1
|
Klose A, Gounani Z, Ijäs H, Lajunen T, Linko V, Laaksonen T. Doxorubicin-loaded DNA origami nanostructures: stability in vitreous and their uptake and toxicity in ocular cells. NANOSCALE 2024; 16:17585-17598. [PMID: 39228361 PMCID: PMC11372452 DOI: 10.1039/d4nr01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Biocompatibility and precise control over their size and shape make DNA origami nanostructures (DONs) promising for drug delivery applications. Whilst many investigations have focused on cancer treatment, this might not be the best fit for DONs that get degraded by nucleases in blood. In comparison, an eye is a uniquely isolated target organ, which could benefit from DONs to achieve and maintain therapeutic concentrations in diseases that threaten the eyesight of millions of patients every year. We investigated the loading of doxorubicin (DOX) as a model drug into three distinct DONs and tested their stability upon storage. Further, we chose one structure (24HB) to probe its stability under physiological conditions in cell media and porcine vitreous, before examining the uptake and effect of DOX-loaded 24HB (24HB-DOX) on the cell viability in a retinal cell line (ARPE-19). Similar to previous reports, the tested low μM loading concentrations of DOX resulted in high drug loadings of up to 34% (m/m), and remained mostly intact in water for at least 2 months at 4 °C. In cell media and porcine vitreous at 37 °C, however, 24HB required additional Mg2+ supplementation to avoid degradation and the loss of the attached fluorophores. With added Mg2+, 24HB remained stable in vitreous for 7 days at 37 °C. The treatment with 24HB-DOX was well tolerated by ARPE-19 cells, compared to the observed higher toxicity of free DOX. Uptake studies revealed, however, that in contrast to free DOX, very little 24HB-DOX was taken up by the cells. Instead, the particles were observed to attach around the cells. Hence, our results suggest that since the uptake seems to be the bottleneck for therapies using DONs, further strategies such as adding ocular targeting moieties are necessary to increase the uptake and efficacy of doxorubicin-loaded DONs.
Collapse
Affiliation(s)
- Anna Klose
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Zahra Gounani
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Tatu Lajunen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
- School of Pharmacy, University of Eastern Finland, Yliopistonrinne 3, 70210 Kuopio, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | - Timo Laaksonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
- Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
2
|
Barlas FB, Olceroglu B, Ag Seleci D, Gumus ZP, Siyah P, Dabbek M, Garnweitne G, Stahl F, Scheper T, Timur S. Enhancing chemotherapeutic efficacy: Niosome-encapsulated Dox-Cis with MUC-1 aptamer. Cancer Med 2024; 13:e70079. [PMID: 39118454 PMCID: PMC11310550 DOI: 10.1002/cam4.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Firat Baris Barlas
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Bilge Olceroglu
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Didem Ag Seleci
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
| | - Pinar Siyah
- Department of Biochemistry, School of PharmacyBahçeşehir UniversityIstanbulTurkey
| | - Meriam Dabbek
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Georg Garnweitne
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Frank Stahl
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Thomas Scheper
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
- Department of Biochemistry, Faculty of ScienceEge UniversityIzmirTurkey
| |
Collapse
|
3
|
Savadiya B, Pandey G, Misra SK. Remediation of pharmacophoric laboratory waste by using biodegradable carbon nanoparticles of bacterial biofilm origin. ENVIRONMENTAL RESEARCH 2024; 252:118969. [PMID: 38642641 DOI: 10.1016/j.envres.2024.118969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Research laboratories generate a broad range of hazardous pharmacophoric chemical contaminants, from drugs to dyes used during various experimental procedures. In the recent past, biological methods have demonstrated great potential in the remediation of such contaminants. However, the presence of pharmacophoric chemicals containing antibiotics, xenobiotics, and heavy metals suppresses the growth and survivability of used microbial agents, thus decreasing the overall efficiency of biological remediation processes. Bacterial biofilm is a natural arrangement to counter some of these inhibitions but its use in a systemic manner, portable devices, and pollutant remediation plants post serious challenges. This could be countered by synthesizing a biodegradable carbon nanoparticle from bacterial biofilm. In this study, extracellular polymeric substance-based carbon nanoparticles (Bio-EPS-CNPs) were synthesized from bacterial biofilm derived from Bacillus subtilis NCIB 3610, as a model bacterial system. The produced Bio-EPS-CNPs were investigated for physiochemical properties by dynamic light scattering, optical, Fourier-transformed infrared, and Raman spectroscopy techniques, whereas X-ray diffraction study, scanning electron microscopy, and transmission electron microscopy were used to investigate structural and morphological features. The Bio-EPS-CNPs exhibited negative surface charge with spherical morphology having a uniform size of sub-100 nm. The maximum remediation of some laboratory-produced pharmacophoric chemicals was achieved through a five-round scavenging process and confirmed by UV/Vis spectroscopic analysis with respect to the used pharmacophore. This bioinspired remediation of used pharmacophoric chemicals was achieved through the mechanism of surface adsorption via hydrogen bonding and electrostatic interactions, as revealed by different characterizations. Further experiments were performed to investigate the effects of pH, temperature, stirring, and the protocol of scavenging to establish Bio-EPS-CNP as a possible alternative to be used in research laboratories for efficient removal of pharmacophoric chemicals by incorporating it in a portable, filter-based device.
Collapse
Affiliation(s)
- Bhawana Savadiya
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India
| | - Gaurav Pandey
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India.
| |
Collapse
|
4
|
Hamad AA. The first facile optical density-dependent approach for the analysis of doxorubicin, an oncogenic agent accompanied with the co-prescribed drug; paclitaxel. BMC Chem 2023; 17:59. [PMID: 37328912 DOI: 10.1186/s13065-023-00976-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Doxorubicin (DRB) is an anthracycline oncogenic drug extracted from cultures of Streptomyces peucetius var. caesius. It is frequently recommended as an anti-neoplastic agent for the treatment of diverse malignancies. It exerts its antineoplastic effect either via inhibiting the enzyme topoisomerase II and/or via intercalation to DNA or reactive oxygen species generation. In the present article, the direct, simple, one-pot, somewhat eco-safe, and non-extractive spectrophotometric system was executed to track doxorubicin, a chemotherapeutic remedy, in the presence of paclitaxel, a naturally occurring Taxan antineoplastic radical, through the greenness rated method. DRB's optical density was studied in various mediums and solvents to develop the current approach. An acidic ethanolic solution was found to increase the optical density of the sample significantly. At 480 nm., the most remarkable optical density was obtained. Various experimental factors, including intrinsic media, solvent, pH, and stability time, were investigated and controlled. The current approach achieved linearity within the 0.6-40.0 µg mL-1 range, accompanied by a limit of both detection and quantification (LOD and LOQ) of 0.18 and 0.55 µg mL-1, correspondingly. The approach was validated under the ICH guidelines (Quality Guidelines). The system's greenness and enhancement degree were estimated.
Collapse
Affiliation(s)
- Ahmed Abdulhafez Hamad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
5
|
Ramazi S, Salimian M, Allahverdi A, Kianamiri S, Abdolmaleki P. Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line. Sci Rep 2023; 13:8844. [PMID: 37258563 DOI: 10.1038/s41598-023-35767-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer deaths in women worldwide. Magnetic fields have shown anti-tumor effects in vitro and in vivo as a non-invasive therapy method that can affect cellular metabolism remotely. Doxorubicin (DOX) is one of the most commonly used drugs for treating breast cancer patients. It can be assumed that combining chemotherapy and magnetotherapy is one of the most effective treatments for breast cancer. This study aimed to investigate the potential cytotoxic effect of DOX at low concentrations in combination with extremely low-frequency electromagnetic fields (ELF-EMF; 50 Hz; 20 mT). The breast cancer cell line MCF-7 was examined for oxidative stress, cell cycle, and apoptosis. MCF-7 cells were treated with various concentrations of DOX as an apoptosis-inducing agent and ELF-EMF. Cytotoxicity was examined using the MTT colorimetric assay at 12, 24, and 48 h. Consequently, concentration- and time-dependent cytotoxicity was observed in MCF-7 cells for DOX within 24 h. The MTT assay results used showed that a 2 μM concentration of DOX reduced cell viability to 50% compared with control, and as well, the combination of ELF-EMF and DOX reduced cell viability to 50% compared with control at > 0.25 μM doses for 24 h. In MCF-7 cells, combining 0.25 μM DOX with ELF-EMF resulted in increased ROS levels and DOX-induced apoptosis. Flow cytometry analysis, on the other hand, revealed enhanced arrest of MCF-7 cells in the G0-G1 phase of the cell cycle, as well as inducing apoptotic cell death in MCF-7 cells, implying that the synergistic effects of 0.25 μM DOX and ELF-EMF may represent a novel and effective agent against breast cancer.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Mani Salimian
- Department of Nano-Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Shahla Kianamiri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
6
|
Dou J, Yu S, Reddy O, Zhang Y. Novel ABA block copolymers: preparation, temperature sensitivity, and drug release. RSC Adv 2022; 13:129-139. [PMID: 36605663 PMCID: PMC9764341 DOI: 10.1039/d2ra05831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
A new PEGylated macroiniferter was prepared based on the polycondensation reaction of polyethylene oxide (PEO), methylene diphenyl diisocyanate (MDI), and 1,1,2,2-tetraphenyl-1,2-ethanediol (TPED). The macroiniferter consists of PEO end groups and readily reacts with acrylamides (such as N-isopropylacrylamide, NIPAM) and forms ABA block copolymers (PEO-PNIPAM-PEO). This approach of making amphiphilic ABA block copolymers is robust, versatile, and useful, particularly for the development of polymers for biomedical applications. The resulting amphiphilic PEO-PNIPAM-PEO block copolymers are also temperature sensitive, and their phase transition temperatures are close to human body temperature and therefore they have been applied as drug carriers for cancer treatment. Two PEO-PNIPAM-PEO polymers with different molecular weights were prepared and selected to make temperature-sensitive micelles. As a result of the biocompatibility of these micelles, cell viability tests proved that these micelles have low toxicity toward cancer cells. The resultant polymer micelles were then used as drug carriers to deliver the hydrophobic anticancer drug doxorubicin (DOX), and the results showed that they exhibit significantly higher cumulative drug release efficiency at higher temperatures. Moreover, after loading DOX into the micelles, cellular uptake experiments showed easy uptake and cell viability tests showed that DOX-loaded micelles possess a better therapeutic effect than free DOX at the same dose.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Ojasvita Reddy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| |
Collapse
|
7
|
Facile preparation of aqueous-soluble fluorescent polyethylene glycol functionalized carbon dots from palm waste by one-pot hydrothermal carbonization for colon cancer nanotheranostics. Sci Rep 2022; 12:10550. [PMID: 35732805 PMCID: PMC9217983 DOI: 10.1038/s41598-022-14704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Carbon dots (CDs) are categorized as an emerging class of zero-dimension nanomaterials having high biocompatibility, photoluminescence, tunable surface, and hydrophilic property. CDs, therefore, are currently of interest for bio-imaging and nano-medicine applications. In this work, polyethylene glycol functionalized CDs (CD-PEG) were prepared from oil palm empty fruit bunch by a one-pot hydrothermal technique. PEG was chosen as a passivating agent for the enhancement of functionality and photoluminescence properties of CDs. To prepare the CDs-PEG, the effects of temperature, time, and concentration of PEG were investigated on the properties of CDs. The as-prepared CDs-PEG were characterized by several techniques including dynamic light scattering, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence spectroscopy, Raman spectroscopy, Fourier-transform infrared spectroscopy and Thermogravimetric analysis. The as-prepared CDs under hydrothermal condition at 220 °C for 6 h had spherical morphology with an average diameter of 4.47 nm. Upon modification, CDs-PEG were photo-responsive with excellent photoluminescence property. The CDs-PEG was subsequently used as a drug carrier for doxorubicin [DOX] delivery to CaCo-2, colon cancer cells in vitro. DOX was successfully loaded onto CDs-PEG surface confirmed by FT-IR and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer (MALDI-TOF/MS) patterns. The selective treatment of CDs-PEG-DOX against the colorectal cancer cells, , relative to normal human fibroblast cells was succesfully demonstrated.
Collapse
|
8
|
Li P, Kawade SK, Adak AK, Shen Y, Fan C, Hsieh Y, Angata T, Chen Y, Lin C. Ligand‐assisted imprinting‐probe‐labeling
strategy reveals Siglec‐7 ‐ glycoprotein interactions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of Chemistry and Biochemistry National Chung Cheng University Chiayi Taiwan
| | | | - Avijit K. Adak
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Ju Shen
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Chen‐Yo Fan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Heng Hsieh
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
9
|
Liu G, Valvo V, Ahn SW, Thompson D, Deans K, Kang JW, Bhagavatula S, Dominas C, Jonas O. A Two-Photon Microimaging-Microdevice System for Four-Dimensional Imaging of Local Drug Delivery in Tissues. Int J Mol Sci 2021; 22:11752. [PMID: 34769180 PMCID: PMC8584268 DOI: 10.3390/ijms222111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Veronica Valvo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sharath Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA; (G.L.); (V.V.); (S.W.A.); (D.T.); (K.D.); (S.B.); (C.D.)
| |
Collapse
|
10
|
Rotkrua P, Lohlamoh W, Watcharapo P, Soontornworajit B. A molecular hybrid comprising AS1411 and PDGF-BB aptamer, cholesterol, and doxorubicin for inhibiting proliferation of SW480 cells. J Mol Recognit 2021; 34:e2926. [PMID: 34258818 DOI: 10.1002/jmr.2926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Cancer treatment commonly relies on chemotherapy. This treatment faces many challenges, including treatment specificity and undesired side effects. To address these, a Dox-loaded Chol-aptamer molecular hybrid (Dox-CAH) was developed. This multivalent interaction system combines the key function of each integrated species: doxorubicin, cholesterol, and two aptamers binding to nucleolin and platelet-derived growth factor BB (PDGF-BB). The study has four stages: preparation of CAH via oligonucleotide hybridization, intercalation of doxorubicin into CAH, verification of CAH binding on SW480 by fluorescence microscopy and flow cytometry, and investigation of effect of Dox-CAH on SW480 proliferation. CAH was successfully prepared, as confirmed by electrophoresis. Flow cytometry and fluorescence microscopy demonstrated CAH binding to SW480, due to the presence of the AS1411 aptamer. This molecular hybrid exhibited specific binding because it did not bind to CCD 841 CoN. CAH binding to PDGF-BB compromises its function, as shown by enzyme-linked immunosorbent assay (ELISA) and cell assay. The DNA duplex in this molecular hybrid reduces the cytotoxicity of the Dox-CAH. Binding and the reduction of Dox-CAH toxicity may improve treatment specificity and minimize side effects. Dox-CAH is a model for more effective anticancer therapy, allowing incorporation of chemotherapeutic drugs and recognition elements.
Collapse
Affiliation(s)
- Pichayanoot Rotkrua
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Walaiporn Lohlamoh
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Paphada Watcharapo
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| | - Boonchoy Soontornworajit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
11
|
Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors - Illuminating the path to personalized drug dosing. Biosens Bioelectron 2021; 188:113331. [PMID: 34038838 DOI: 10.1016/j.bios.2021.113331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Thomas D Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mohammed Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
12
|
Wang YJ, Lin PY, Hsieh SL, Kirankumar R, Lin HY, Li JH, Chen YT, Wu HM, Hsieh S. Utilizing Edible Agar as a Carrier for Dual Functional Doxorubicin-Fe 3O 4 Nanotherapy Drugs. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1824. [PMID: 33917109 PMCID: PMC8067861 DOI: 10.3390/ma14081824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to use agar as a multifunctional encapsulating material to allow drug and ferromagnetism to be jointly delivered in one nanoparticle. We successfully encapsulated both Fe3O4 and doxorubicin (DOX) with agar as the drug carrier to obtain DOX-Fe3O4@agar. The iron oxide nanoparticles encapsulated in the carrier maintained good saturation of magnetization (41.9 emu/g) and had superparamagnetism. The heating capacity test showed that the specific absorption rate (SAR) value was 18.9 ± 0.5 W/g, indicating that the ferromagnetic nanoparticles encapsulated in the gel still maintained good heating capacity. Moreover, the magnetocaloric temperature could reach 43 °C in a short period of five minutes. In addition, DOX-Fe3O4@agar reached a maximum release rate of 85% ± 3% in 56 min under a neutral pH 7.0 to simulate the intestinal environment. We found using fluorescent microscopy that DOX entered HT-29 human colon cancer cells and reduced cell viability by 66%. When hyperthermia was induced with an auxiliary external magnetic field, cancer cells could be further killed, with a viability of only 15.4%. These results show that agar is an efficient multiple-drug carrier, and allows controlled drug release. Thus, this synergic treatment has potential application value for biopharmaceutical carrier materials.
Collapse
Affiliation(s)
- Yu-Jyuan Wang
- Department of Nursing, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan; (S.-L.H.); (J.-H.L.)
| | - Rajendranath Kirankumar
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Hsin-Yi Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
| | - Jia-Huei Li
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan; (S.-L.H.); (J.-H.L.)
| | - Ya-Ting Chen
- College of Hydrosphere Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan;
| | - Hao-Ming Wu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (P.-Y.L.); (R.K.); (H.-Y.L.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Facile one-pot green solvent synergized fluorescence reaction for determination of doxorubicin in presence of paclitaxel; co-administered drug, application to stability study and analysis in bulk, vial and biological fluids. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Bian L, Zhao H, He C, Fang H, Chen Z, Lin L, Ye K, Wu Y, Lin G. A time-resolved fluoroimmunoassay for assessing rabies antibody titers in the sera of vaccinated human subjects. Biologicals 2020; 68:54-59. [PMID: 32868168 DOI: 10.1016/j.biologicals.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Several studies have investigated the use of simple in vitro tests for the assessment of rabies antibody titers in serum samples from vaccinated human subjects, which would allow the effectiveness of rabies vaccination to be conveniently evaluated. To this end, a novel time-resolved fluoroimmunoassay (TRFIA) for the assessment of rabies antibody titers was established in this study for evaluating the effectiveness of protection against rabies. The TRFIA had a satisfactory limit of detection value (0.035 IU/mL) under optimal conditions. Additionally, the application of the TRFIA was demonstrated in 68 serum samples with satisfactory results. The coefficient variations (CVs) were all <10%, and the recoveries were in the range of 90-110%. The correlation coefficient of titer values obtained using the present TRFIA and the rapid fluorescent focus inhibition test (RFFIT) was 0.733, with a coincidence rate regarding the evaluation results (protected or not protected by vaccination) of 100%. The preliminary results confirmed that the TRFIA had a higher performance than an enzyme-linked immunosorbent assay (ELISA), and could potentially replace the ELISA. Based on these results, the novel TRFIA appears to be a convenient tool for the evaluation of rabies vaccination results based on serum samples from vaccinated human subjects.
Collapse
Affiliation(s)
- Lun Bian
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hui Zhao
- Department of Plastic and Aesthetic Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunhui He
- Guangzhou Promise Biologics Co., Ltd, No. 1 Wanbao North Street, Panyu District, Guangzhou, Guangdong, China
| | - Haolin Fang
- Guangzhou Promise Biologics Co., Ltd, No. 1 Wanbao North Street, Panyu District, Guangzhou, Guangdong, China
| | - Zhenhua Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Li Lin
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ke Ye
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Guanfeng Lin
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Porfireva AV, Goida AI, Rogov AM, Evtugyn GA. Impedimetric DNA Sensor Based on Poly(proflavine) for Determination of Anthracycline Drugs. ELECTROANAL 2020. [DOI: 10.1002/elan.201900653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anna V. Porfireva
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Anastasia I. Goida
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Alexey M. Rogov
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University 18 Kremlevskaya Street Kazan 420008 Russian Federation
| | - Gennady A. Evtugyn
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| |
Collapse
|
16
|
Kim KR, Chun HJ, Lee KW, Jeong KY, Kim JH, Yoon HC. Wash-free non-spectroscopic optical immunoassay by controlling retroreflective microparticle movement in a microfluidic chip. LAB ON A CHIP 2019; 19:3931-3942. [PMID: 31650135 DOI: 10.1039/c9lc00973f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we proposed a retroreflective optical immunoassay platform by introducing the intrinsic sedimentation characteristics of a micro-retroreflector, namely retroreflective Janus particles (RJPs), wherein the sediment-based passive movement of RJPs minimised the random errors due to human involvement and resulted in a simple procedure that does not require the washing step, to follow the concept of point-of-care testing. The transparent sensing interface and the sedimentation property of RJPs were combined to develop a practical retroreflective immunoassay platform. For the sensing surface, transparent silanized poly(methyl methacrylate) was applied to the inverted focusing method. In the retroreflection phenomenon, as the incident light returns to its source by the retroreflector, efficient design of the retroreflective optical path between the light source and retroreflector can be crucial in signal registration. While preparing the RJP-bound transparent substrate on the microfluidic channel, the signal could be achieved more efficiently by directly focusing on the sensing interface, and not via the fluidic channels. To integrate this to build an immunoassay protocol, the sedimentation property of RJPs was employed for microfluidic chip inversion-based particle movement control, which was utilised for both luring and separating RJPs on the sensing surface, resulting in a wash-free immunoassay without any human involvement. To ensure accurate analysis, a time-lapse imaging-based image processing was conducted to eliminate the non-specific signals. To validate the applicability of the proposed immunoassay platform, quantification of acute cardiac infarction marker creatine kinase-MB was performed.
Collapse
Affiliation(s)
- Ka Ram Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Hyeong Jin Chun
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Kyung Won Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Kwan Young Jeong
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jae-Ho Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
17
|
Milosavljevic V, Jamroz E, Gagic M, Haddad Y, Michalkova H, Balkova R, Tesarova B, Moulick A, Heger Z, Richtera L, Kopel P, Adam V. Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromolecules 2019; 21:418-434. [DOI: 10.1021/acs.biomac.9b01175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vedran Milosavljevic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Cracow, Poland
| | - Milica Gagic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Hana Michalkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Radka Balkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Brno University of Technology, Purkynova 464/118, Kralovo Pole, 61200 Brno, Czech Republic
| | - Barbora Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|