol.
Collapse
Affiliation(s)
- JeongHoon Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Yi Young Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Keundong Yeo
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Ye Won Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Un-Yong Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|
12
|
Hasan UH, Uttra AM, Qasim S, Ikram J, Saleem M, Niazi ZR. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153134. [PMID: 31812101 DOI: 10.1016/j.phymed.2019.153134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE Matrix metalloproteinases, zinc dependent proteolytic enzymes, have significant implications in extracellular matrix degradation associated with tissue damage in inflammation and Rheumatoid arthritis. Numerous orchestrated pathways affects instigation and blockade of metalloproteinases as well as various factors that increase the expression of MMPs including inflammatory cytokines, hormones and growth factors. Direct inhibition of these proteolytic enzymes or modulation of these pathways can provide protection against tissue destruction in inflammation and rheumatoid arthritis. Inclination towards use of plant derived phytochemicals to prevent tissue damage has been increasing day by day. Diversity of phytochemicals have been known to directly inhibit metalloproteinases. Hence, thorough knowledge of phytochemicals is very important in novel drug discovery. METHODS Present communication evaluates various classes of phytochemicals, in effort to unveil the lead molecules as potential therapeutic agents, for prevention of MMPs mediated tissue damage in inflammation and rheumatoid arthritis. Data have been analyzed through different search engines. RESULTS Numerous phytochemicals have been studied for their role as MMPs inhibitors which can be processed further to develop into useful drugs for the treatment of inflammation and rheumatoid arthritis. CONCLUSION In search of new drugs, phytochemicals like flavonoids, glycosides, alkaloids, lignans & terpenes offer a wide canvas to develop into valuable forthcoming medicaments.
Collapse
Affiliation(s)
- Umme Habiba Hasan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Ambreen Malik Uttra
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Sumera Qasim
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Javaria Ikram
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Muhammad Saleem
- University College of Pharmacy, University of Punjab Lahore, Lahore, Pakistan
| | - Zahid Rasul Niazi
- Department of Basic medical science, Faculty of Pharmacy, Gomal University, DI Khan, KPK, Pakistan
| |
Collapse
|
13
|
Liao L, Shi J, Jiang C, Zhang L, Feng L, Liu J, Zhang J. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125:82-90. [PMID: 30771374 DOI: 10.1016/j.neuint.2019.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
Oxidative stress is an important cause of neurodegenerative diseases. Antioxidant is an potential important method to treat such diseases. The aim of this study is to discover new and effective antioxidants and their mechanism. The neuroprotective effect of six curcumin pyrozole compounds were first evaluated on sodium nitroprusside (SNP) - induced PC12 cell injury by testing cell viability and LDH release. The results showed that four compounds (C1-C4) have more significant protective effects compared to curcumin and edaravone. Furthermore, compounds C1-C4 can attenuate the intracellular ROS, and compound C3 is the most effective one which can preservate the mitochondria function by inhibiting the mitochondrial membrane potential loss and enhance nuclear translocation of Nrf2 in PC12 cell. These results indicated that C3 may be a potential candidate drug for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Liantao Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Lisi Feng
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jiayong Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|