1
|
Pereira AR, Gomes IB, Santos L, Simões M. Track of methylparaben in the bulk phase and on the extracellular matrix of dual-species biofilms: Biodegradation and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136222. [PMID: 39447230 DOI: 10.1016/j.jhazmat.2024.136222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Methylparaben (MP) is a preservative considered an environmental contaminant of emerging concern due to its persistence in water sources, including drinking water (DW). This study assesses the interaction between MP and dual-species biofilms of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. These biofilms were grown under realism-based conditions in a multiple-cylinder biofilm reactor on polypropylene (PPL) surfaces, for 7 days, and then exposed to MP at 0.5 mg/L for three consecutive days. S. maltophilia predominantly succeeds within these biofilms compared to A. calcoaceticus. Exposure to MP resulted in a 4-fold increase in the number of culturable cells and a 1.4-fold rise in polysaccharide content, suggesting that bacterial cells may utilize MP as a carbon source to enhance biofilm fitness. MP was found to adsorb to PPL with biofilms following a pseudo-second-order kinetic model. Circa 37 % of MP adsorbed to PPL after 3 days of exposure. Besides that, MP was biodegraded by biofilms following an apparent first-order kinetic model. Part (25 %) of the MP was biodegraded whereas only 0.02 % bioaccumulated on the biofilm matrix. Biodegradation was related to esterase and lipase activity. The results provide new insights into the interaction between MP with biofilms and materials used in DW industries.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Correa-Navarro YM, Rivera-Giraldo JD, Cardona-Castaño JA. Modified Cellulose for Adsorption of Methylparaben and Butylparaben from an Aqueous Solution. ACS OMEGA 2024; 9:30224-30233. [PMID: 39035894 PMCID: PMC11256346 DOI: 10.1021/acsomega.3c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Emerging contaminants are chemical products that are found in low concentrations, are not regulated by environmental norms, and cause health effects. Among this group of contaminants are parabens, a family of p-hydroxybenzoic acid esters used as preservatives in cosmetics, pharmaceuticals, and food products. Recent research describes parabens as endocrine disruptors that can cause health alterations. Some of the best alternatives for pollutant removal include the adsorption process, which can use materials that are inexpensive, abundant, and susceptible to modifications. In this sense, cellulose can be an option for obtaining materials that can be used in the removal of contaminants. This research investigates the synthesis of benzoic cellulose (MCB) and magnetic cellulose (MCM) as well as its use as an adsorbent for the removal of methylparaben (MP) and butylparaben (BP) from water. Likewise, physicochemical characterization, including Fourier transform infrared (FTIR), scanning electronic microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), for both cellulose materials was carried out. Moreover, pseudo-first-order, pseudo-second-order, Elovich, Weber, Morris, and Boyd models were used to investigate the adsorption kinetics. As a result, the pseudo-second-order model was favorable for both modified cellulose and the two parabens assayed. Finally, Freundlich, Langmuir, and Sips adsorption isotherm models were investigated; the Langmuir model was the best for the adsorption isotherm data. The adsorption of methylparaben and butylparaben was in the following order: MCM > MCB. The maximum adsorption capacity of MP and BP for MCM was 9.58 and 12.03 mg g-1, respectively. For instance, the results showed that the modified cellulose adsorbed the parabens physically, which could involve electrostatic attraction, hydrogen bonding, π-π bonding, and hydrophobic interactions.
Collapse
Affiliation(s)
- Yaned Milena Correa-Navarro
- Departamento de Química,
Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Caldas, Colombia
| | - Juan David Rivera-Giraldo
- Departamento de Química,
Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Caldas, Colombia
| | - Julio Andrés Cardona-Castaño
- Departamento de Química,
Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Caldas, Colombia
| |
Collapse
|
3
|
Hafiz Rozaini MN, Saad B, Lim JW, Yahaya N, Ramachandran MR, Mohd Ridzuan ND, Kiatkittipong W, Pasupuleti VR, Lam SM, Sin JC. Competitive removal mechanism to simultaneously incarcerate bisphenol A, triclosan and 4-tert-octylphenol within beta-cyclodextrin crosslinked citric acid used for encapsulation in polypropylene membrane protected-micro-solid-phase extraction. CHEMOSPHERE 2022; 309:136626. [PMID: 36181856 DOI: 10.1016/j.chemosphere.2022.136626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Endocrine disrupting compounds (EDCs) are extensively found in the environment and severely impacting human health. In addressing this issue, the beta-cyclodextrin crosslinked citric acid (BCD-CA) had been previously employed in membrane-protected micro-solid phase extraction for sequestering EDCs from water medium; and the findings revealed that BCD-CA possessed a selectivity property. On that account, the potential of BCD-CA towards competitive adsorption of selected EDCs was investigated in terms of adsorption mechanism and selectivity property. Factors that affected the removal efficiencies such as sample pH, sorbent dosage, contact time and initial concentration were evaluated. The characterization results revealed that the carbon percentage of BCD-CA had increased by 2.04%, while the hydrogen percentage had reduced by 1.83%, signifying the successful crosslinking of BCD-CA. Besides, the amount of active BCD was calculated to be 3.2 × 10-7 mol, while the amount of carboxyl group was 2.48 × 10-5 mol per 4 mg of BCD-CA. Moreover, BCD-CA was stable in an aqueous medium with the zeta potential obtained at -36.5 mV and had a high-water retention capacity (∼150%). The competitive adsorption mechanism by BCD-CA with EDCs followed the pseudo-second-order kinetics and Freundlich isotherm, suggesting that the adsorption process was dominated by chemisorption on the heterogeneous surface of the adsorbent. Thermodynamic results revealed that adsorption of 4-tert-octylphenol had the most negative ΔG value, indicating most favorable to be adsorbed by BCD-CA as opposed to triclosan and bisphenol A, which was coherent with the apparent formation constant results. These unique properties manifested the practicality of BCD-CA as a selective adsorbent to detect and remove EDCs from the water medium.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | | | - Nur Diyan Mohd Ridzuan
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Visweswara Rao Pasupuleti
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, 560064, Bangalore, Karnataka, India
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
4
|
Saheed IO, Azeez SO, Suah FBM. Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review. Carbohydr Polym 2022; 298:120138. [DOI: 10.1016/j.carbpol.2022.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
5
|
Electrocoagulated Batik Sludge Adsorbent for the Adsorption of Acid Red 18 Dye in an Aqueous Solution and its Regeneration Capability. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Fabrication of magnetic covalent organic framework for effective and selective solid-phase extraction of propylparaben from food samples. Food Chem 2022; 386:132843. [PMID: 35381536 DOI: 10.1016/j.foodchem.2022.132843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Efficient magnetic solid phase extraction using crystalline porous polymers can find important applications in food safety. Herein, the core-shell Fe3O4@COFs nanospheres were synthesized by one-pot method and characterized in detail. The porous COF shell with large surface area had fast and selective adsorption for propylparaben via π-π, hydrogen bonding and hydrophobic interactions. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the extraction equilibrium was reached only in 5 min, the maximum adsorption capacity for propylparaben was 500 mg g-1 and the proposed Fe3O4@DhaTab-based-MSPE-HPLC-UV method afforded good linearity (4-20000 μg mL-1) with R2 (0.997), low limits of detection (0.55 μg L-1) and limits of quantification (1.5 μg L-1). Furthermore, the developed method was applied to determine propylparaben in soft drinks with the recoveries (97.0-98.3%) and relative standard deviations (0.61 to 3.75%). These results revealed the potential of Fe3O4@DhaTab as efficient adsorbents for parabens in food samples.
Collapse
|
7
|
Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P. Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Mikrochim Acta 2022; 189:340. [PMID: 35995957 DOI: 10.1007/s00604-022-05444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
Collapse
Affiliation(s)
- Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025. .,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025.
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Quan-Wen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Xin-Yan Peng
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, People's Republic of China, 264005
| | - Ping Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| |
Collapse
|
8
|
A β-cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. J Chromatogr A 2022; 1671:463007. [DOI: 10.1016/j.chroma.2022.463007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 12/20/2022]
|
9
|
Bolujoko NB, Unuabonah EI, Alfred MO, Ogunlaja A, Ogunlaja OO, Omorogie MO, Olukanni OD. Toxicity and removal of parabens from water: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148092. [PMID: 34147811 DOI: 10.1016/j.scitotenv.2021.148092] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
Parabens are biocides used as preservatives in food, cosmetics and pharmaceuticals. They possess antibacterial and antifungal activity due to their ability to disrupt cell membrane and intracellular proteins, and cause changes in enzymatic activity of microbial cells. Water, one of our most valuable natural resource, has become a huge reservoir for parabens. Halogenated parabens from chlorination/ozonation of water contaminated with parabens have shown to be even more persistent in water than other types of parabens. Unfortunately, there is dearth of data on their (halogenated parabens) presence and fate in groundwater which serves as a major source of drinking water for a huge population in developing countries. An attempt to neglect the presence of parabens in water will expose man to it through ingestion of contaminated food and water. Although there are reviews on the occurrence, fate and behaviour of parabens in the environment, they largely omit toxicity and removal aspects. This review therefore, presents recent reports on the acute and chronic toxicity of parabens, their estrogenic agonistic and antagonistic activity and also their relationship with antimicrobial resistance. This article further X-rays several techniques that have been employed for the removal of parabens in water and their drawbacks including adsorption, biodegradation, membrane technology and advanced oxidation processes (AOPs). The heterogeneous photocatalytic process (one of the AOPs) appears to be more favoured for removal of parabens due to its ability to mineralize parabens in water. However, more work is needed to improve this ability of heterogeneous photocatalysts. Perspectives that will be relevant for future scientific studies and which will drive policy shift towards the presence of parabens in our drinking waters are also offered. It is hoped that this review will elicit some spontaneous actions from water professionals, scientists and policy makers alike that will provide more data, effective technologies, and adaptive policies that will address the growing threat of the presence of parabens in our environment with respect to human health.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Moses O Alfred
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
10
|
González-Hernández P, Gutiérrez-Serpa A, Lago AB, Estévez L, Ayala JH, Pino V, Pasán J. Insights into Paraben Adsorption by Metal-Organic Frameworks for Analytical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45639-45650. [PMID: 34544233 DOI: 10.1021/acsami.1c14416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are attractive materials used as sorbents in analytical microextraction applications for contaminants of emerging concern (CECs) from environmental liquid matrices. The demanding specs for a sorbent in the analytical application can be comprehensively studied by considering the interactions of the target analytes with the frameworks by the use of single-crystal X-ray diffraction, computational analysis, and adsorption studies, including the kinetic ones. The current study intends a better understanding of the interactions of target CECs (particularly, propylparaben (PPB) as a model) and three Zn-based layered pillared MOFs: CIM-81 [Zn2(tz)2(bdc)] (Htz = 1,2,4-triazole and H2bdc = 1,4-benzenedicarboxylic acid) and their amino derivatives [Zn2(NH2-tz)2(bdc)] CIM-82 and [Zn2(tz)2(NH2-bdc)] CIM-83 (NH2-Htz = 3-amino-1,2,4-triazole and NH2-H2bdc = 2-amino-1,4-benzenedicarboxylic acid). The crystal structures of the two solvate compounds (dma@CIM-81 (dma = dimethylacetamide) and acetone@CIM-81) were solved by single-crystal X-ray diffraction to determine the points of interaction between the framework and the guest molecules. They also served as a starting point for the computational modeling of the PPB@CIM-81 compound, showing that up to two PPB molecules can be hosted in one of the pores, while only one can be trapped in the second pore type, leading to a maximum theoretical capacity of 291.9 mg g-1. This value is close to the value obtained by the adsorption isotherm experiment for CIM-81 (283 mg g-1). This value is, by far, higher than those previously reported for other materials for the removal of PPB from water, and also higher than the experimental values obtained for CIM-82 (54 mg g-1) and CIM-83 (153 mg g-1). The kinetics of adsorption is not very fast, with uptake of about 40% in 3 h, although a 70% release in methanol is achieved in 1 h. In addition, a further comparison of performance in analytical microextraction (requiring only 10 mg of CIM-81) was carried out together with chromatographic analysis to support all insights attained, with the method being able to monitor CECs as low as μg L-1 levels in complex environmental water samples, thus performing successfully for water monitoring even in multicomponent scenarios.
Collapse
Affiliation(s)
- Providencia González-Hernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| | - Adrián Gutiérrez-Serpa
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| | - Ana B Lago
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| | - Laura Estévez
- Departamento de Química Física, Facultad de Química, Universidade de Vigo, Vigo, Galicia 36310, Spain
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain
| |
Collapse
|
11
|
Beh SY, Md Saleh N, Asman S. Surfactant-functionalised magnetic ferum oxide coupled with high performance liquid chromatography for the extraction of phenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:607-619. [PMID: 33480366 DOI: 10.1039/d0ay02166k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The usage of phenols in the marketplace has been increasing tremendously, which has raised concerns about their toxicity and potential effect as emerging pollutants. Phenol's structure has closely bonded phenyl and hydroxy groups, thereby making its functional characteristics closely similar to that of alcohol. As a result, phenol is used as a base compound for commercial home-based products. Hence, a simple and efficient procedure is required to determine the low concentration of phenols in environmental water samples. In this research, a method of combining magnetic nanoparticles (MNPs) with surfactant Sylgard 309 was developed to overcome the drawbacks in the classical extraction methods. In addition, this developed method improved the performance of extraction when MNPs and the surfactant Sylgard 309 were used separately, as reported in the previous research. This MNP-Sylgard 309 was synthesised by the coprecipitation method and attracts phenolic compounds in environmental water samples. Response surface methodology was used to study the parameters and responses in order to obtain an optimised condition using MNP-Sylgard 309. The parameters included the effect of pH, extraction time, and concentration of the analyte. Meanwhile, the responses measured were the peak area of the chromatogram and the percentage recovery. From this study, the results of the optimum conditions for extraction using MNP-Sylgard 309 were pH 7, extraction time of 20 min, and analyte concentration of 10.0 μg mL-1. Under the optimized conditions, MNP-Sylgard 309 showed a low limit of detection of 0.665 μg mL-1 and the limit of quantification was about 2.219 μg mL-1. MNP-Sylgard 309 was successfully applied on environmental water samples such as lake and river water. High recovery (76.23%-110.23%) was obtained.
Collapse
Affiliation(s)
- Shiuan Yih Beh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
| | | | | |
Collapse
|
12
|
Li J, Wang L, Hui X, Zhang C, Cao Y, Xu S, He P, Li H. Effective hydrogenation of carbonates to produce methanol over a ternary Cu/Zn/Al catalyst. RSC Adv 2020; 10:13083-13094. [PMID: 35492127 PMCID: PMC9051381 DOI: 10.1039/d0ra00347f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Methanol synthesized from carbonate hydrogenation is of great importance for CO2 utilization indirectly. Herein, a series of Cu/Zn/Al heterogeneous catalysts were prepared by co-precipitation with a synchronous aging step, and were applied for hydrogenation of diethyl carbonate (DEC) to produce methanol. Furthermore, the catalysts were characterized by physicochemical methods, such as N2 adsorption, ICP-OES, N2O titration, SEM, TEM, XRD, H2-TPR and XPS in detail. Higher copper concentration led to a higher ratio of bulk CuOx species in the calcined samples, which resulted in different copper species distribution after the reduction process. Structure activity relationship analysis indicated that the balance of surface Cu0 and Cu+ species influenced the formation rate of methanol. A higher proportion of Cu+ to (Cu+ + Cu0) was conductive to methanol formation, while excessive Cu0 site density played a negative influence on the methanol synthesized from DEC. Cu/Zn/Al with a 45.2% weight fraction of copper showed better performance with a total methanol formation rate of 131.0 mg gcat.−1 h−1. The reaction temperature and reaction time could obviously affect the reaction performance and the results suggested that 200 °C and 6 h were suitable. Furthermore, the long-term stability and activity of the catalyst was also studied on a fixed bed, and the yield of total methanol reached to 88.5% and the selectivity of total methanol gradually decreased to 74.0% within 200 h, which could be attributed to the detrimental influence derived from the increase of Cu0. The reaction pathways involved in the hydrogenation of DEC process were proposed. The substance scope was also extended to other carbonates and the catalyst exhibited superior catalytic performance toward linear carbonates. This work provided insights into carbonate hydrogenation over an effective Cu/Zn/Al catalyst, which could be utilized into upgrading CO2 indirectly to produce commodity methanol under relatively mild reaction conditions. The valence distribution of copper species in ternary Cu/Zn/Al catalysts have significant influence on diethyl carbonate hydrogenation to produce methanol.![]()
Collapse
Affiliation(s)
- Jiachen Li
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Xiang Hui
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Chanjuan Zhang
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Shuang Xu
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
13
|
Ariffin MM, Azmi AHM, Saleh NM, Mohamad S, Rozi SKM. Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Ying Hwa G, Yih Hui B, Jairaj Moses E, Shahriman MS, Md Yusoff M, Yahaya N, Sambasevam KP, Surikumaran H, Chandrasekaram K, Raoov M. Smart combination of β-cyclodextrin polymer-conjugated magnetic nanosorbent for potential adsorption of deoxyribonucleic acid. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1524485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Goh Ying Hwa
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Boon Yih Hui
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Mohamad Shariff Shahriman
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Masrudin Md Yusoff
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | | | - Hemavathy Surikumaran
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur, Malaysia
| | - Kumuthini Chandrasekaram
- Department of Chemistry, Faculty of Science, Universiti of Malaya, Kuala Lumpur, Malaysia
- University Malaya Centre for Ionic Liquids (UMCiL), Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti of Malaya, Kuala Lumpur, Malaysia
- University Malaya Centre for Ionic Liquids (UMCiL), Universiti of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|