1
|
Xiong Y, Xia Z, Lu A, Chen W. Time-Resolved Extensional Rheo-NMR Spectroscopy for Investigating Polymer Nanocomposites under Deformation. Anal Chem 2023; 95:7545-7551. [PMID: 37145968 DOI: 10.1021/acs.analchem.2c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Understanding the microstructure change of polymer nanocomposites (PNCs) under elongation deformation at the molecular level is the key to coupling structure-property relationships of PNCs. In this study, we developed our recently proposed in situ extensional rheology NMR device, Rheo-spin NMR, which can simultaneously obtain both the macroscopic stress-strain curves and the microscopic molecular information with the total sample weight of ∼6 mg. This enables us to conduct a detailed investigation of the evolution of the interfacial layer and polymer matrix in nonlinear elongational strain softening behaviors. A quantitative method is established for in situ analysis of (1) the fraction of the interfacial layer and (2) the network strand orientation distribution of the polymer matrix based on the molecular stress function model under active deformation. The results show that for the current highly filled silicone nanocomposite system, the influence of the interfacial layer fraction on mechanical property change during small amplitude deformation is quite minor, while the main role is reflected in rubber network strand reorientation. The Rheo-spin NMR device and the established analysis method are expected to facilitate the understanding of the reinforcement mechanism of PNC, which can be further applied to understand the deformation mechanism of other systems, i.e., glassy and semicrystalline polymers and the vascular tissues.
Collapse
Affiliation(s)
- Yuqi Xiong
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Zhijie Xia
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ai Lu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Boahen EK, Pan B, Kweon H, Kim JS, Choi H, Kong Z, Kim DJ, Zhu J, Ying WB, Lee KJ, Kim DH. Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics. Nat Commun 2022; 13:7699. [PMID: 36509757 PMCID: PMC9744819 DOI: 10.1038/s41467-022-35434-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The self-healing properties and ionic sensing capabilities of the human skin offer inspiring groundwork for the designs of stretchable iontronic skins. However, from electronic to ionic mechanosensitive skins, simultaneously achieving autonomously superior self-healing properties, superior elasticity, and effective control of ion dynamics in a homogeneous system is rarely feasible. Here, we report a Cl-functionalized iontronic pressure sensitive material (CLiPS), designed via the introduction of Cl-functionalized groups into a polyurethane matrix, which realizes an ultrafast, autonomous self-healing speed (4.3 µm/min), high self-healing efficiency (91% within 60 min), and mechanosensitive piezo-ionic dynamics. This strategy promotes both an excellent elastic recovery (100%) and effective control of ion dynamics because the Cl groups trap the ions in the system via ion-dipole interactions, resulting in excellent pressure sensitivity (7.36 kPa-1) for tactile sensors. The skin-like sensor responds to pressure variations, demonstrating its potential for touch modulation in future wearable electronics and human-machine interfaces.
Collapse
Affiliation(s)
- Elvis K Boahen
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Baohai Pan
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Zhengyang Kong
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Wu Bin Ying
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wang M, Lu J, Han F, Yan P. Amine-functionalized fibrous sepiolite and graphene oxide in situ self-assembled hybrid network for reinforcement of natural rubber composite. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Behera PK, Kumar A, Mohanty S, Gupta VK. Overview on Post-Polymerization Functionalization of Butyl Rubber and Properties. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prasanta Kumar Behera
- Polymer Synthesis and Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai 400701, India
| | - Amit Kumar
- Polymer Synthesis and Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai 400701, India
| | - Subhra Mohanty
- Polymer Synthesis and Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai 400701, India
| | - Virendra Kumar Gupta
- Polymer Synthesis and Catalysis Group, Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai 400701, India
| |
Collapse
|
5
|
Strengthened self-healable natural rubber composites based on carboxylated cellulose nanofibers participated in ionic supramolecular network. Int J Biol Macromol 2022; 222:587-598. [PMID: 36167103 DOI: 10.1016/j.ijbiomac.2022.09.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
Cellulose, as a green reinforcing agent for rubber, has excellent improvement on the tensile strength but usually accompany with a deterioration of extensibility and self-healing property. Herein, we report an efficient method to prepare robust and self-healable natural rubber/zinc dimethacrylate/carboxylated cellulose nanofibers (NR/ZDMA/CNC) composites which are constructed by a CNC participated ionic supramolecular network. Ionic supramolecular network in NR is generated by the polymerization of ZDMA during a controlled peroxide-initiated vulcanization of NR. Interestingly, NR with massive ion clusters has strong affinity with CNC, which facilitates the uniform dispersion of CNC and the compatibility between CNC and NR. Meanwhile, CNC participates into the supramolecular network via non-covalent interaction with NR chains equipped with ionic crosslinks. This greatly reduces the adverse effect of CNC on the dynamic characteristics of supramolecular network. As a result, the tensile strength of NR/ZDMA composite with 20 phr CNC could reach 4.13 MPa, while its self-healing efficiency still maintains at >80 %. Thus, NR composites with non-covalent interaction between CNC and supramolecular network display improved strength, maintained extensibility, and excellent self-healing capability. This study thus demonstrates a feasible approach to reduce the negative effect of reinforcing fillers on a self-healing rubber based on supramolecular networks.
Collapse
|
6
|
Li X, Liu J, Zheng Z. Recent progress of elastomer–silica nanocomposites toward green tires:simulation and experiment. POLYM INT 2022. [DOI: 10.1002/pi.6454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials Hubei University Wuhan 430062 China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Zi‐Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials Hubei University Wuhan 430062 China
| |
Collapse
|
7
|
Mohd Sani NF, Yee HJ, Othman N, Talib AA, Shuib RK. Intrinsic self-healing rubber: A review and perspective of material and reinforcement. POLYMER TESTING 2022; 111:107598. [DOI: 10.1016/j.polymertesting.2022.107598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Phumnok E, Khongprom P, Ratanawilai S. Preparation of Natural Rubber Composites with High Silica Contents Using a Wet Mixing Process. ACS OMEGA 2022; 7:8364-8376. [PMID: 35309431 PMCID: PMC8928548 DOI: 10.1021/acsomega.1c05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
A wet mixing process is proposed for filled rubber composites with a high silica loading to overcome the drawbacks of high energy consumption and workplace contamination of the conventional dry mixing process. Ball milling was adopted for preparing the silica dispersion because it has a simple structure, is easy to operate, and is a low-cost process that can be easily scaled up for industrial production. The response surface methodology was used to optimize the making of the silica dispersion. The optimum conditions for a well-dispersed silica suspension with the smallest silica particle size of 4.9 mm were an about 22% silica content and 62 h of ball milling. The effects of dry and wet mixing methods on the properties of silica-filled rubber composites were investigated in a broad range of silica levels from low to high loadings. The mixing method choice had little impact on the properties of rubber composites with low silica loadings. The silica-filled rubber demonstrated in this study, however, shows superior characteristics over the rubber composite prepared with conventional dry mixing, particularly with high silica loadings. When compared to silica-filled natural rubbers prepared by dry mixing (dry silica rubber, DSR), the wet mixing (for WSR) produced smaller silica aggregates with better dispersion. Due to the shorter heat history, the WSR exhibits superior curing characteristics such as a longer scorch time (2.2-3.3 min for WSR and 1.0-2.1 min for DSR) and curing time (4.1-4.5 min for WSR and 2.2-3.1 min for DSR). Additionally, the WSR has superior mechanical properties (hardness, modulus, tensile strength, and especially the elongation at break (420-680% for WSR and 360-620% DSR)) over the DSR. The rolling resistance of WSR is lower than that of DSR. However, the reversed trend on the wet skid resistance is observed.
Collapse
Affiliation(s)
- Ekaroek Phumnok
- Department
of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Parinya Khongprom
- Department
of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Air
Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Sukritthira Ratanawilai
- Department
of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
9
|
Xia Z, Wang Y, Gong K, Chen W. An in situ stretching instrument combined with low field nuclear magnetic resonance (NMR): Rheo-Spin NMR. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:033905. [PMID: 35364982 DOI: 10.1063/5.0080767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
An in situ stretching instrument combined with low field nuclear magnetic resonance (LF-NMR) was designed and developed, namely, Rheo-Spin NMR. The time resolved stress-strain curve together with the corresponding NMR signal can be simultaneously obtained. The Rheo-Spin NMR contains the functional modules, including (1) the in situ stretching module, (2) the NMR signal acquisition module, and (3) the cavity of the NMR positioning module. The unique ring-like shape of the sample is used to replace the traditional dumbbell sample due to limited space in the NMR probe, and the whole ring-like sample will be deformed during the uniaxial stretching process, which avoids the generation of interference signals from the undeformed sample. The designed stretching assembly made by zirconia ceramics is manufactured to match and stretch the ring-like samples. The strain rate can be tuned within the range of 10-5-10-2 s-1 with the maximum stretching ratio λmax of ∼3.8. The in situ stretching experiments combined with LF-NMR were carried out successfully with natural rubber of different fractions of carbon black. The time-resolved T2 relaxometry was adopted to evaluate segmental relaxation during uniaxial deformation which, for the first time, provides the direct and in situ molecular dynamics information. The Rheo-Spin NMR is promising to provide more in-depth insights into the structure and dynamics evolution of polymer products under real service conditions.
Collapse
Affiliation(s)
- Zhijie Xia
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yusong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ke Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Orellana J, Moreno-Villoslada I, Bose RK, Picchioni F, Flores ME, Araya-Hermosilla R. Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers (Basel) 2021; 13:649. [PMID: 33671610 PMCID: PMC7926402 DOI: 10.3390/polym13040649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/29/2022] Open
Abstract
Nowadays, the self-healing approach in materials science mainly relies on functionalized polymers used as matrices in nanocomposites. Through different physicochemical pathways and stimuli, these materials can undergo self-repairing mechanisms that represent a great advantage to prolonging materials service-life, thus avoiding early disposal. Particularly, the use of the Joule effect as an external stimulus for self-healing in conductive nanocomposites is under-reported in the literature. However, it is of particular importance because it incorporates nanofillers with tunable features thus producing multifunctional materials. The aim of this review is the comprehensive analysis of conductive polymer nanocomposites presenting reversible dynamic bonds and their energetical activation to perform self-healing through the Joule effect.
Collapse
Affiliation(s)
- Jaime Orellana
- Magíster en Química con Mención en Tecnología de los Materiales, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Ranjita K. Bose
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; (R.K.B.); (F.P.)
| | - Francesco Picchioni
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; (R.K.B.); (F.P.)
| | - Mario E. Flores
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile
| |
Collapse
|
11
|
Behera PK, Mohanty S, Gupta VK. Self-healing elastomers based on conjugated diolefins: a review. Polym Chem 2021. [DOI: 10.1039/d0py01458c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The introduction of dynamic covalent and physical crosslinks into diolefin-based elastomers improves mechanical and self-healing properties. The presence of dynamic crosslinks also helps in the reprocessing of elastomers.
Collapse
Affiliation(s)
- Prasanta Kumar Behera
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Subhra Mohanty
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Virendra Kumar Gupta
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| |
Collapse
|
12
|
Zhang L, Wang H, Zhu Y, Xiong H, Wu Q, Gu S, Liu X, Huang G, Wu J. Electron-Donating Effect Enabled Simultaneous Improvement on the Mechanical and Self-Healing Properties of Bromobutyl Rubber Ionomers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53239-53246. [PMID: 33197169 DOI: 10.1021/acsami.0c14901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the dynamic nature of networks and high mobility of molecular chains, self-healing elastomers are usually confronted with the trade-off between self-healing efficiency and mechanical properties. Herein, a self-healing ionomer with both high mechanical performance and high self-healing efficiency has been successfully developed by grafting bromobutyl rubber (BIIR) with pyridine-based derivatives. Interestingly, the substituents on the pyridine ring can be used to regulate the interaction forces of ionic clusters and molecular dynamics. The electron-donating effect of the substituents facilitates stable π-π stacking between pyridyl ions, inducing the formation of regular and large ion aggregates, thereby improving the mechanical strength of the ionomer. Meanwhile, the plasticizing effect of the substituents reduces the activation energy and relaxation temperature of the ionic aggregates, thus endowing the ionomer with a high self-healing efficiency. As a result, the ionomer shows tensile strength as high as 8.1 ± 0.3 MPa under room temperature and self-healing efficiency of 100 ± 3% at 60 °C. Therefore, this strategy can be easily extended to other halogen-containing polymers, leading to a novel class of self-healing ionomers that hold great promise in diverse applications.
Collapse
Affiliation(s)
- Linjun Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Zhu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shiyu Gu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xikui Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangsu Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Utrera-Barrios S, Araujo-Morera J, Pulido de Los Reyes L, Verdugo Manzanares R, Verdejo R, López-Manchado MÁ, Hernández Santana M. An effective and sustainable approach for achieving self-healing in nitrile rubber. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Miwa Y, Yamada M, Shinke Y, Kutsumizu S. Autonomous self-healing polyisoprene elastomers with high modulus and good toughness based on the synergy of dynamic ionic crosslinks and highly disordered crystals. Polym Chem 2020. [DOI: 10.1039/d0py01034k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Mayu Yamada
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Yu Shinke
- The Yokohama Rubber Co
- Ltd
- Hiratsuka
- Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
15
|
Wu W, Zhou Y, Li J, Wan C. Shape memory and self‐healing behavior of styrene–butadiene–styrene/ethylene‐methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions. J Appl Polym Sci 2019. [DOI: 10.1002/app.48666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjing Wu
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
- Aerospace Research Institute of Materials and Processing Technology 100076 Beijing China
| | - Yutao Zhou
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
| | - Jie Li
- Aerospace Research Institute of Materials and Processing Technology 100076 Beijing China
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
16
|
Mordvinkin A, Suckow M, Böhme F, Colby RH, Creton C, Saalwächter K. Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00159] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anton Mordvinkin
- Institut für Physik—NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Marcus Suckow
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ralph H. Colby
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Costantino Creton
- Laboratoire de Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Kay Saalwächter
- Institut für Physik—NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| |
Collapse
|